

Optics Measurement Techniques for Transfer Line

& Beam Instrumentation

CAS for Beam Injection, Extraction and Transfer Line Erice, 16th and 17th of March 2017

Peter Forck

Gesellschaft für Schwerionenforschnung (GSI) and University Frankfurt

2nd part of this lecture covers:

- Transverse profile measurement techniques at transfer line and synchrotron Application: transverse matching to synchrotron
- Emittance determination and transfer lines

Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions $\beta(s)$ and D(s) are fixed \Rightarrow width σ and emittance ε are:

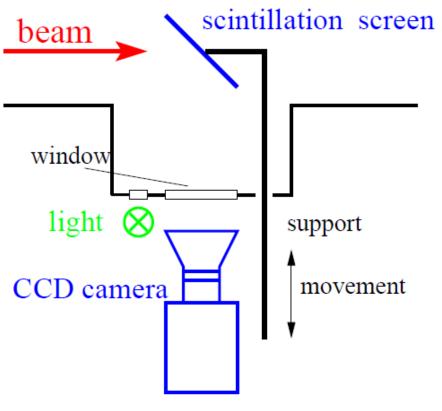
$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s) \frac{\Delta p}{p}\right)^2$$
 and $\sigma_y^2(s) = \varepsilon_y \beta_y(s)$ (no vertical bend)

Transfer lines: Lattice functions are 'smoothly' defined due to variable input emittance.

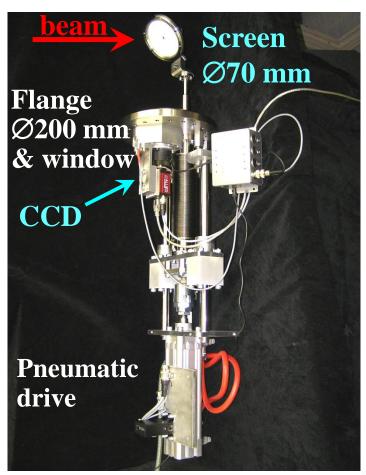
Typical beam sizes:

e-beam: typically Ø 0.1 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:


- ➤ Optical techniques: Scintillating screens (all beams), synchrotron light monitors (e-), optical transition radiation (e-, high energetic p), ionization profile monitors (protons)
- **Electronics techniques:** Secondary electron emission SEM grids, wire scanners (all)

Scintillation Screen



Particle's energy loss in matter produces light

→ the most direct way of profile observation as used from the early days on!

Pneumatic feed-through with Ø70 mm screen:

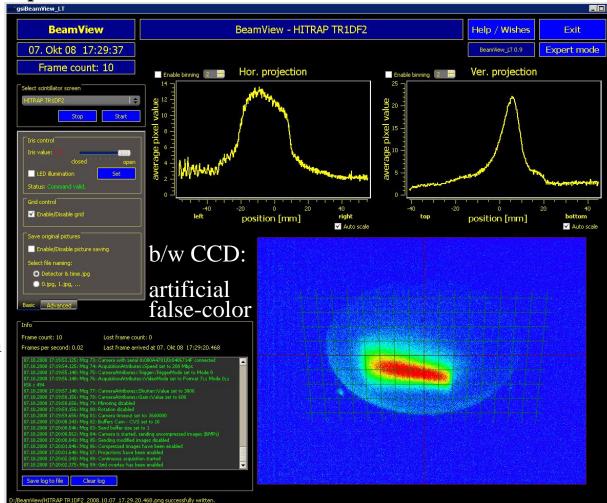
Example of Screen based Beam Profile Measurement

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

Advantage of screens:

- ➤ Direct 2-dim measurement
- ➤ High spatial resolution
- ➤ Cheap realization
- \Rightarrow widely used at transfer lines

Disadvantage of screens:


- ➤ Intercepting device
- ➤ Some material might brittle
- ➤ Low dynamic range
- ➤ Might be destroyed by the beam

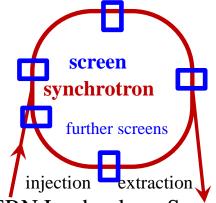
Observation with

a CCD, CMOS or video camera

Scintillation Screen (beam stopped)

First Turn Diagnostics: Profile from Scintillation Screen

First turn diagnostics:


Synchrotron acts as a

transport line as 1st step of commissioning

- ➤ Current measurement with Faraday Cup or transformer or BPM
- ➤ Profile measurement with Screens, SEM-Grid or OTR

Installation: at injection, after one turn

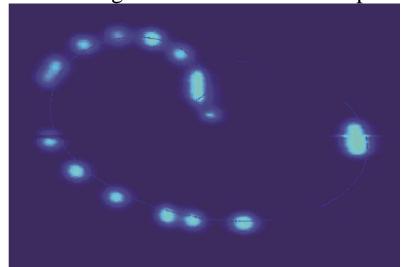

& sometimes after each 'sector' for malfunction diagnostics

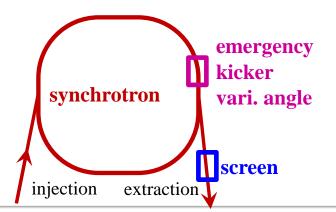
Historical Example & CAS poster:

First turn at CERN LHC on September 10th, 2008

Protons 450 GeV, Al₂O₃:Cr screen mounted after injection

CERN Logbook on Sep. 10th, 2008: It's 10.26 a.m. and the screen in the CCC shows the two spots that indicate that beam has for the first time made a complete circuit of the LHC.

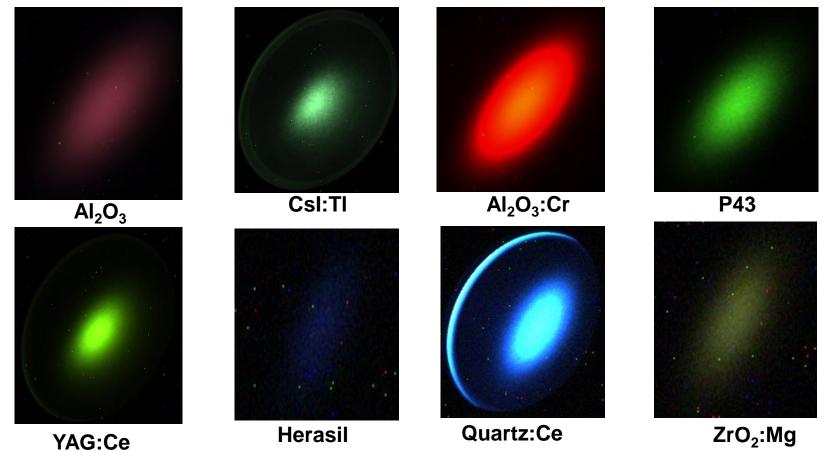

Extraction Diagnostics: Profile from Scintillation Screen


Direct measurement of position and beam distribution of extracted beam by a screen

Example: Test of emergency kicker at LHC (from CAS poster)

→ascending stored bunches are dumped at different locations to prevent for over-heating

Peter Forck, CAS 2017, Erice

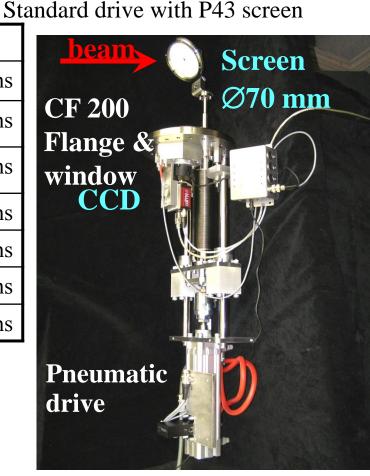

LHC emergency dump diagnostics by Al₂O₃:Cr

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

- ➤ Very different light yield i.e. photons per ion's energy loss
- ➤ Different wavelength of emitted light

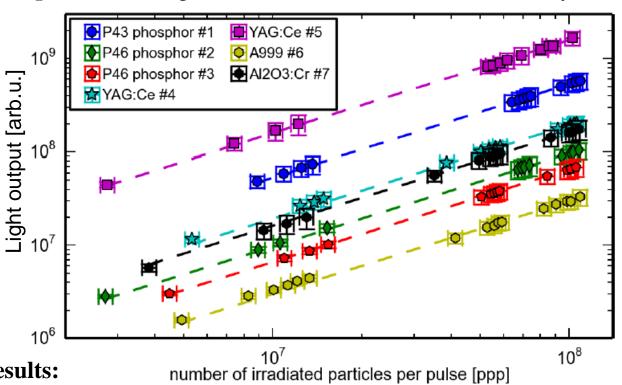
Material Properties for Scintillating Screens



Some materials and their basic properties:

Name	Type	Material	Activ.	Max. λ	Decay
Chromox	Cera-	Al_2O_3	Cr	700 nm	≈ 10 ms
Alumina	mics	Al_2O_3	Non	380 nm	≈ 10 ns
YAG:Ce	Crystal	$Y_3Al_5O_{12}$	Ce	550 nm	200 ns
LuAG:Ce		Lu ₃ Al ₅ O ₁₂	Ce	535 nm	70 ns
P43	Powder	Gd_2O_3S	Tb	545 nm	1 ms
P46		$Y_3Al_5O_{12}$	Ce	530 nm	300 ns
P47		Y ₃ Si ₅ O ₁₂	Ce&Tb	400 nm	100 ns

Properties of a good scintillator:


- ➤ Light output at optical wavelength for standard camera
- \triangleright Large dynamic range \rightarrow usable for different ions
- \triangleright Short decay time \rightarrow observation of variations
- ➤ Radiation hardness → long lifetime
- ➤ Good mechanical properties \rightarrow typ. size up to Ø 10 cm (Phosphor Pxx grains of Ø \approx 10 µm on glass or metal).

Example: Light Output from various Screens

Example: Beam images for various scintillators irradiated by Uranium at ≈ 300 MeV/u at GSI

Courtesy P. Forck et al., IPAC'14, A. Lieberwirth et al., NIM B 2015

Results:

number of irradiated particles per pulse [ppp]

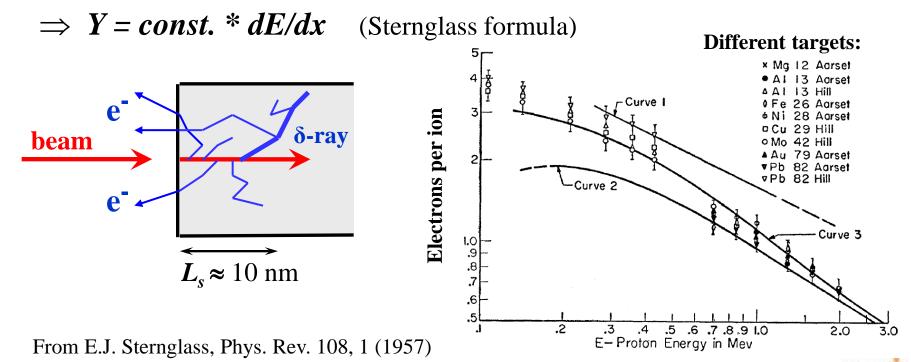
- > Several orders of magnitude different light output
- $\triangleright \Rightarrow$ material matched to beam intensity must be chosen
- Well suited: powder phosphor screens P43 and P46
- \triangleright \rightarrow cheap, can be sedimented on large substrates of nearly any shape
- Light output linear with respect to particles per pulse

Measurement of Beam Profile

Outline:

- > Scintillation screens:
 emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution

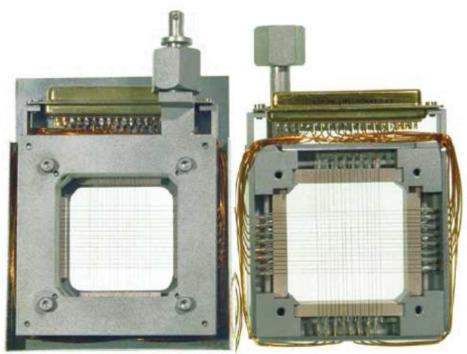
 Multi Wire Proportional Chamber for slow extr.: gas ionization, limited resol.
- **➤ Wire scanner**
- **➤ Ionization Profile Monitor**
- > Optical Transition Radiation
- > Synchrotron Light Monitors
- > Summary


Excurse: Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:

- Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} >> 100 \text{ eV}$
- Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \le 10 \text{ eV}$
- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface ≈ 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

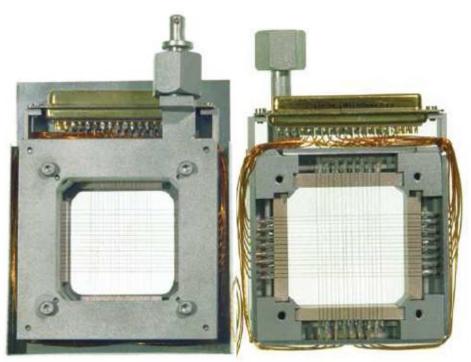


Secondary Electron Emission Grids = SEM-Grid

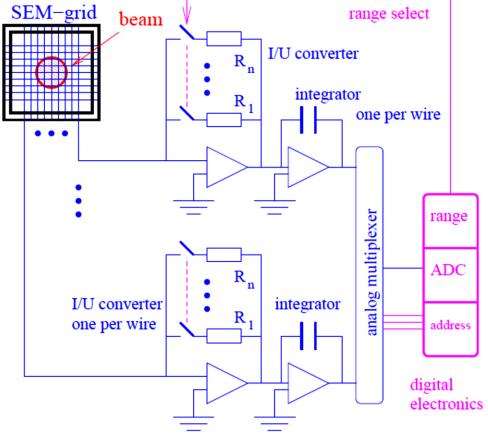
Beam surface interaction: e[−] emission → measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM-Grid feed-through on CF200:



Secondary Electron Emission Grids = SEM-Grid

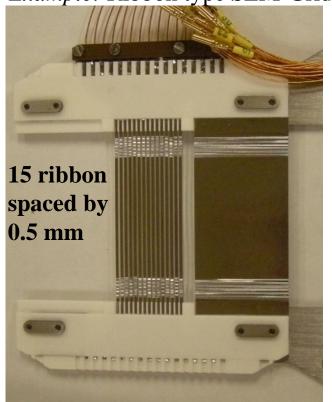

Beam surface interaction: e[−] emission → measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by R_i

 \rightarrow very large dynamic range up to 10^6 .

Properties of a SEM-Grid



Secondary e- emission from wire or ribbons, 10 to 100 per plane.

Specifications for SEM-Grids at the GSI-LINAC:

Diameter of the wires	0.05 to 0.5 mm		
Spacing	0.5 to 2 mm		
Length	50 to 100 mm		
Material	W or W-Re alloy		
Insulation of the frame	glass or Al_2O_3		
number of wires	10 to 100		
Max. power rating in vacuum	$1 \mathrm{W/mm}$		
Min. sensitivity of I/U-conv.	1 nA/V		
Dynamic range	$1:10^{6}$		
Number of ranges	10 typ.		
Integration time	$1 \mu s$ to $1 s$		

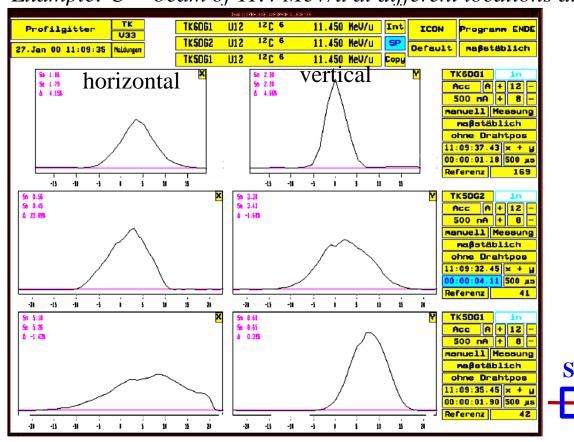
Example: Ribbon type SEM-Grid

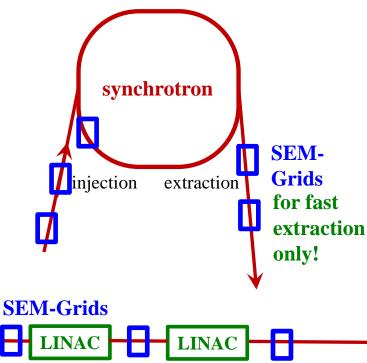
Care has to be taken to prevent over-heating by the energy loss!

Low energy beam: Wires with ratio of spacing/width: $\simeq 1 \text{mm}/0.1 \text{mm} = 10 \rightarrow \text{only } 10 \% \text{ loss.}$

High energy $E_{kin} > 1$ *GeV/u*: typ. 25 µm thick **ribbons** & 0.5 mm width \rightarrow negligible energy loss.

Example of Profile Mesurement with SEM-Grids



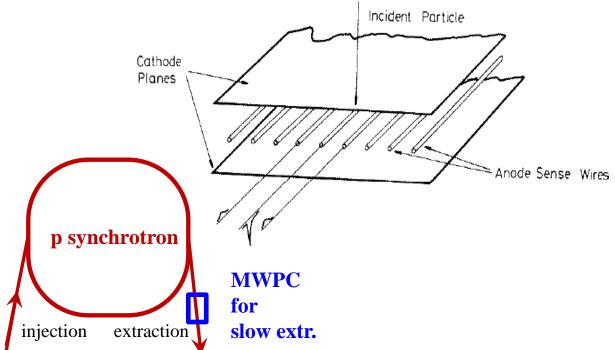

Even for low energies, several SEM-Grid can be used due to the ≈80 % transmission

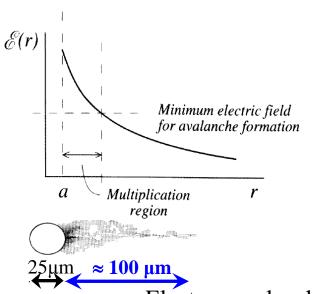
⇒ frequently used for beam optimization: setting of quadrupoles, energy....

SEM-Grid is installed in vacuum \rightarrow for sufficient signal I(t) for fast extraction only

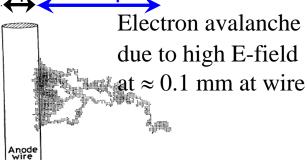
Example: C^{6+} beam of 11.4 MeV/u at different locations at GSI-transfer line

Gas Amplification with MWPC


MWPC: Multi Wire Proportional Chamber


Electron avalanche due to high electric field at signal wire

Typical gas: $80 \% \text{ Ar} + 20 \% \text{ CO}_2 \text{ or CH}_4$

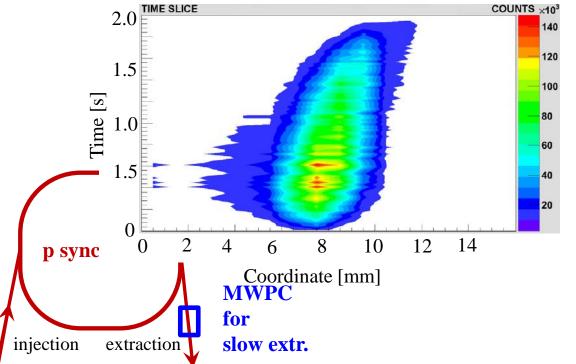

Amplification factor: 100 ... 1000 compared to IC

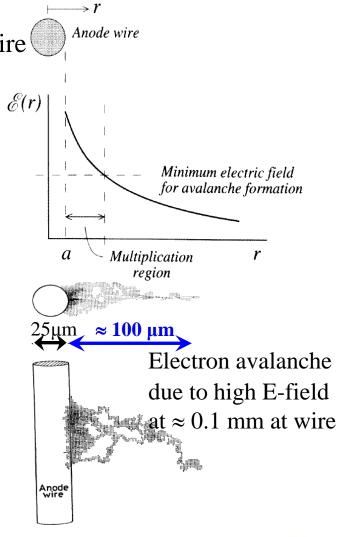
used for slow extraction

Anode wire

Gas Amplification with MWPC

MWPC: Multi Wire Proportional Chamber


Electron avalanche due to high electric field at signal wire


Typical gas: $80 \% Ar + 20 \% CO_2 \text{ or } CH_4$

Amplification factor: 100 ... 1000 compared to IC

Example: Ar¹⁸⁺ at 300 MeV/u slow extraction by

quadrupole variation of 2 s

Example of a Multi-Wire-Proportional-Chamber (MWPC)

The MWPC hardware:

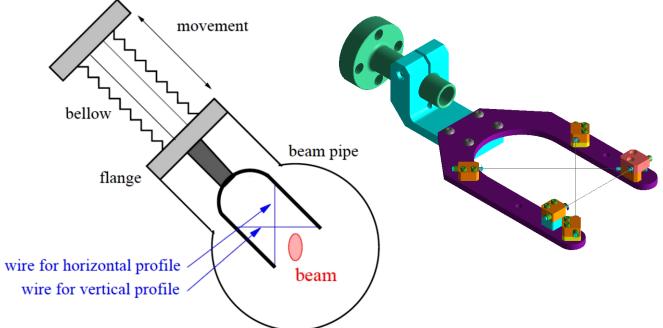
- > Detector head, wire spacing 1 mm (left),
- ➤ Assembly (right)
- ➤ Mechanical drive (bottom) with Ar + CO₂ gas-filled volume: 'Pocket'
 - \rightarrow Steel window of 50 μm thickness
 - $\rightarrow p = 1$ bar pressure inside 'pocket'

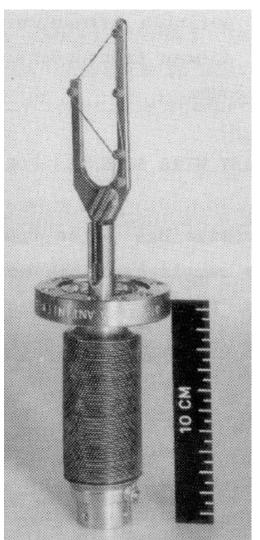
Measurement of Beam Profile

Outline:

- > Scintillation screens:
 emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution

 Multi Wire Proportional Chamber for slow extr.: gas ionization, limited resol.
- **➤ Wire scanner: emission of electrons, workhorse, scanning method**
- **➤ Ionization Profile Monitor**
- > Optical Transition Radiation
- > Synchrotron Light Monitors
- > Summary

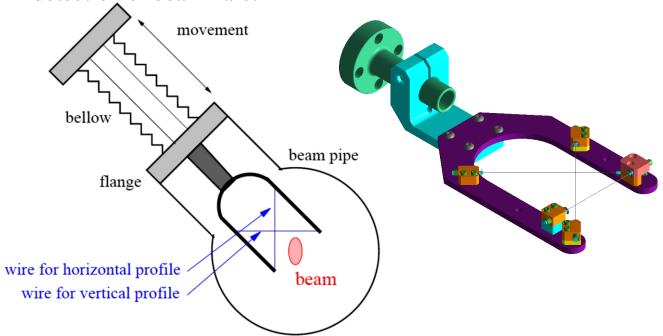

Slow, linear Wire Scanner



Idea: One wire is scanned through the beam!

Slow, linear scanner are used for:

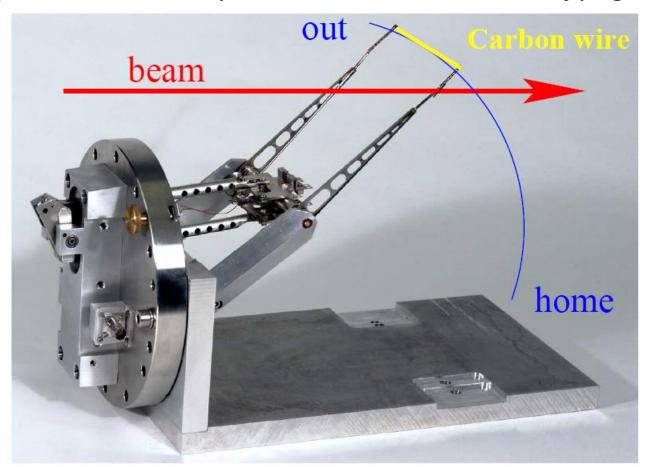
- ➤ low energy protons
- ⇒ high resolution measurements e.g. usable at e⁺-e⁻ colliders by de-convolution $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$
 - \Rightarrow resolution down to 10 µm range can be reached
- > detection of beam halo.


Slow, linear Wire Scanner

Idea: One wire is scanned through the beam!

Slow, linear scanner are used for:

- > low energy protons
- ► high resolution measurements e.g. usable at e⁺-e⁻ colliders by de-convolution $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$
 - \Rightarrow resolution down to 10 µm range can be reached
- > detection of beam halo.



Wire Scanner

In a synchrotron *one* wire is scanned though the beam as fast as possible.

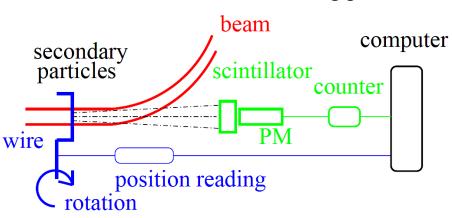
Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':

Usage of Wire Scanners

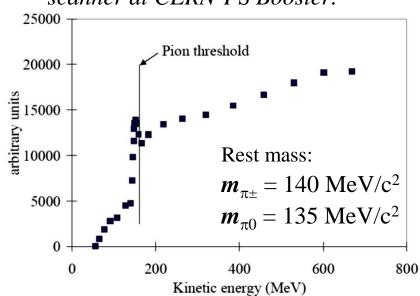
Material: carbon or SiC \rightarrow low Z-material for low energy loss and high temperature.

Thickness: down to 10 μ m \rightarrow high resolution.

Detection: Either the **secondary current** (like SEM-grid) or


high energy **secondary particles** (like beam loss monitor)

flying wire: only sec. particle detection due to induced current by movement.


Secondary particles:

Proton beam \rightarrow hadrons shower $(\pi, n, p...)$

Electron beam → Bremsstrahlung photons.

Proton impact on scanner at CERN-PS Booster:

Kinematics of flying wire:

Velocity during passage typically 10 m/s = 36 km/h and typical beam size \emptyset 10 mm

 \Rightarrow time for traversing the beam $t \approx 1$ ms

Comparison between SEM-Grid and Wire Scanners

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored

→ for pulsed LINACs precise synchronization is needed

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μm)

 \rightarrow used for e-beams having small sizes (down to 10 μ m)

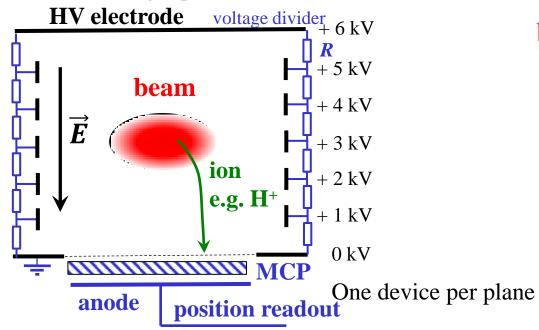
Grid: Needs one electronics channel per wire

→ expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through \rightarrow expensive mechanics.

Measurement of Beam Profile

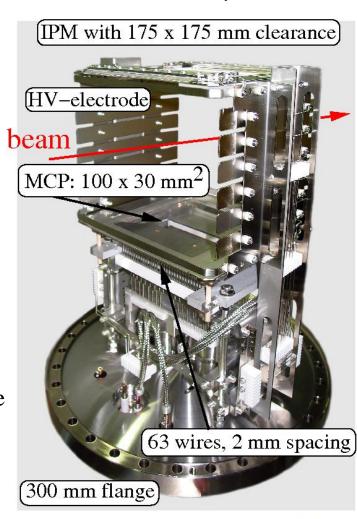
Outline:


- > Scintillation screens:
 emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- > Wire scanner: emission of electrons, workhorse, scanning method Multi Wire Proportional Chamber for slow extr. : gas ionization, limited resol.
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- Optical Transition Radiation
- > Synchrotron Light Monitors
- > Summary

Ionization Profile Monitor at GSI Synchrotron

Non-destructive device for proton synchrotron:

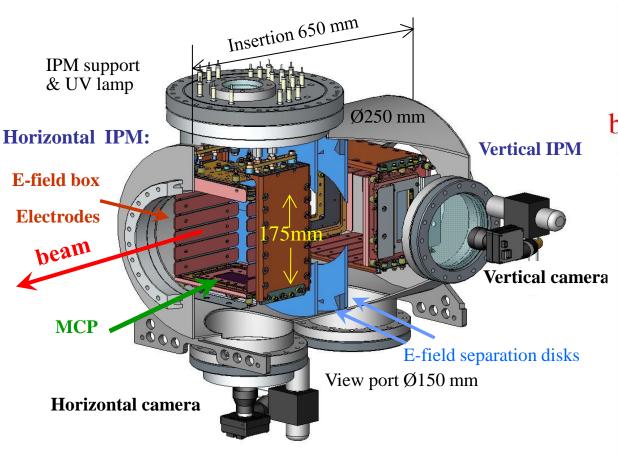
- beam ionizes the residual gas by electronic stopping
- > gas ions or e⁻ accelerated by E -field ≈1 kV/cm
- > spatial resolved single particle detection

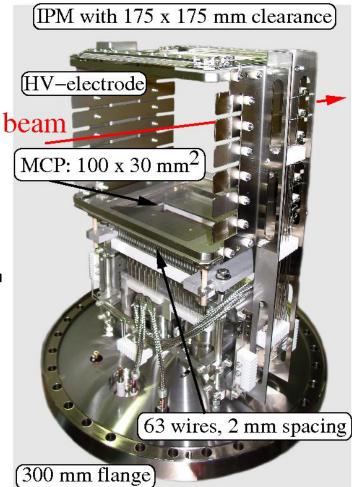


Typical vacuum pressure:

Transfer line: $N_2 10^{-8} ... 10^{-6} \text{ mbar} \cong 3.10^8 ... 3.10^{10} \text{ cm}^{-3}$

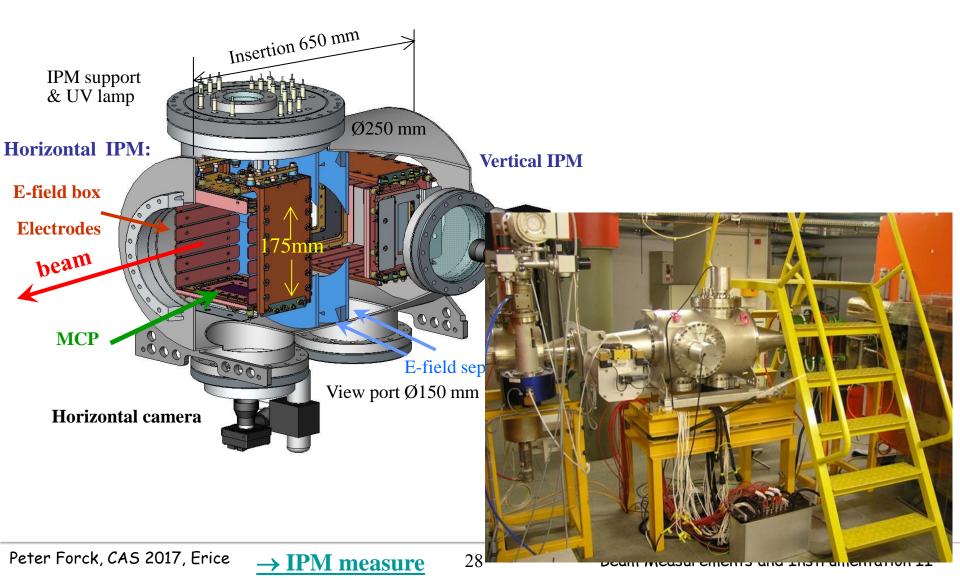
Synchrotron: $H_2 = 10^{-11} ... 10^{-9} \text{ mbar} \approx 3.10^5 ... 3.10^7 \text{ cm}^{-3}$


Realization at GSI synchrotron:



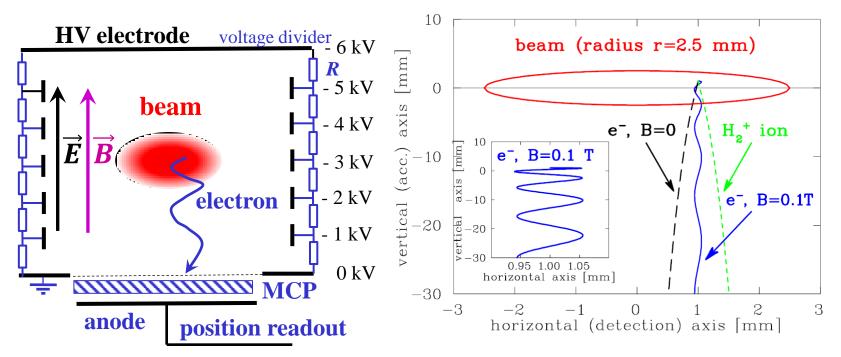
Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:



Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:


Electron Detection and Guidance by Magnetic Field

Alternative: e⁻ detection in an external magnetic field

$$\rightarrow$$
 cyclotron radius $r_c = \sqrt{2m_e E_{kin,\perp}} / eB \implies r_c < 0.1 \,\mathrm{mm}$ for $B = 0.1 \,\mathrm{T}$

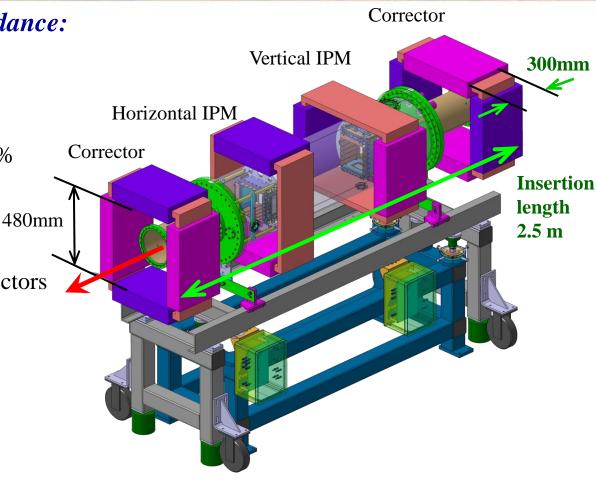
 E_{kin} given by atomic physics, 0.1 mm is internal resolution of MCP.

Time-of-flight: $\approx 1 \text{ ns} \rightarrow 2 \text{ or } 3 \text{ cycles}.$

B-field: By dipole magnets with large aperture \rightarrow IPM is expensive device.

IPM: Magnet Design

Magnetic field for electron guidance:


Maximum image distortion:

5% of beam width $\Rightarrow \Delta B/B < 1\%$

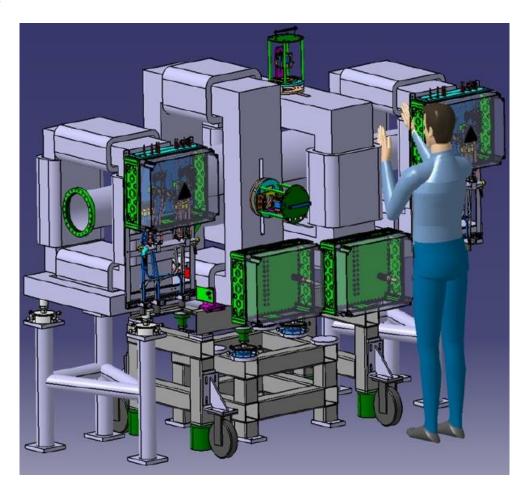
Challenges:

- ➤ High **B**-field homogeneity of 1 %
- ➤ Clearance up to 500 mm
- Correctors required to compensate beam steering
- ➤ Insertion length 2.5 m incl. correctors

For MCP wire-array readout lower clearance required

IPM: Magnet Design

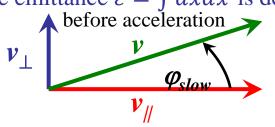
Magnetic field for electron guidance:

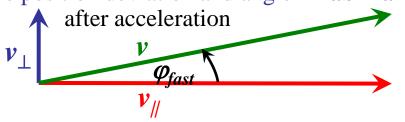

Maximum image distortion:

5% of beam width $\Rightarrow \Delta B/B < 1\%$

Challenges:

- ➤ High **B**-field homogeneity of 1 %
- ➤ Clearance up to 500 mm
- Correctors required to compensate beam steering
- ➤ Insertion length 2.5 m incl. correctors


For MCP wire-array readout lower clearance required



'Adiabatic' Damping during Acceleration

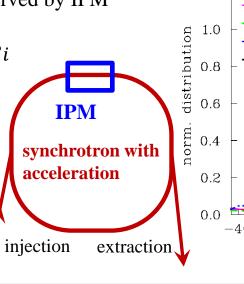
The emittance $\varepsilon = \int dx dx'$ is defined via the position deviation and angle in **lab-frame**

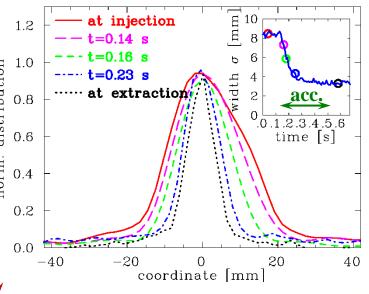
After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller

The angle is expressed in momenta: $x' = p_{\perp}/p_{\parallel}$ the emittance is $\langle xx' \rangle = 0$: $\varepsilon = x \cdot x' = x \cdot p_{\perp}/p_{\parallel}$

- \Rightarrow under ideal conditions the emittance can be normalized to the momentum $p_{\parallel} = \gamma \cdot m \cdot \beta c$
- \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved with the Lorentz factor γ and velocity $\beta = v/c$

Example: Acceleration in GSI-synchrotron for C⁶⁺ from


$$6.7 \rightarrow 600 \text{ MeV/u } (\beta = 12 \rightarrow 79 \%) \text{ observed by IPM}$$

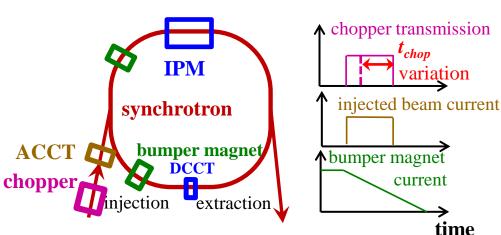

theoretical width: $\langle x \rangle_f = \sqrt{\frac{\beta_i \cdot \gamma_i}{\beta_f \cdot \gamma_f}} \cdot \langle x \rangle_i$ = 0.33 · $\langle x \rangle_i$

measured width: $\langle x \rangle_f \approx 0.37 \cdot \langle x \rangle_i$

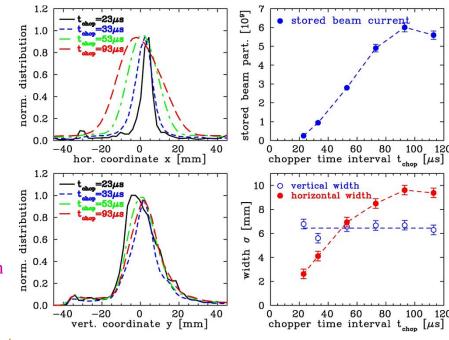
IPM is well suited for long time observations without beam disturbance

→ mainly used at proton synchrotrons.

Emittance 'Control' via Chopped Injection



For a multi-turn injection the emittance can be controlled by beam chopping

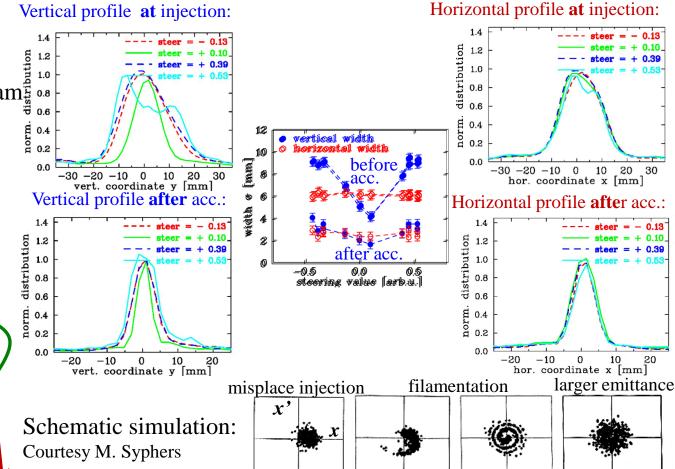

Bumper magnet action:

- > First beamlet injected on central path
- Successive filling of 'outer' phase space
- ⇒ stored horizontal emittance varies
- ⇒ vertical emittance un-changed
- \Rightarrow injected current increase for longer t_{chop}

Monitoring by IPM

Example: C⁶⁺ at 6.7 MeV/u, up to 6·10⁹ ions per fill with multi-turn injection at GSI synchrotron, 5μs/turn

Emittance Enlargement by Injection Mis-steering


Emittance conservation requires precise injection matching

Wrong angle of injected beam:

- > injection into outer phase space → large >-amplitude i.e. large beam
- might result in 'hollow' beam
- filling of acceptancei.e. loss of particles
- ⇒ Hadron beams: larger

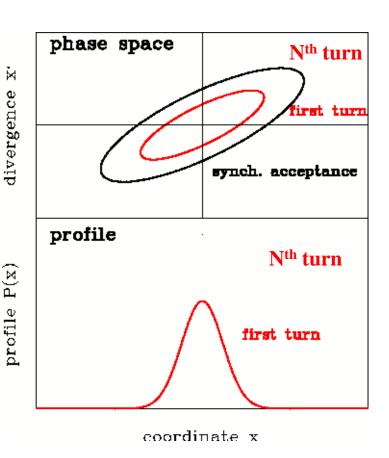
emittance after acceleration
injection:
angle
mismatch
synchrotron
vertical
steerer
injection extraction

Example: Variation of vertical injection angle by magnetic steerer Beam: C^{6+} at 6.7 MeV/u acc. to 600 MeV/u, up to $6\cdot10^9$ ions per fill with multi-turn injection, IPM integration 0.5 ms i.e. ≈ 100 turns

Injection Matching into a Synchrotron: Phase Space Mismatch

Ideal case of injection matching:

Orientation of injected beam matches phase space as given by synchrotron


Twiss parameters α , β , and γ i.e. 'machine emittance'

- ⇔ no change after each turn ⇔ stable storage
- \Leftrightarrow The beam ellipse σ_{beam} correspond to the machine ellipse at injection point for N=0 i.e.

$$\mathbf{\sigma}_{beam}(N=0) = \varepsilon_{beam} \begin{pmatrix} \beta_{synch} & -\alpha_{synch} \\ -\alpha_{synch} & \gamma_{synch} \end{pmatrix}$$

 \Rightarrow only in this case stable storage (math: $t \rightarrow \infty$)

$$\sigma_{beam}(N=0) = \sigma_{beam}(N \to \infty)$$

Injection Matching into a Synchrotron: Phase Space Mismatch

Ideal case of injection matching:

Orientation of injected beam matches phase space as given by synchrotron

Twiss parameters α , β , and γ i.e. 'machine emittance'

⇔ no change after each turn ⇔ stable storage

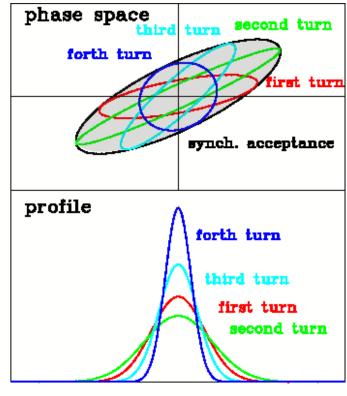
Mis-matched case:

- \triangleright The beam ellipse σ_{beam} has different orientation as machine ellipse at injection point for N=0 i.e.
- > Transformation after one turn

$$\mathbf{\sigma}_{beam}(N=1) = \mathbf{M}\mathbf{\sigma}_{beam}(N=0) \mathbf{M}^{T}$$

$$\neq \mathbf{\sigma}_{beam}(N=0)$$

i.e. rotation in phase space by the tune


i.e. phase advance per turn

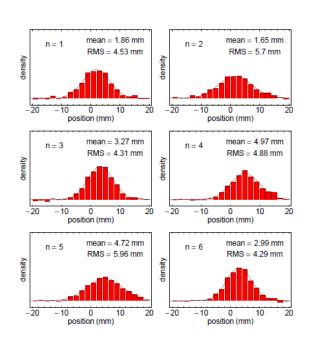
Depictive argument: Always particle on both ellipse

Observable quantity: Beam profile oscillates

coordinate x **After many turns:** Particle have different tunes e.g. by longitudinal momentum deviation and chromaticity $\frac{\Delta Q}{Q_0} = \xi \cdot \frac{\Delta p}{p_0}$ or space charge ΔQ_{incoh} \Rightarrow Entire transverse phase space is filled i.e. beam with enlarged emittance

profile

Injection Matching into a Synchrotron: Phase Space Mismatch


second turn

Mis-matched injection into a synchrotron:

Can be monitored by beam profile measurement:

Example: Injection of a 80 ns bunch of protons into CERN PS at 1.4 GeV/u (2.2 µs revolution time) Profile measurement by SEM-Grid

- Turn-by-turn profile variation related to tune
- Used for improvement of injection parameters

From M. Benedikt et al., DIPAC 2001

phase space

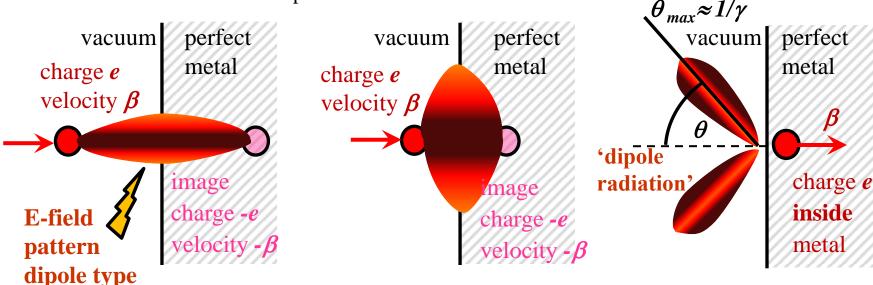
forth turn

×

Measurement of Beam Profile

Outline:

- > Scintillation screens:
 emission of light. universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- ➤ Wire scanner: emission of electrons, workhorse, scanning method Multi Wire Proportional Chamber for slow extr. : gas ionization, limited resol.
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- ➤ Optical Transition Radiation: crossing material boundary, for relativistic beams only
- > Synchrotron Light Monitors
- > Summary


Optical Transition Radiation: Depictive Description

Optical Transition Radiation OTR for a single charge *e***:**

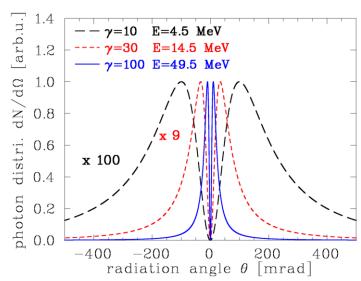
Assuming a charge e approaches an ideal conducting boundary e.g. metal foil

- image charge is created by electric field
- dipole type field pattern
- \triangleright field distribution depends on velocity β and Lorentz factor γ due to relativistic trans. field increase
- \triangleright penetration of charge through surface within t < 10 fs: sudden change of source distribution
- > emission of radiation with dipole characteristic

sudden change charge distribution rearrangement of sources ⇔ radiation

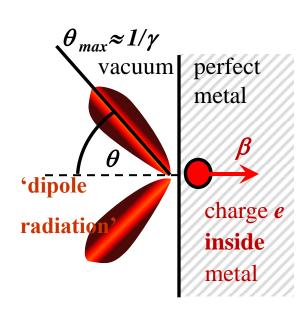
Other physical interpretation: Impedance mismatch at boundary leads to radiation

Optical Transition Radiation: Depictive Description


Optical Transition Radiation OTR can be described in classical physics:

approximated formula for normal incidence & in-plane polarization:

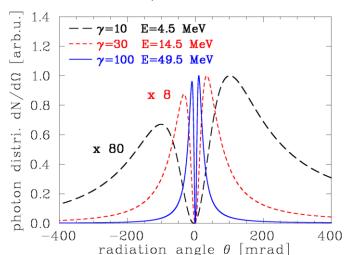
$$\frac{d^2W}{d\theta \,d\omega} \approx \frac{2e^2\beta^2}{\pi \,c} \cdot \frac{\sin^2\theta \cdot \cos^2\theta}{\left(1 - \beta^2 \cos^2\theta\right)^2}$$

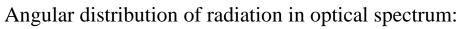

W: radiated energy

 ω : frequency of wave

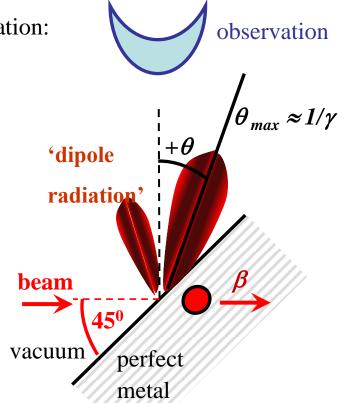
Angular distribution of radiation in optical spectrum:

- \triangleright lope emission pattern depends on velocity or Lorentz factor γ
- \triangleright peak at angle $\theta \approx 1/\gamma$
- rightharpoonup emitted energy i.e. amount of photons scales with $W \propto \beta^2$
- \triangleright broad wave length spectrum (i.e. no dependence on ω)
- → suited for high energy electrons


sudden change charge distribution rearrangement of sources ⇔ radiation


Optical Transition Radiation with 45° incidence: Depictive Description

OTR with 45° beam incidence and observation at 90° :


approximated formula for 45° incidence& in plane polarization:

$$\frac{d^2W}{d\theta \,d\omega} \approx \frac{2e^2\beta^2}{\pi \,c} \cdot \left(\frac{\sin\theta}{1 - \beta\cos\theta} + \frac{\cos\theta}{1 - \beta\sin\theta}\right)^2$$

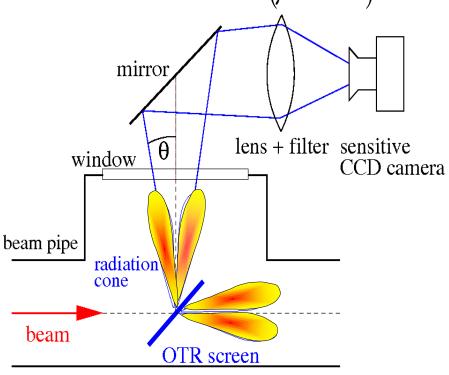
- emission pattern depends on velocity
- \triangleright peak at angle $\theta \approx 1/\gamma$
- rightharpoonup emitted energy scales with $W \propto \beta^2$
- symmetric with respect to θ for $\gamma > 100$

Remark: polarization of emitted light:

- \triangleright in scattering plane \rightarrow parallel E-vector
- ▶ perpendicular plane → rectangular E-vector

Technical Realization of Optical Transition Radiation OTR

OTR is emitted by charged particle passage through a material boundary.

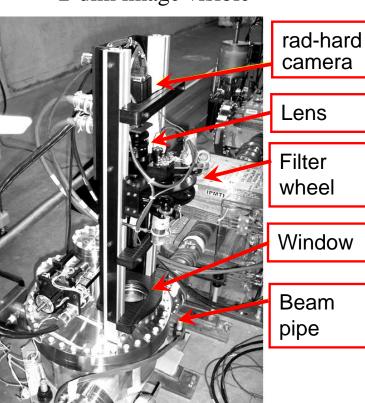

Photon distribution: within a solid angle $d\Omega$ and

$$\frac{dN_{photon}}{d\Omega} = N_{be}$$

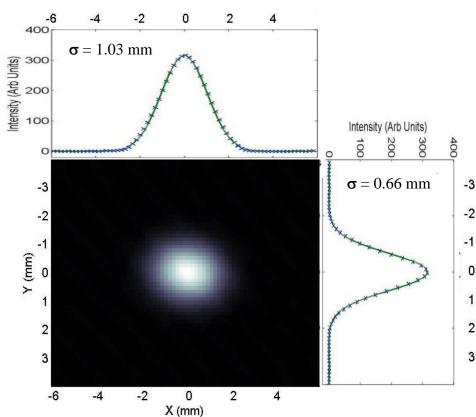
$$\frac{2e^2\beta^2}{\pi c} \cdot \log \left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{1}{(\gamma^{-2})^{-2}}$$

Wavelength interval λ_{begin} to λ_{end}

- ► Detection: Optical 400 nm $< \lambda < 800$ nm using image intensified CCD
- \triangleright Larger signal for relativistic beam $\gamma >> 1$
- \triangleright Low divergence for $\gamma >> 1 \Rightarrow$ large signal
- ⇒ well suited for e beams
- \Rightarrow p-beam only for $E_{kin} > 10 \text{ GeV } \Leftrightarrow \gamma > 10$



- ➤ Insertion of thin Al-foil under 45°
- ➤ Observation of low light by CCD.


OTR-Monitor: Technical Realization and Results

Example of realization at TERATRON:

Results at FNAL-TEVATRON synchrotron with 150 GeV proton Using fast camera: Turn-by-turn measurement

Courtesy V.E. Scarpine (FNAL) et al., BIW'06

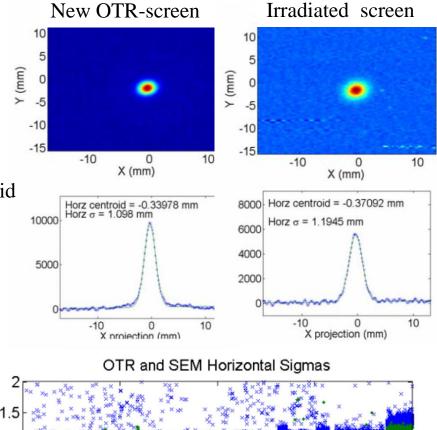
OTR-Monitor: Prove of Radiation Hardness

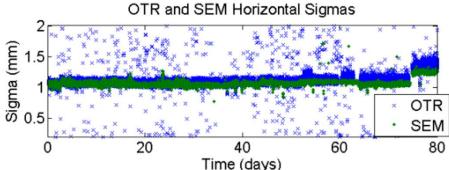
Application:

Permanent observation of bam profile direct in front of a target

Advantage of OTR:

- > Thin foil i.e. low straggling and nuclear reactions
- ➤ Higher radiation hardness as scintillation screens
- ➤ 2-dim image as compared o 2 x 1-dim for SEM-Grid

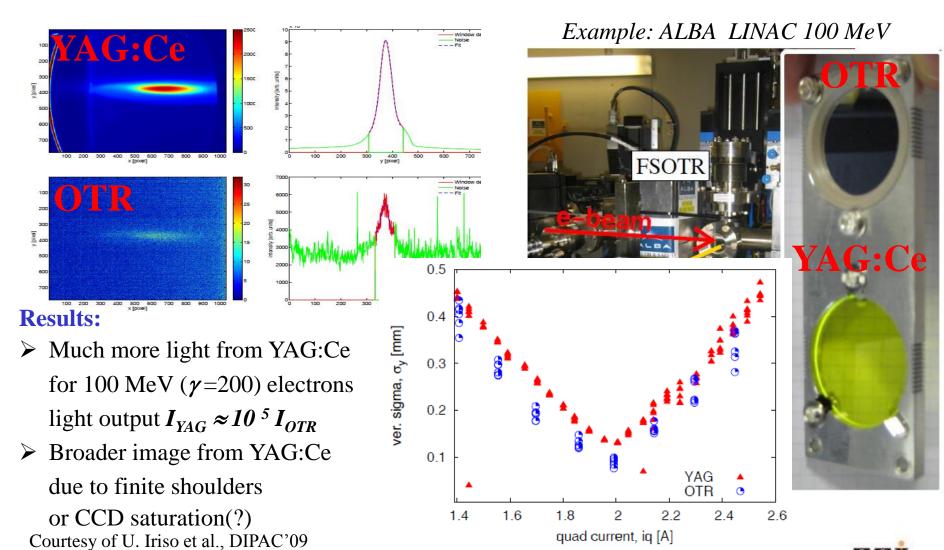

Example for target diagnostics at FNAL:


Insertion of OTR in front of NuMI target 120-150 GeV protons for neutrino physics Online profile observation possible OTR foil: 120 nm Aluminum on 6 µm Kapton

Radiation hardness test at FNAL:

 $7 \cdot 10^{19}$ protons with 120 GeV in 70 days

→ half signal strength but same width reading



Courtesy V.E. Scarpine (FNAL) et al., PAC'07

Optical Transition Radiation compared to Scintillation Screen

Installation of OTR and scintillation screens on same drive:

Comparison between Scintillation Screens and OTR

OTR: electrodynamic process → beam intensity linear to # photons, high radiation hardness

Scint. Screen: complex atomic process → saturation possible, for some low radiation hardness

OTR: thin foil Al or Al on Mylar, down to 0.25 µm thickness

→ minimization of beam scattering (Al is low Z-material)

Scint. Screen: thickness ≈ 1 mm inorganic, fragile material, not radiation hard

OTR: low number of photons \rightarrow expensive image intensified CCD

Scint. Screen: large number of photons → simple CCD sufficient

OTR: complex angular photon distribution \rightarrow resolution limited

Scint. Screen: isotropic photon distribution \rightarrow simple interpretation

OTR: large γ needed \rightarrow e⁻-beam with $E_{kin} > 100$ MeV, proton-beam with $E_{kin} > 100$ GeV

Scint. Screen: for all beams

Remark: OTR **not** suited for LINAC-FEL due to **coherent** light emission (not covered here) but scintilation screens can be used.

Measurement of Beam Profile

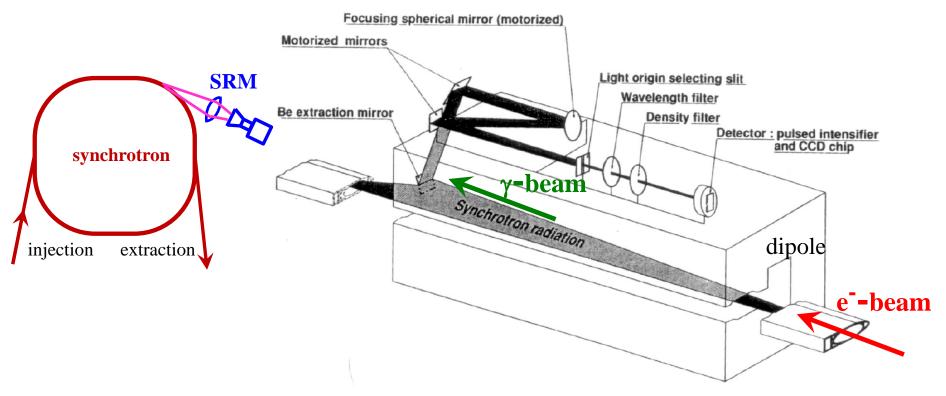
Outline:

- > Scintillation screens: emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution Multi Wire Proportional Chamber for slow extr.: gas ionization, limited resol.
- > Wire scanner: emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- > Optical Transition Radiation: crossing optical boundary, for relativistic beams only
- > Synchrotron Light Monitors
 photon detection of emitted synchrotron light in optical and x-ray range
- > Summary

Synchrotron Light Monitor

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light.

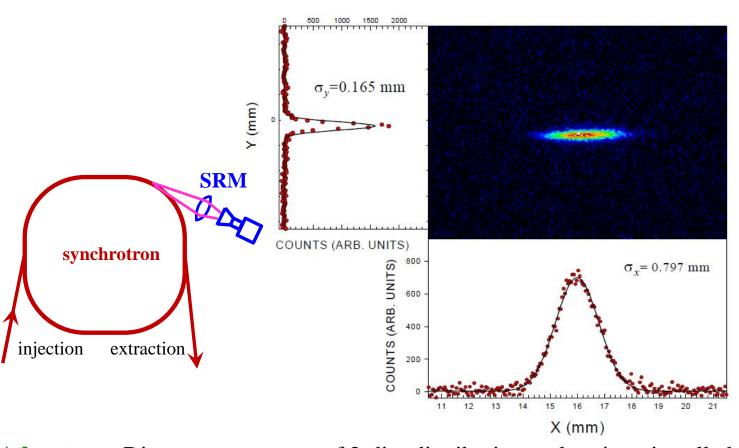
This light is emitted **Rest frame of electron: Laboratory frame:** into a cone of acceleration orbit of electrons orbit of electrons opening $2/\gamma$ in lab-frame. $d\mathbf{p}/dt$ $d\mathbf{p}/dt$ ⇒Well suited for rel. e⁻ 90° For protons: Only for energies $E_{kin} > 100 \text{ GeV}$ radiation field radiation field power: $P \propto \gamma^4/\rho^2$ detector $\pm \frac{1}{2}$ opening angle The light is focused to a intensified CCD. cone of synch. radiation angle α e-beam **Advantage:** Signal anyhow available! intensified lens filter CCD camera dipole magnet beding radius p


Realization of a Synchrotron Light Monitor

Extracting out of the beam's plane by a (cooled) mirror

- → Focus to a slit + wavelength filter for optical wavelength
- → Image intensified CCD camera

Example: CERN LEP-monitor with bending radius 3.1 km (blue or near UV)



Courtesy C. Bovet (CERN) et al., PAC'91

Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

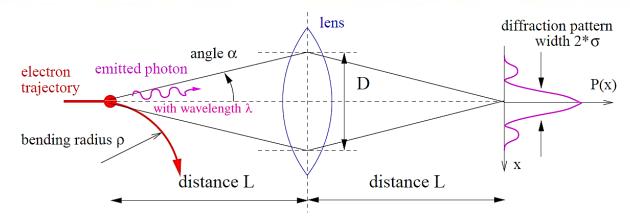
Courtesy B.X. Yang (ANL) et al. PAC'97

Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe

Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

Synchrotron Light Monitor overcoming Diffraction Limit



Limitations:

Diffraction limits the resolution due to Fraunhofer diffraction

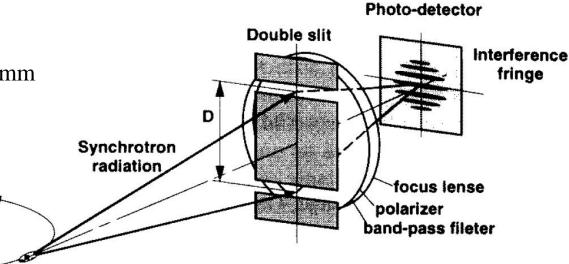
$$\Rightarrow \sigma \cong 0.6 \cdot (\lambda^2 / \rho)^{1/3}$$

 $\approx 100 \, \mu \text{m}$ for typical case

Improvements:

> Shorter wavelength:

Using x-rays and an aperture of Ø 1mm


- \rightarrow 'x-ray pin hole camera',
- achievable resolution $\sigma \approx 10 \ \mu m$

> Interference technique:

At optical wavelength using a double slit

 \rightarrow interference fringes

achievable resolution $\sigma \approx 1 \mu m$.

Electron bunch

Summary for Beam Profile Measurement

Different techniques are suited for different beam parameters:

e-beam: typically Ø 0.1 to 3 mm, protons: typically Ø 3 to 30 mm

Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

- ➤ Optical synchrotron radiation monitor: non-destructive, for e⁻-beams, complex, limited res.
- > X-ray synchrotron radiation monitor: non-destructive, for e⁻-beams, very complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- ➤ Scintillation screen: destructive, large signal, simple setup, all beams
- ➤ Ionization profile monitor: non-destructive, expensive, limited resolution, for protons
- ➤ Residual fluorescence monitor: non-destructive, limited signal strength, for protons

Wire based electronic methods:

- > SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- ➤ Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

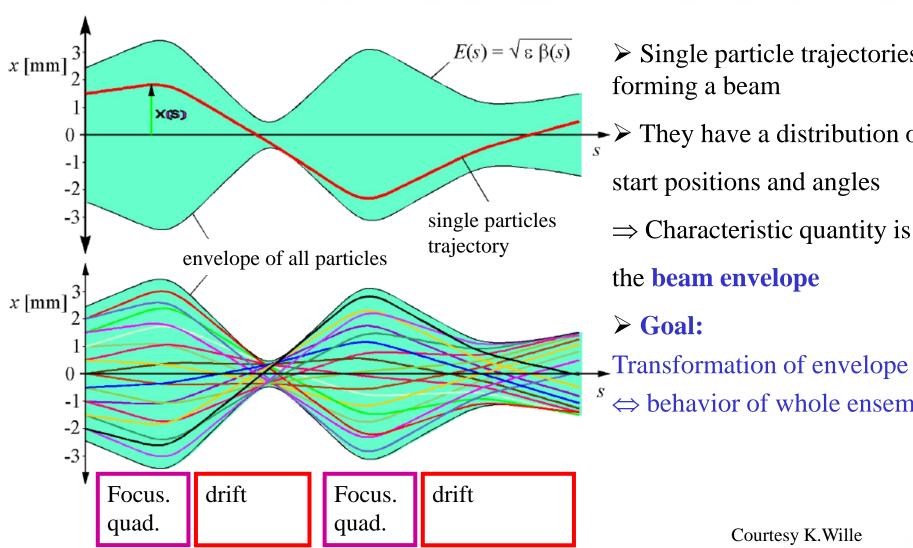
Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.

It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

either profile width σ_x and angular width σ_x' at one location or σ_x at different locations and linear transformations.


Different devices are used at transfer lines:

- \triangleright Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- ➤ All beams: Quadrupole variation, 'three grid' method using linear transformations (**not** well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion

$$\Rightarrow \text{ beam width delivers emittance:} \quad \varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right] \text{ and } \quad \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$$

- Single particle trajectories are
- ► ➤ They have a distribution of start positions and angles

Transformation of envelope

⇔ behavior of whole ensemble

Courtesy K.Wille

Definition of Coordinates and basic Eugations

The basic vector is 6 dimensional:

$$\vec{x}(s) = \begin{pmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{pmatrix} = \begin{pmatrix} \text{hori. spatial deviation} \\ \text{horizontal divergence} \\ \text{vert. spatial deviation} \\ \text{vertical divergence} \\ \text{longitudinal deviation} \\ \text{momentum deviation} \end{pmatrix} = \begin{pmatrix} [\text{mm}] \\ [\text{mrad}] \\ [\text{mm}] \\ [\text{mm}] \\ [\text{mm}] \end{pmatrix}$$

The transformation of a single particle from a location s_0 to s_1 is given by the

 $\chi(s_1) = \mathbf{R}(s) \cdot \chi(s_0)$ **Transfer Matrix R:**

The transformation of a the envelope from a location s_0 to s_1 is given by the

Beam Matrix σ:

$$\sigma(s_1) = R(s) \cdot \sigma(s_0) \cdot R^{T}(s)$$

$$\begin{array}{l} \textbf{6-dim Beam Matrix} \\ \textbf{with } \underline{\textit{decoupled}} \\ \textbf{hor. \& vert. plane: } \sigma = \begin{pmatrix} \sigma_{11} \ \sigma_{12} \ 0 \ 0 \ \sigma_{15} \ \sigma_{22} \ 0 \ 0 \ \sigma_{25} \ \sigma_{26} \\ 0 \ 0 \ \sigma_{33} \ \sigma_{34} \ 0 \ 0 \\ 0 \ 0 \ \sigma_{34} \ \sigma_{44} \ 0 \ 0 \\ \sigma_{15} \ \sigma_{25} \ 0 \ 0 \ \sigma_{55} \ \sigma_{56} \\ \sigma_{16} \ \sigma_{26} \ 0 \ 0 \ \sigma_{56} \ \sigma_{66} \end{pmatrix} \begin{array}{l} \textbf{Horizontal} \\ \textbf{beam matrix:} \\ \textbf{beam matrix:} \\ \textbf{coordinates:} \\ \sigma_{11} = \left\langle x^2 \right\rangle \quad x_{rms} = \sqrt{\sigma_{11}} \\ \sigma_{12} = \left\langle x \cdot x' \right\rangle \quad y_{rms} = \sqrt{\sigma_{33}} \\ \sigma_{22} = \left\langle x'^2 \right\rangle \quad l_{rms} = \sqrt{\sigma_{55}} \\ \end{array}$$

Horizontal

$$\sigma_{22} = \langle x'^2 \rangle$$
 $l_{rms} = \sqrt{\sigma_{55}}$

Beam width for

Definition of transverse Emittance

The emittance characterizes the whole beam quality: $\varepsilon_x = \frac{1}{2} \int_{A} dx dx'$

Ansatz:

Beam matrix at one location: $\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} = \varepsilon \cdot \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} \text{ with } \boldsymbol{x} = \begin{pmatrix} x \\ x' \end{pmatrix}$

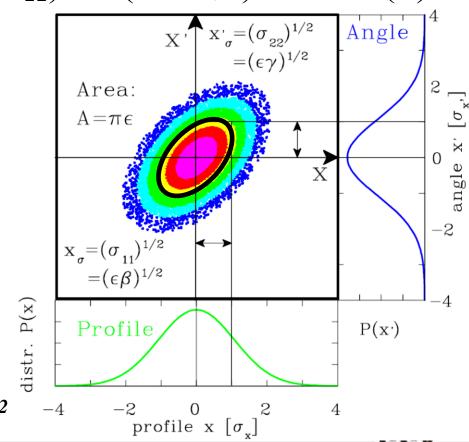
$$\mathbf{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_1 \\ \sigma_{12} & \sigma_2 \end{pmatrix}$$

It describes a 2-dim probability distr.

The value of emittance is:

$$\varepsilon_x = \sqrt{\det \mathbf{\sigma}} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

For the profile and angular measurement:


$$x_{\sigma} = \sqrt{\sigma_{11}} = \sqrt{\varepsilon \beta}$$
 and

$$x'_{\sigma} = \sqrt{\sigma_{22}} = \sqrt{\varepsilon \gamma}$$

Geometrical interpretation:

All points x fulfilling $x^t \cdot \sigma^{-1} \cdot x = 1$ are located on a ellipse

$$\sigma_{22}x^2 - 2\sigma_{12}xx' + \sigma_{II}x'^2 = \det \sigma = \varepsilon_x^2$$

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

- beams behind ion source
- > space charged dominated beams at LINAC & synchrotron

> cooled beams in storage rings

Covariance

i.e. correlation

General description of emittance

using terms of 2-dim distribution:

It describes the value for 1 stand, derivation

Variances

For Gaussian beams only:

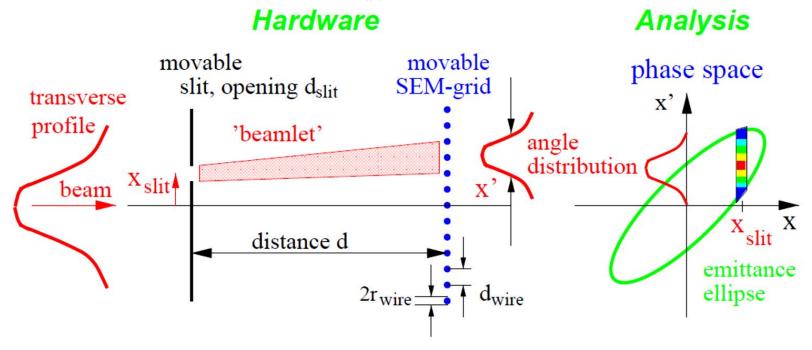
 $\varepsilon_{rms} \leftrightarrow \text{interpreted as area containing a fraction } f \text{ of ions: } \varepsilon(f) = -2\pi\varepsilon_{rms} \cdot \ln(1-f)$

factor to ϵ_{rms}	$1 \cdot \epsilon_{rms}$	$\pi \cdot \epsilon_{rms}$	$2\pi \cdot \epsilon_{rms}$	$4\pi \cdot \epsilon_{rms}$	$6\pi \cdot \epsilon_{rms}$	$8\pi \cdot \epsilon_{rms}$
faction of beam f [%]	15	39	63	86	95	98

Care: no common definition of emittance concerning the fraction f

Measurement of transverse Emittance

Outline:


- > Definition and some properties of transverse emittance
- ➤ Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- > Quadrupole strength variation and position measurement
- > Summary

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.

Used for protons/heavy ions with $E_{kin} < 100 \text{ MeV/u} \Rightarrow \text{range } R < 1 \text{ cm}$.

Slit: position P(x) with typical width: 0.1 to 0.5 mm

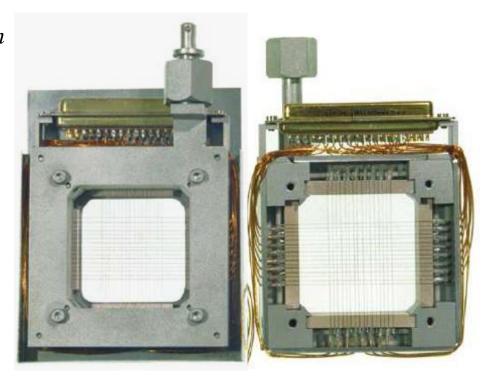
Distance: 10 cm to 1 m (depending on beam velocity)

SEM-Grid: angle distribution P(x')

Slit & SEM-Grid

Slit with e.g. 0.1 mm thickness

 \rightarrow Transmission only from Δx .


Example: Slit of width 0.1 mm (defect)
Moved by stepping motor, 0.1 mm resolution

Beam surface interaction: e⁻ emission

→ measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by R_i

 \rightarrow very large dynamic range up to 10^6 .

Display of Measurement Results

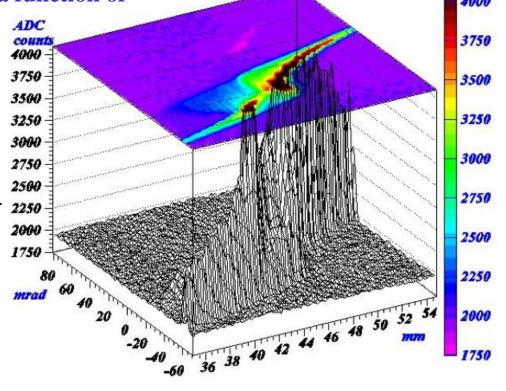
The distribution of the ions is depicted as a function of

- ➤ Position [mm]
- ➤ Angle [mrad]

The distribution can be visualized by

- ➤ Mountain plot
- ➤ Contour plot

Calc. of 2nd **moments**
$$< x^2 >$$
 , $< x^2 > & < xx^2 >$


Emittance value ε_{rms} from

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

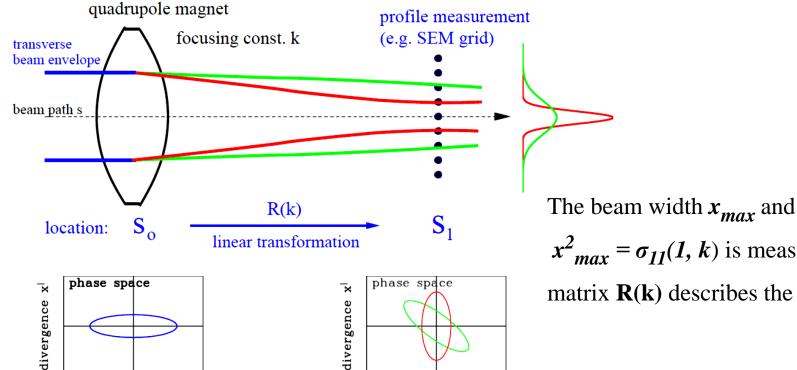
- ⇒ Problems:
- > Finite **binning** results in limited resolution
- \triangleright Background \rightarrow large influence on $\langle x^2 \rangle$, $\langle x'^2 \rangle$ and $\langle xx' \rangle$

Or fit of distribution with an ellipse

⇒ Effective emittance only

Beam: Ar⁴⁺, 60 KeV, 15 μA at Spiral2 Phoenix ECR source. Plot from P. Ausset, DIPAC 2009

Measurement of transverse Emittance


Outline:

- > Definition and some properties of transverse emittance
- Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- ➤ Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation
- > Summary

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

profile

profile

 $x^2_{max} = \sigma_{11}(1, k)$ is measured, matrix $\mathbf{R}(\mathbf{k})$ describes the focusing.

measurement:

$$\mathbf{x}^{2}(\mathbf{k}) = \sigma_{11}(1, \mathbf{k})$$

beam matrix:

(Twiss parameters)

to be determined

coordinate x

 $\sigma_{11}(0), \sigma_{12}(0), \sigma_{22}(0)$

coordinate x

Emittance Measurement by Quadrupole Variation

- The beam width x_{max} at s_1 is measured, and therefore $\sigma_{11}(1, k_i) = x_{max}^2(k_i)$.
- Different focusing of the quadrupole $k_1, k_2...k_n$ is used: $\Rightarrow \mathbf{R_{focus}}(k_i)$, including the drift, the transfer matrix is changed $\mathbf{R}(k_i) = \mathbf{R_{drift}} \cdot \mathbf{R_{focus}}(k_i)$.
- Task: Calculation of beam matrix $\sigma(0)$ at entrance s_0 (size and orientation of ellipse)
- The transformations of the beam matrix are: $\sigma(1, k) = \mathbf{R}(k) \cdot \sigma(0) \cdot \mathbf{R}^{\mathbf{T}}(k)$. \Longrightarrow Resulting in a redundant system of linear equations for $\sigma_{ij}(0)$:

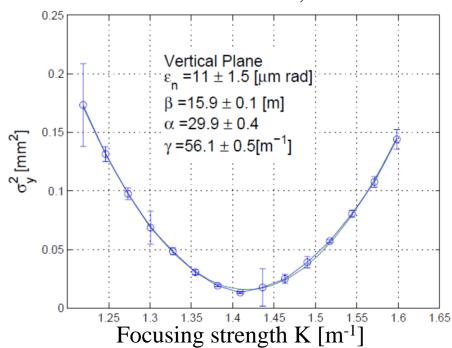
$$\sigma_{11}(1,k_1) = R_{11}^2(k_1) \cdot \sigma_{11}(0) + 2R_{11}(k_1)R_{12}(k_1) \cdot \sigma_{12}(0) + R_{12}^2(k_1) \cdot \sigma_{22}(0) \text{ focusing } k_1$$

$$\vdots$$

$$\sigma_{11}(1,k_n) = R_{11}^2(k_n) \cdot \sigma_{11}(0) + 2R_{11}(k_n)R_{12}(k_n) \cdot \sigma_{12}(0) + R_{12}^2(k_n) \cdot \sigma_{22}(0) \text{ focusing } k_n$$

- To learn something on possible errors, n > 3 settings have to be performed. A setting with a focus close to the SEM-grid should be included to do a good fit.
- Assumptions:
 - Only elliptical shaped emittance can be obtained.
 - No broadening of the emittance e.g. due to space-charge forces.
 - If not valid: A self-consistent algorithm has to be used.

Measurement of transverse Emittance


Using the 'thin lens approximation' i.e. the quadrupole has a focal length of f:

$$\mathbf{R}_{focus}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} \implies \mathbf{R}(L, K) = \mathbf{R}_{drift}(L) \cdot \mathbf{R}_{focus}(K) = \begin{pmatrix} 1 + LK & L \\ K & 1 \end{pmatrix}$$

Measurement of $\sigma(1,K) = \mathbf{R}(K) \cdot \sigma(0) \cdot \mathbf{R}^{\mathrm{T}}(K)$

Example: Square of the beam width at

ELETTRA 100 MeV e Linac, YAG:Ce:

G. Penco (ELETTRA) et al., EPAC'08

For completeness: The relevant formulas
$$\sigma_{11}(1, K) = L^2 \sigma_{11}(0) \cdot K^2 + 2 \cdot (L\sigma_{11}(0) + L^2\sigma_{12}(0)) \cdot K + L^2\sigma_{22}(0) + \sigma_{11}(0)$$

$$\equiv a \cdot K^2 - 2ab \cdot K + ab^2 + c$$

The σ -matrix at quadrupole is:

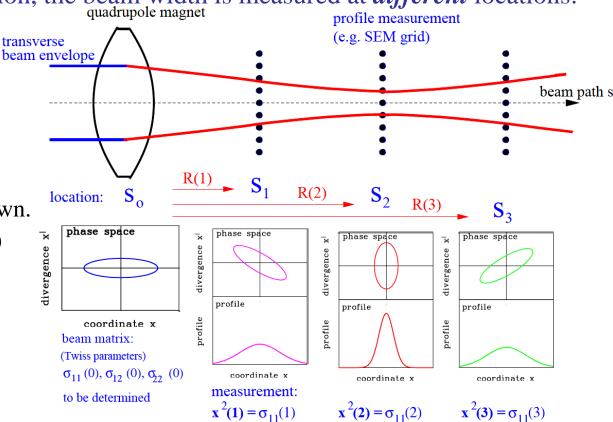
$$\sigma_{11}(0) = \frac{a}{L^2}$$

$$\sigma_{12}(0) = -\frac{a}{L^2} \left(\frac{1}{L} + b\right)$$

$$\sigma_{22}(0) = \frac{1}{L^2} \left(ab^2 + c + \frac{2ab}{L} + \frac{a}{L^2}\right)$$

$$\epsilon = \sqrt{\det \sigma(0)} = \sqrt{\sigma_{11}(0)\sigma_{22}(0) - \sigma_{12}^2(0)} = \sqrt{ac/L^2}$$

The 'Three Grid Method' for Emittance Measurement


Instead of quadrupole variation, the beam width is measured at *different* locations:

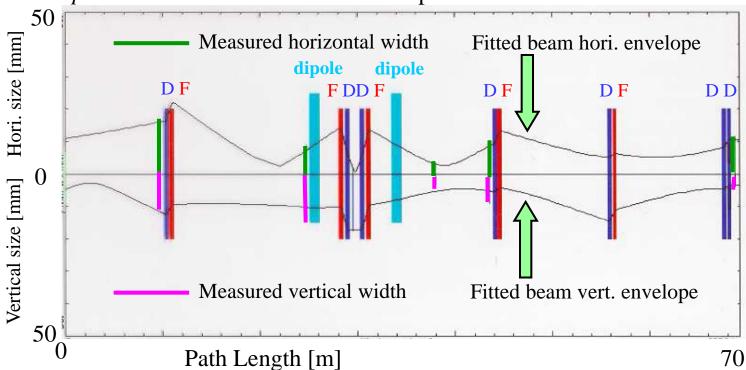
The procedure is:

- \triangleright Beam width x(i) measured at the locations s_i ⇒ beam matrix element
 - $x^2(i) = \sigma_{11}(i).$
- \triangleright The transfer matrix **R**(*i*) is known. (without dipole a 3×3 matrix.)
- > The transformations are:

$$\sigma(i) = \mathbf{R}(i)\sigma(0)\mathbf{R}^{\mathrm{T}}(i)$$

 \Rightarrow redundant equations:

$$\sigma_{11}(1) = R_{11}^2(1) \cdot \sigma_{11}(0) + 2R_{11}(1)R_{12}(1) \cdot \sigma_{12}(0) + R_{12}^2(1) \cdot \sigma_{22}(0) \qquad \mathbf{R}(1) : s_0 \to s_1
\sigma_{11}(2) = R_{11}^2(2) \cdot \sigma_{11}(0) + 2R_{11}(2)R_{12}(2) \cdot \sigma_{12}(0) + R_{12}^2(2) \cdot \sigma_{22}(0) \qquad \mathbf{R}(2) : s_0 \to s_2$$


 $\sigma_{11}(n) = R_{11}^2(n) \cdot \sigma_{11}(0) + 2R_{11}(n)R_{12}(n) \cdot \sigma_{12}(0) + R_{12}^2(n) \cdot \sigma_{22}(0) \quad \mathbf{R}(n) : s_0 \to s_n$

Results of a 'Three Grid Method' Measurement

Solution: Solving the linear equations like for quadrupole variation or fitting the profiles with linear optics code (e.g. MADX, TRANSPORT, Mirko).

Example: The hor. and vert. beam envelope and the beam width at a transfer line:

Assumptions: > constant emittance, in particular no space-charge broadening

- ≥100 % transmission i.e. no loss due to vacuum pipe scraping
- > no misalignment, i.e. beam center equals center of the quadrupoles.

Summary for transverse Emittance Measurement

Emittance is the important quantity for comparison to theory.

It includes size (value of ε) and orientation in phase space (σ_{ij} or α , β and γ)

(three independent values
$$\varepsilon_{rms} = \sqrt{\sigma_{11} \cdot \sigma_{22} - \sigma_{12}} = \sqrt{\langle x^2 \rangle \cdot \langle x'^2 \rangle - \langle xx' \rangle^2}$$
 assuming no coupling between horizontal, vertical and longitudinal planes)

Transfer line, low energy beams \rightarrow direct measurement of x- and x'-distribution

ightharpoonup Slit-grid: movable slit $\to x$ -profile, grid $\to x'$ -profile

Transfer line, all beams \rightarrow profile measurement + linear transformation:

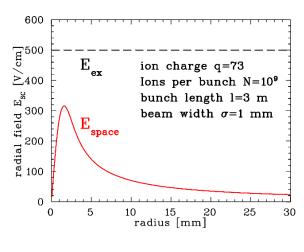
- > Quadrupole variation: one location, different setting of a quadrupole
- > 'Three grid method': different locations
- ➤ Assumptions: ➤ well aligned beam, no steering
 - ➤ no emittance blow-up due to space charge.

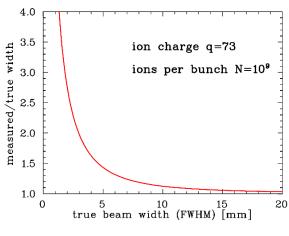
Remark: For a synchrotron with a stable beam, width measurement is sufficient using $x_{rms} = \sqrt{\varepsilon_{rms} \cdot \beta}$

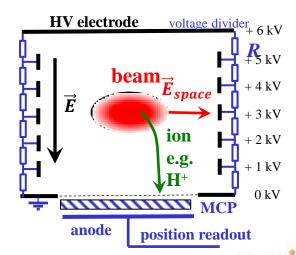
Thank you for your attention!

Backup slides

Broadening due to the Beam's Space Charge: Ion Detection


Influence of the residual gas ion trajectory by:

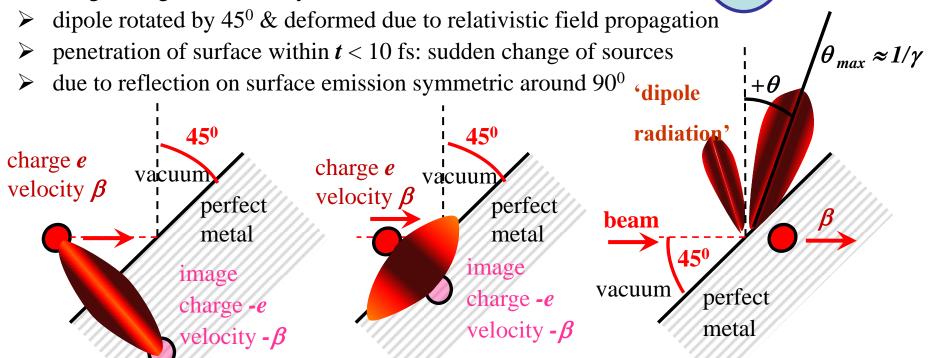

- \triangleright External electric field E_{ex}
- \triangleright Electric field of the beam's space charge E_{space}


e.g. Gaussian density distribution for round beam:
$$E_{space}(r) = \frac{1}{2\pi\varepsilon_0} \cdot \frac{qeN}{l} \cdot \frac{1}{r} \cdot \left[1 - \exp\left(-\frac{r^2}{2\sigma^2}\right)\right]$$
 Estimation of correction:
$$\sigma_{corr}^2 \approx \frac{e^2 \ln 2}{4\pi\varepsilon_0 \sqrt{m_p c^2}} \cdot \frac{qN}{l} \cdot d_{gap} \cdot \sqrt{\frac{1}{eU_{ex}}} \propto N \cdot d_{gap} \cdot \sqrt{\frac{1}{U_{ex}}}$$

With the measured beam width is given by convolution: $\sigma_{meas}^2 = \sigma_{true}^2 + \sigma_{corr}^2$

Example: U⁷³⁺, 10⁹ particles per 3 m bunch length, cooled beam with $\sigma_{true} = 1$ mm FWHM.

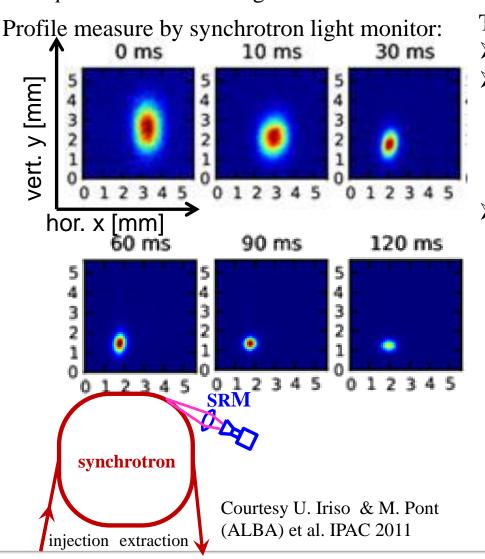
Optical Transition Rad. with 45° incidence: Depictive Description



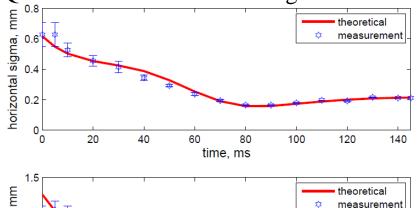
observation

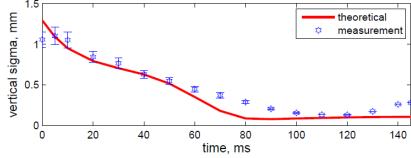
OTR with 45° beam incidence and observation at 90° :

A charge e approaches an ideal conducting boundary under 45°


image charge is created by electric field

Adiabatic Damping for an Electron Beam


Example: Booster at the light source ALBA acceleration from $0.1 \rightarrow 3$ GeV within 130 ms



The beam emittance in influenced by:

- > Adiabatic damping
- Longitudinal momentum contribution via dispersion $\Delta x_D(s) = D(s) \cdot \frac{\Delta p}{p}$ total width $\Delta x_{tot}(s) = \sqrt{\varepsilon \beta(s) + D(s) \cdot \frac{\Delta p}{p}}$

Quantum fluctuation due to light emission

Beam Measurements and Instrumentation II