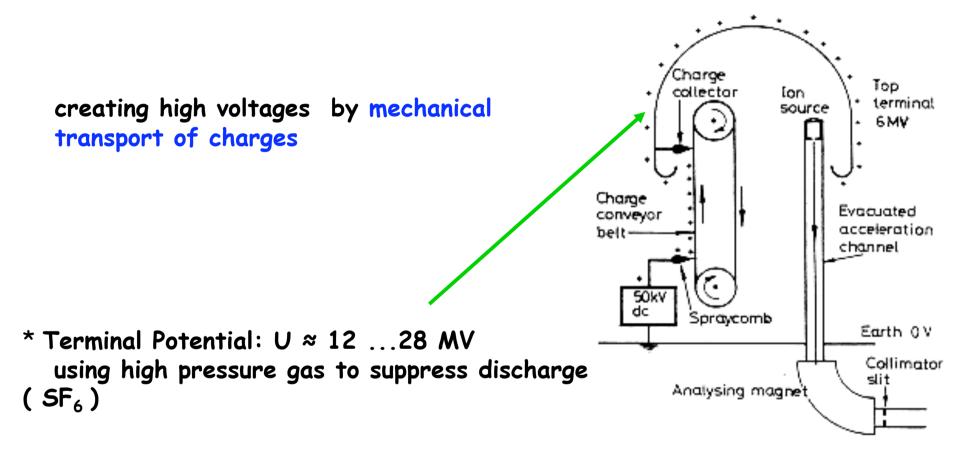


Bibliography:

- 1.) P. Bryant, K. Johnsen: The Principles of Circular Accelerators and Storage Rings Cambridge Univ. Press
- 2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
- 3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN School: 5th general acc. phys. course
- ERN 94-0. 4.) Bernhard Holzer: Lattice Design, CERN Acc. .Acc.phys course, CAS Proc. http://cas.web.cern.c V/lectures-zeuthen.htm cern report: CEP
- 5.) A. Chao, M. Tigner: Handh erator Physics and Engineering, orld Scientific, 1999.
- ind Joel Le Duff. 6.) Martin P and Design of Chargged Particle Beams ley-VCH, 2008
- 7.) Frank-Ainterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
- 8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
- 9.) D. Edwards, M. Syphers: An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

1.) Electrostatic Machines: (Tandem -) van de Graaff Accelerator (1930 ...)



Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...

... or twice ?

Energy Gain

... we have to start again from the basics

Lorentz force

$$\vec{F} = q * (\vec{E} + \vec{v} * \vec{B})$$

in long, direction the B-field creates no force

$$v \parallel B$$

$$\vec{F} = \frac{d\vec{p}}{dt} = e\vec{E}$$

 $\vec{F} = \frac{d\vec{p}}{dt} = e\vec{E}$ acc. force is given by the electr. Field

In relativistic dynamics, energy and momentum satisfy the relation:

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \qquad (E = E_{0} + W)$$

Hence:

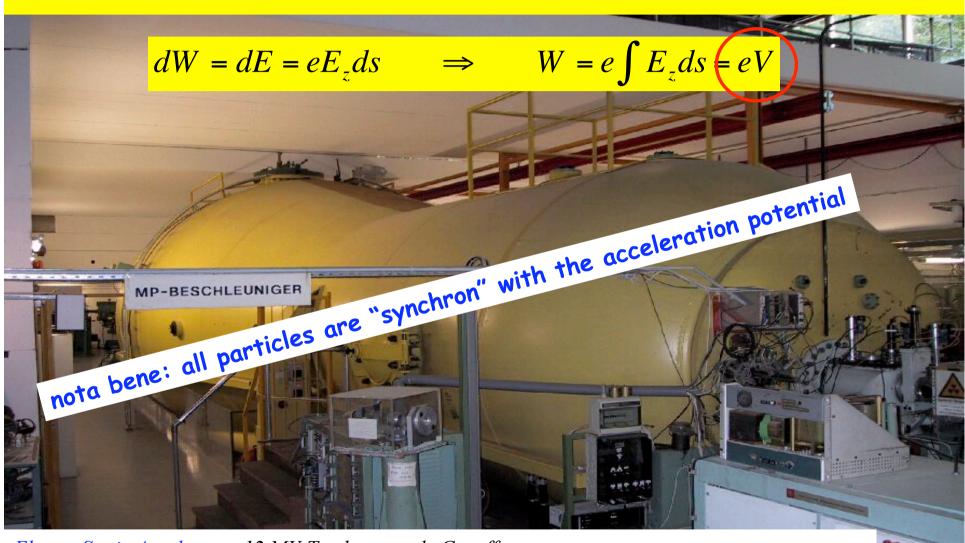
$$dE = \int F ds = v dp$$

and the kinetic energy gained from the field along the z path is:

$$dW = dE = eE_z ds \qquad \Rightarrow \qquad W = e \int E_z ds = eV$$

The "Tandem principle": Apply the accelerating voltage twice ...

... by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the structure



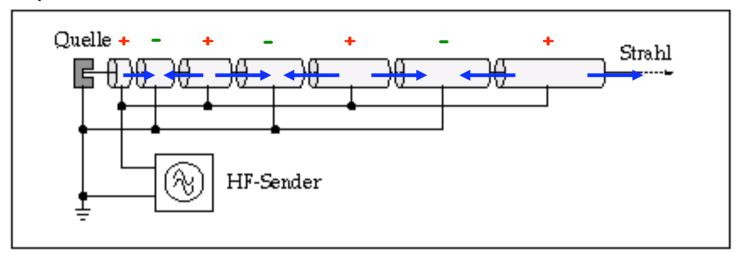
Electro Static Accelerator: 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

2.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times

to the particle beam

schematic Layout:



Energy gained after n acceleration gaps

$$E_n = n * q * U_0 * \sin \psi_s$$

n number of gaps between the drift tubes \mathbf{q} charge of the particle \mathbf{U}_0 Peak voltage of the RF System Ψ_S synchronous phase of the particle

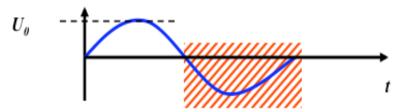
* the problem of synchronisation ... between the particles and the rf voltage

* "voltage has to be flipped" to get the right sign in the second gap

→ shield the particle in drift tubes during the negative half wave of the RF voltage

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF



Time span of the negative half wave:

$$l_i = v_i * \frac{\tau_{rf}}{2} \qquad \longrightarrow v_i$$

$$l_{i} = v_{i} * \frac{\tau_{rf}}{2}$$

$$\rightarrow v_{i} = \sqrt{\frac{2E_{i}}{m}}$$

$$E_{i} = \frac{1}{2}mv^{2}$$

$$l_{i} = \frac{1}{v_{rf}} * \sqrt{\frac{i * q * U_{0*\sin\psi_{s}}}{2m}}$$

valid for non relativistic particles ...

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04 \dots 0.6$, Particles: Protons/Ions

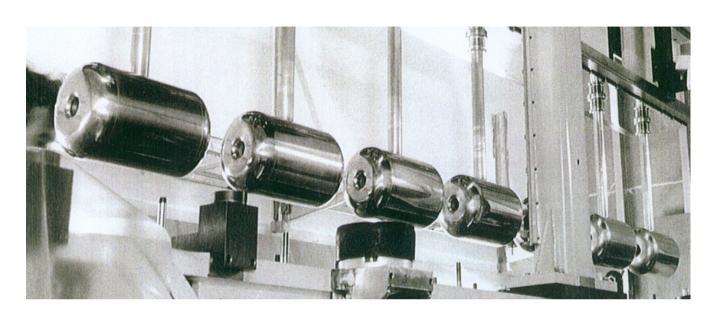
Example: DESY Accelerating structure of the Proton Linac

$$E_{total} = 988 \, MeV$$

$$m_0 c^2 = 938 \, \text{MeV}$$

$$p = 310 \,\text{MeV} / c$$

$$E_{kin} = 50 \,\text{MeV}$$



Beam energies

1.) reminder of some relativistic formula

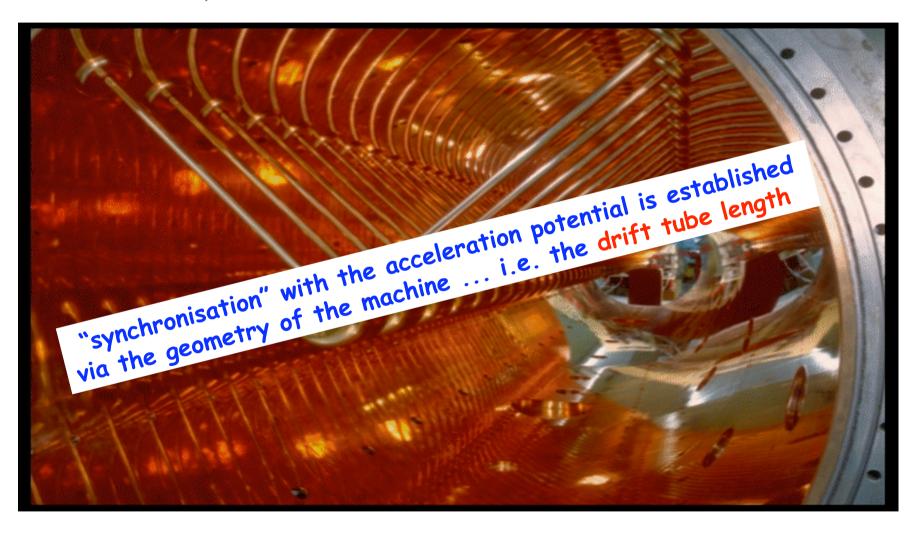
rest energy $E_0 = m_0 c^2$

total energy $E = \gamma * E_0 = \gamma * m_0 c^2$

momentum $E^2 = c^2 p^2 + m_0^2 c^4$

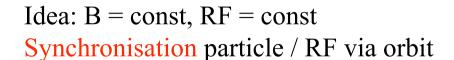
kinetic energy $E_{kin} = E_{total} - m_{\theta}c^2$

GSI: Unilac, typical Energie ≈ 20 MeV per Nukleon, β ≈ 0.04 ... 0.6, Protons/Ions, v = 110 MHz Energy Gain per "Gap": $W = q U_0 \sin \omega_{RF} t$



Application: until today THE standard proton / ion pre-accelerator CERN Linac 4 is being built at the moment

3.) The Cyclotron: (Livingston / Lawrence ~1930)

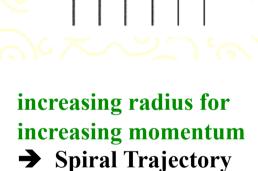


Lorentzforce

$$\vec{F} = q * (\vec{v} \times \vec{B}) = q * v * B$$

circular orbit

$$q * v * B = \frac{m * v^2}{R} \rightarrow B * R = p/q$$



Ionenquelle

beschleunig-

revolution frequency

$$\omega_z = \frac{v}{R} = \frac{q}{m} * B_z$$

the cyclotron (rf-) frequency is independent of the momentum

rf-frequency = h* revolution frequency, h = "harmonic number"

Cyclotron:

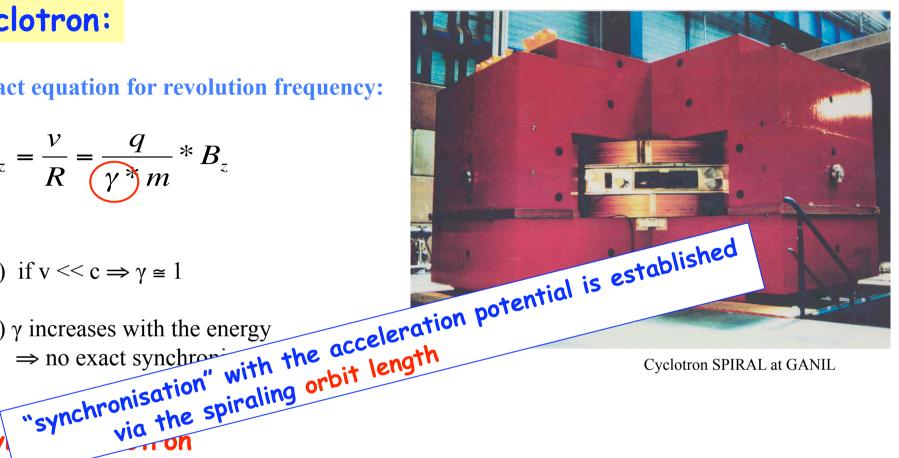
exact equation for revolution frequency:

$$\omega_z = \frac{v}{R} = \frac{q}{\gamma m} * B_z$$

1.) if $v \ll c \Rightarrow \gamma \leq 1$

2.) γ increases with the energy

via the spiraling orbit length



Cyclotron SPIRAL at GANIL

B = constant

 $\gamma \omega_{RF} = constant$

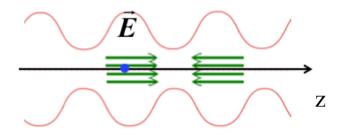
$$\omega_{\text{RF}}$$
 decreases with time $\omega_s(t) = \omega_{rf}(t) = \frac{q}{\gamma(t) * m_0} * B$

keep the synchronisation condition by varying the rf frequency

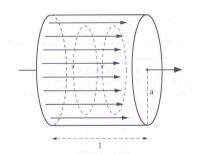
4.) RF Cavities, Acceleration and Energy Gain

$$dW = dE = eE_z ds \implies W = e \int E_z ds = eV$$

RF acceleration: $V \neq const$



In this case the electric field is oscillating. So it is for the potential. The energy gain will depend on the RF phase experienced by the particle.



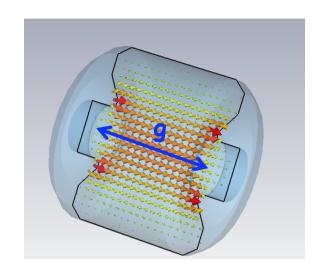
$$\int \hat{E}_{Z} dz = \hat{V}$$

$$W = e \hat{V} \cos \Phi$$

$$\int \hat{E}_{Z} dz = \hat{V} \qquad \qquad E_{Z} = \hat{E}_{Z} \cos \omega_{RF} t = \hat{E}_{Z} \cos \Phi(t)$$

Neglecting the transit time in the gap.

Energy Gain in RF structures: Transit Time Factor



Oscillating field at frequency ω (amplitude is assumed to be constant all along the gap)

$$E_z = E_0 \cos \omega t = \frac{V}{g} \cos \omega t$$

Consider a particle passing through the middle of the gap at time t=0: z=vt

The total energy gain is:
$$\Delta W = \frac{eV}{g} \int_{-g/2}^{g/2} \cos \omega \frac{z}{v} dz$$

$$\Delta W = eV \frac{\sin\theta/2}{\theta/2} = eVT$$

$$T = \frac{\sin\theta/2}{\theta/2}$$

$$T = \frac{\sin\theta/2}{\theta/2}$$

transit time factor (0 < T < 1)

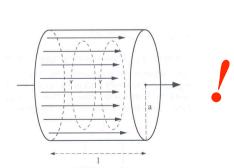
$$\theta = \frac{\omega g}{v}$$
 transit angle

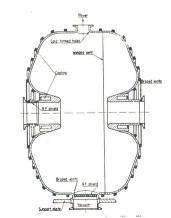
ideal case:
$$T = \frac{\sin \theta / 2}{\theta / 2} \rightarrow 1 \iff \theta / 2 \rightarrow 0$$

el. static accelertors $\omega \rightarrow 0$
minimise acc. gap $g \rightarrow 0$

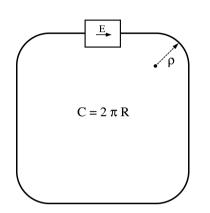
$$\omega \rightarrow 0$$

$$g \rightarrow 0$$





5.) The Synchrotron (Mac Millan, Veksler, 1945)



The synchrotron: Ring Accelerator of const. R where the increase in momentum (i.e. B-field) is automatically synchronised with the correct synchronous phase of the particle in the

$$\Phi = cte$$
 \rightarrow Synchronous particle

$$\omega_{RF} = h\omega_r$$
 \longrightarrow RF synchronism

$$\rho = cte$$
 $R = cte$ \longrightarrow Constant orbit

$$\rho = cte \quad R = cte \quad \rightarrow$$

$$B\rho = \frac{P}{e} \Rightarrow B \quad \rightarrow$$
Variable magnetic field

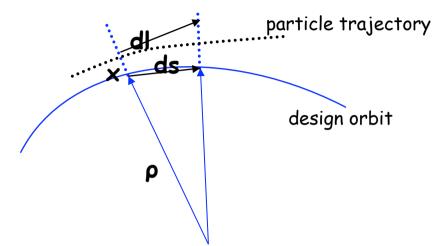


6.) Momentum Compaction Factor: α_p

particle with a displacement x to the design orbit → path length dl ...

$$\frac{dl}{ds} = \frac{\rho + x}{\rho}$$

$$\Rightarrow dl = \left(1 + \frac{x}{\rho(s)}\right) ds$$



circumference of an off-energy closed orbit

$$l_{\Delta E} = \int dl = \int \left(1 + \frac{x_{\Delta E}}{\rho(s)}\right) ds$$

remember:
$$x_{\Delta E}(s) = D(s) \frac{\Delta p}{p}$$

$$\delta l_{\Delta E} = \frac{\Delta p}{p} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

* The lengthening of the orbit for off-momentum particles is given by the dispersion function and the bending radius.

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\Rightarrow \alpha_p = \frac{1}{L} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

For first estimates assume:

$$\frac{1}{\rho} = const.$$

$$\int_{dipoles} D(s) ds \approx l_{\Sigma(dipoles)} \cdot \langle D \rangle_{dipole}$$

$$\alpha_{p} = \frac{1}{L} l_{\Sigma(dipoles)} \cdot \langle \mathbf{D} \rangle \frac{1}{\rho} = \frac{1}{L} 2\pi \rho \cdot \langle \mathbf{D} \rangle \frac{1}{\rho} \rightarrow \alpha_{p} \approx \frac{2\pi}{L} \langle \mathbf{D} \rangle \approx \frac{\langle \mathbf{D} \rangle}{R}$$

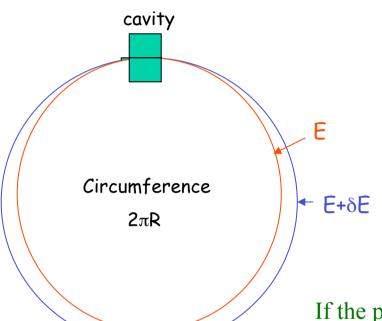
$$\alpha_p \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$$

Assume:

$$\rightarrow \frac{\delta T}{T} = \frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

 $\alpha_{\rm p}$ combines via the dispersion function the momentum spread with the longitudinal motion of the particle.

7.) Dispersion Effects in a Synchrotron



If a particle is slightly shifted in momentum it will have a different orbit:

$$\alpha = \frac{p}{R} \frac{dR}{dp}$$

This is the "momentum compaction" generated by the bending field.

If the particle is shifted in momentum it will have also a different velocity. As a result of both effects the revolution frequency changes:

p=particle momentum

R=synchrotron physical radius

f_r=revolution frequency

$$\eta = \frac{p}{f_r} \frac{df_r}{dp}$$

Dispersion Effects in a Synchrotron

$$\eta = \frac{p}{f_r} \frac{df_r}{dp}$$

$$f_r = \frac{\beta c}{2\pi R} \implies \frac{df_r}{f_r} = \frac{d\beta}{\beta} - \frac{dR}{R}$$

$$p = mv = \beta \gamma \frac{E_0}{c} \implies \frac{dp}{p} = \frac{d\beta}{\beta} + \frac{d(1-\beta^2)^{-\frac{1}{2}}}{(1-\beta^2)^{-\frac{1}{2}}} = (1-\beta^2)^{-1} \frac{d\beta}{\beta} \qquad \frac{d\beta}{\beta} = \frac{1}{\gamma^2} \frac{dp}{p}$$

$$\frac{df_r}{f_r} = \left(\frac{1}{\gamma^2} - \alpha\right) \frac{dp}{p}$$

$$\eta = \frac{1}{\gamma^2} - \alpha$$
The change of revolution frequency depends on the particle energy γ and changes sign during acceleration

The change of revolution frequency changes sign during acceleration.

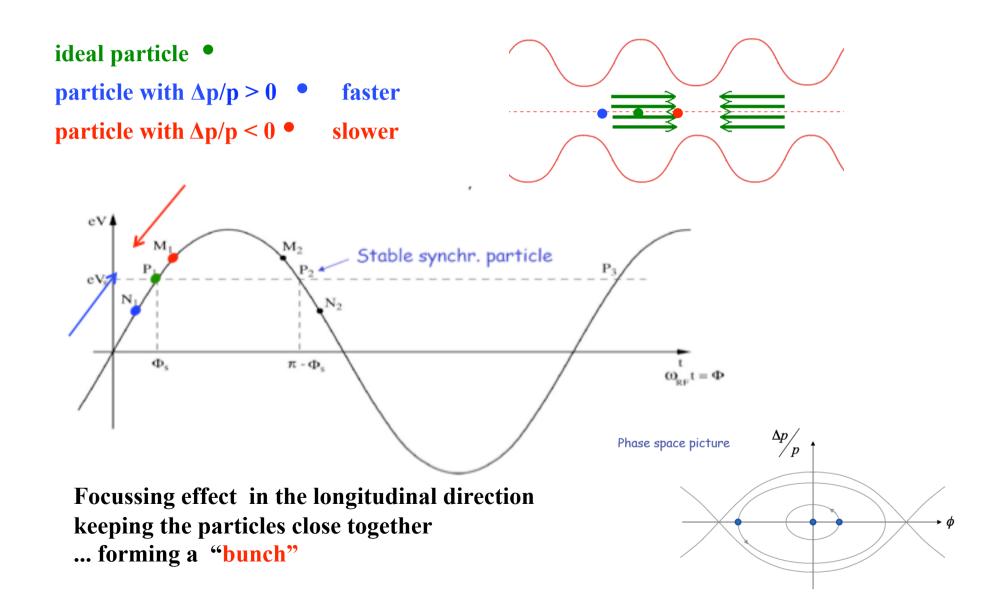
Particles get faster in the beginning – and arrive earlier at the cavity: classic regime

Particles travel at v = c and get more massive – and arrive later at the cavity: relativistic regime

boundary between the two regimes: no frequency dependence on dp/p, $\eta = 0$ "transition energy"

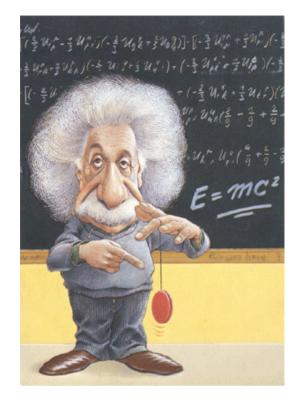
$$\gamma_{tr} = \frac{1}{\sqrt{\alpha}}$$

8.) The Acceleration for ∆p/p≠0 "Phase Focusing" below transition

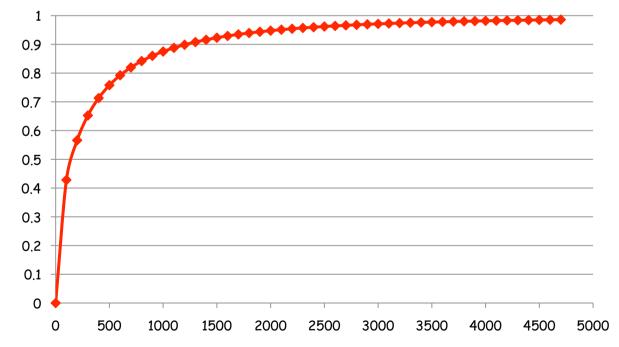


... so sorry, here we need help from Albert:

$$\gamma = \frac{E_{total}}{mc^2} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \longrightarrow \frac{v}{c} = \sqrt{1 - \frac{mc^2}{E^2}}$$



v/c

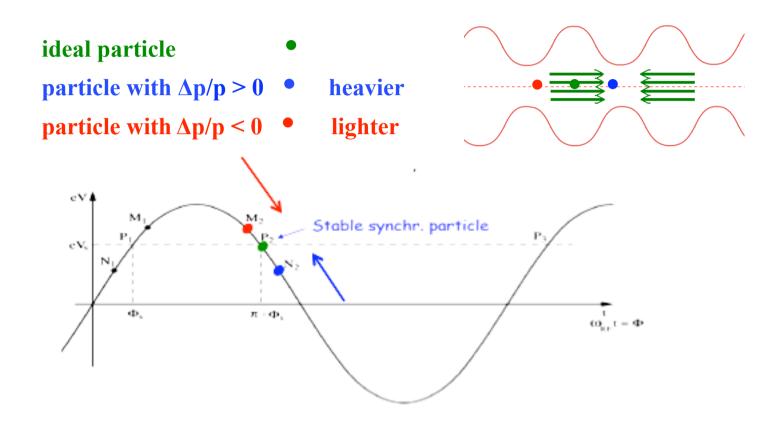


... some when the particles do not get faster anymore

.... but heavier!

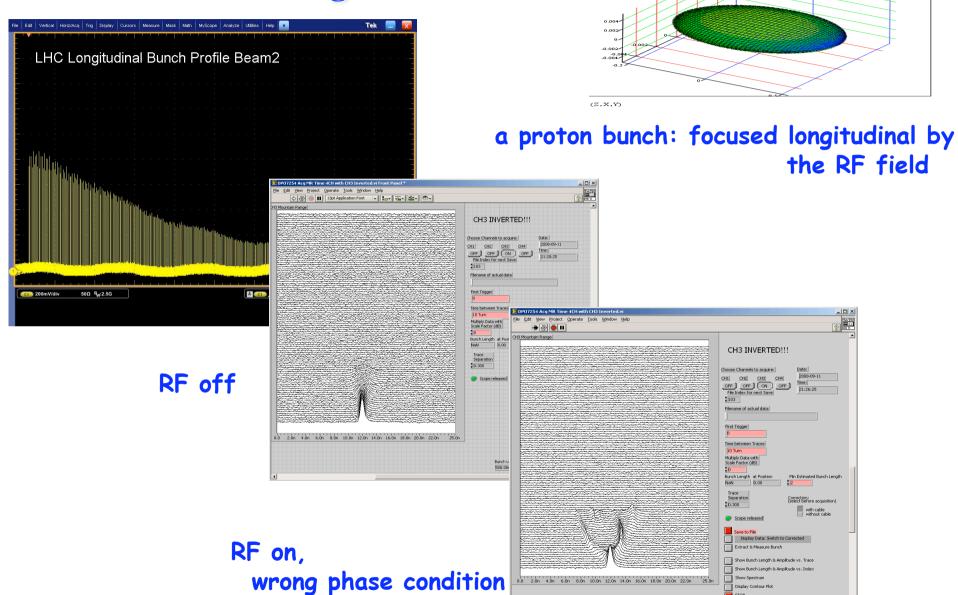
kinetic energy of a proton

9.) The Acceleration for $\Delta p/p \neq 0$ "Phase Focusing" above transition



oscillation frequency ≈ some Hz

LHC Commissioning: RF



... and how do we accelerate now ??? with the dipole magnets!

Energy ramping is simply obtained by varying the B field:

$$p = eB\rho \implies \frac{dp}{dt} = e\rho \dot{B} \implies (\Delta p)_{turn} = e\rho \dot{B}T_r = \frac{2\pi \ e\rho \ R\dot{B}}{v}$$

Energy Gain per turn:
$$E^2 = E_0^2 + p^2 c^2 \implies \Delta E = v \Delta p$$

$$\Delta E_{turn} = \Delta W_{turn} = 2\pi e \rho R \dot{B} = e \hat{V} \sin \phi_{s}$$

- * The energy gain depends on the rate of change of the dipole field
- * The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- * Each synchronous particle satisfies the relation $p = eB\rho$. They have the nominal energy and follow the nominal trajectory.

10.) Longitudinal Dynamics: synchrotron motion

We have to follow two coupled variables:

- * the energy gained by the particle
- * and the RF phase experienced by the same particle.

Since there is a well defined synchronous particle which has always the same phase ϕ_s , and the nominal energy E_s , it is sufficient and elegant to follow other particles with respect to that particle.

We will introduce the following relative variables:

revolution frequency: $\Delta f_r = f_r - f_{rs}$

particle RF phase : $\Delta \phi = \phi - \phi_s$

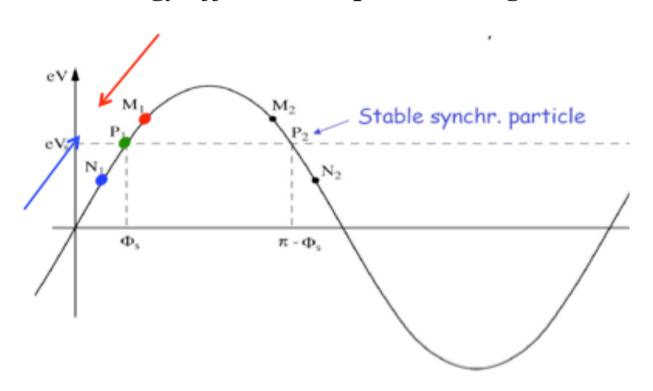
particle momentum : $\Delta p = p - p_s$

particle energy : $\Delta E = E - E_s$

azimuth angle : $\Delta \theta = \theta - \theta_s$

The Equation of Motion:

Energy-Phase Relations in a Synchrotron energy offset ←→ phase change



Equation of Motion:

Relation between momentum difference and difference in revolution frequency:

$$eV$$
 M_1
 M_2
 P_2
 N_3
 M_4
 N_2
 M_5
 M_5
 $\pi \cdot \Phi_s$

$$\frac{df_r}{f_r} = \left(\frac{1}{\gamma^2} - \alpha\right) \frac{dp}{p}$$

which translates into difference in revolution time:

$$\frac{dT}{T_0} = \left(\alpha - \frac{1}{\gamma^2}\right) \frac{dp}{p}$$

A particle with higher momentum travels faster (in the classical regime)

The result is a difference in phase at the cavity

$$\Delta \psi = 2\pi \frac{\Delta T}{T_{rf}} = \omega_{rf} * \Delta T$$

$$= h * \omega_0 * \Delta T = h * 2\pi \frac{\Delta T}{T_0}$$

$$= h * 2\pi \left(\alpha - \frac{1}{\gamma^2}\right) \frac{dp}{p}$$

$$= \frac{h * 2\pi}{\beta^2} \left(\alpha - \frac{1}{\gamma^2}\right) \frac{dE}{E}$$

The RF frequency has to be a integer multiple of the revolution frequency, "h" called harmonic number

difference in energy and difference in phase are related via the momentum compaction

Equation of Motion:

$$\Delta \psi = \frac{h * 2\pi}{\beta^2} \left(\alpha - \frac{1}{\gamma^2} \right) \frac{dE}{E}$$

differentiate to time

$$1 \qquad \Delta \dot{\psi} = \frac{\Delta \psi}{T_0} = \frac{h * 2\pi}{\beta^2 T_0} \left(\alpha - \frac{1}{\gamma^2} \right) \frac{dE}{E}$$

 Φ_s Φ_s Φ_s Stable synchr. particle Φ_s

rate of change of the phase difference wrt to the ideal particle

the energy change is given by the RF system:

$$\Delta E = e * U_0(\sin(\psi_s + \Delta \psi) - \sin \psi_s)$$

and the phase difference determines the rate of energy change per turn

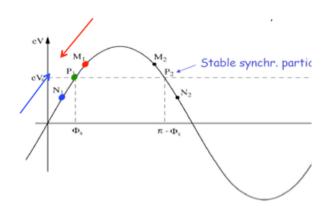
$$\Delta \dot{E} = e * \frac{U_0}{T_0} \Delta \psi \cos \psi_s$$

differentiate a second time

$$\sin(\psi_s + \Delta \psi) - \sin \psi_s = \\ \sin \psi_s \cos \Delta \psi - \cos \psi_s \sin \Delta \psi - \sin \psi_s \\ \approx 1 \qquad \Delta \psi$$

Equation of Motion:

$$1 \qquad \Delta \dot{\psi} = \frac{\Delta \psi}{T_0} = \frac{h * 2\pi}{\beta^2 T_0} \left(\alpha - \frac{1}{\gamma^2} \right) \frac{dE}{E}$$



put (1) into (2) et c'est ca Equation of Motion in Phase Space E- ψ :

$$\Delta \ddot{E} = e * \frac{U_0}{T_0} \frac{2\pi h}{\beta^2 T_0} \left(\alpha - \frac{1}{\gamma^2} \right) \frac{dE}{E} \cos \psi_s$$

$$\Omega = \omega_0 * \sqrt{\frac{-eU_0 h \cos \psi_s}{2\pi \beta^2 E} \left(\alpha - \frac{1}{\gamma^2}\right)}$$

$$\Delta \ddot{E} + \Omega^2 \Delta E = 0$$

We get a differential equation that describes the difference in energy of a particle to the ideal (i.e. synchronous) particle under the influence of the phaes focusing effect of our sinusoidal RF function.

And it is a harmonic oscillation !!! The oscillation frequency Ω is called synchrotron frequency and usually in the range of some Hz ... kHz.

Small Amplitude Oscillations: phase stability

We get - in equivalent way - the harmonic oscillation of the particle phase with the oscillation frequency

$$\Delta \ddot{\psi} + \Omega_s^2 \Delta \psi = 0$$

$$\Omega_{s} = \omega_{0} * \sqrt{\frac{eU_{0}h\cos\psi_{s}}{2\pi\beta^{2}E}\eta} \qquad remember \quad \eta = \frac{1}{\gamma^{2}} - \alpha$$

remember
$$\eta = \frac{1}{\gamma^2} - c$$

 $\Omega_s^2 > 0$ Stability condition: Ω_s real

$$\gamma < \gamma_{tr}$$
 $\eta > 0$ $0 < \phi_s < \pi/2$ $\gamma > \gamma_{tr}$ $\eta < 0$ $\pi/2 < \phi_s < \pi$

$$0 < \phi_s < \pi/2$$

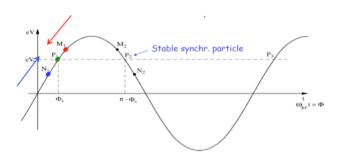
$$\gamma > \gamma_{tr}$$

$$\pi/2 < \phi_s < \pi$$

And we will find this situation "h"-times in the machine

LHC:

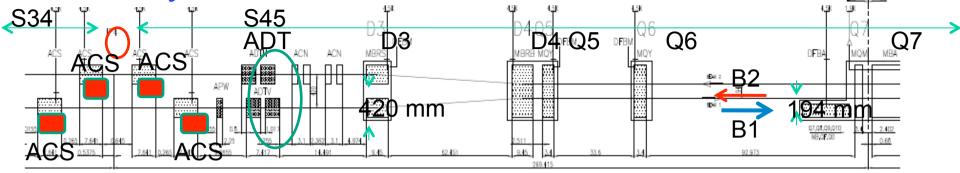
35640 Possible Bunch Positions ("buckets") 2808 Bunches

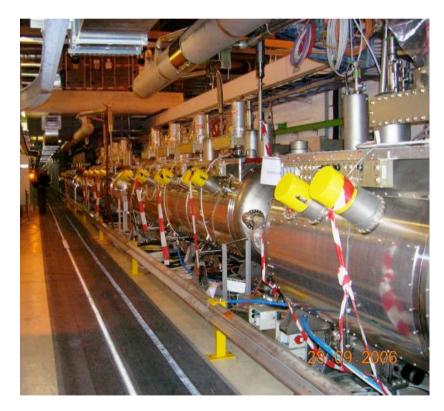


oscillation frequency depends on

- * the square root
- * of an electrical potential
- -> weak force <-> small frequncy

The RF system: IR4





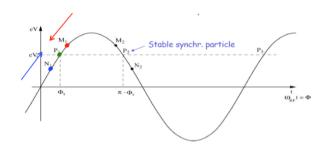
4xFour-cavity cryo module 400 MHz, 16 MV/beam Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (40)	ns	1.06
Energy spread (20)	<i>10</i> -3	0.22
Synchr. rad. loss/ turn	ke V	7
		3.6
Synchr. rad. power	kW	
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	ke	485
	V	
Synchrotron	Hz (23.0
frequency		

(small) ... Synchrotron Oscillations in Energy and Phase

$$\Delta \ddot{\psi} + \Omega_s^2 \Delta \psi = 0$$

Ansatz:
$$\Delta \psi = \Delta \psi_{\text{max}} * \cos(\Omega_s t)$$



take the first derivative and put it into the first energy-phase relation $\Delta \dot{\psi} = \frac{h * 2\pi}{\beta^2 T_0} \left(\alpha - \frac{1}{\gamma^2}\right) \frac{dE}{E}$

$$\frac{d(\Delta \psi)}{dt} = -\Delta \psi_{\text{max}} * \sin(\Omega_s t) * \Omega_s$$

to get the energy oscillations

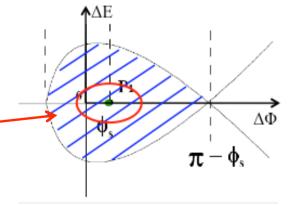
$$\Delta E = \frac{\beta^2 T_0 \Omega_s \Delta \psi_{\text{max}} E_s}{2\pi h \eta} \sin(\Omega_s t)$$

$$\Delta E_{\text{max}}$$

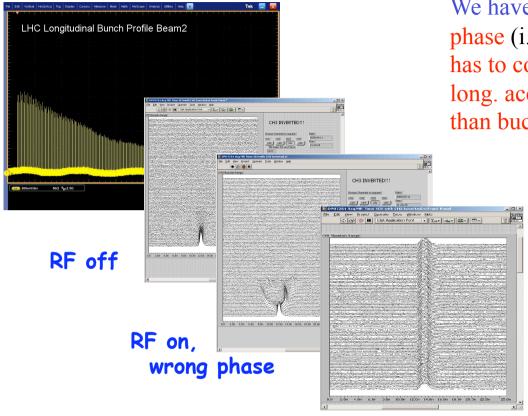
$$\Delta E = \Delta E_{\text{max}} * \sin(\Omega_s t)$$

which defines an ellipse in phase space $\Delta \psi$, ΔE :

$$\left(\frac{\Delta\psi}{\Delta\psi_{\text{max}}}\right)^2 + \left(\frac{\Delta E}{\Delta E_{\text{max}}}\right)^2 = 1$$



LHC Commissioning: RF



We have to match these conditions:

phase (i.e. timing between rf and injected bunch) has to correspond to ϕ_s

long. acceptance of injected beam has to be smaller than bucket area of the synchrotron.

RF on, phase adjusted, beam captured

max stable energy: set $\phi = \phi_s$ and calculate ΔE

$$\left(\Delta E_{\text{max}}\right)_{sep} = \sqrt{\frac{p_s v_s e U_0}{2\pi h \eta_s}} * \sqrt{|4\cos\phi_s - (2\pi - 4\phi_s)\sin\phi_s|}$$

LHC injection:

acceptance: 1.4eVs

long emittance: 1.0 eVs

Than'x

Appendix: Relativistic Relations

court. Chris Prior, Trinity College / CAS

	$\frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\Delta E}{E} = \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta\beta}{\beta}$ =	$\frac{\Delta \beta}{\beta}$	$\frac{\frac{1}{\gamma^2} \frac{\Delta p}{p}}{\frac{\Delta p}{p} - \frac{\Delta \gamma}{\gamma}}$	$\frac{1}{\gamma(\gamma+1)} \frac{\Delta T}{T}$	$\frac{\frac{1}{\beta^2 \gamma^2} \frac{\Delta \gamma}{\gamma}}{\frac{1}{\gamma^2 - 1} \frac{\Delta \gamma}{\gamma}}$
$\frac{\Delta p}{p} =$	$\gamma^2 \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\gamma}{\gamma+1}\frac{\Delta T}{T}$	$\frac{1}{\beta^2} \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta T}{T} =$	$\gamma(\gamma+1)\frac{\Delta\beta}{\beta}$	$\left(1+rac{1}{\gamma} ight)rac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$rac{\gamma}{\gamma-1}rac{\Delta\gamma}{\gamma}$
$\frac{\Delta E}{E} =$	$(\beta\gamma)^2 \frac{\Delta\beta}{\beta}$	$\beta^2 \frac{\Delta p}{p}$	$\left(1-rac{1}{\gamma} ight)rac{\Delta T}{T}$	$\Delta \gamma$
$\frac{\Delta \gamma}{\gamma} =$	$(\gamma^2-1)\frac{\Delta\beta}{\beta}$	$\frac{\Delta p}{p} - \frac{\Delta \beta}{\beta}$	$\left(1-\frac{1}{\gamma}\right)T$	γ