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B Books on non-linear dynamical systems

M. Tabor, Chaos and Integrability in Nonlinear Dynamics, An
Introduction, Willey, 1989.

A.J Lichtenberg and M.A. Lieberman, Regular and Chaotic
Dynamics, 2" edition, Springer 1992.
B Books on beam dynamics
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A. Wolski, Beam Dynamics in High Energy Particle Accelerators,
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B [ectures on non-linear beam dynamics
A. Chao, Advanced topics in Accelerator Physics, USPAS, 2000.

W. Herr, Mathematical and Numerical Methods for Non-linear
Beam Dynamics, CAS 2015.

L. Nadolski, Lectures on Non-linear beam dynamics, Master
NPAC, LAL, Orsay 2013.

Y. Papaphilippou, Lectures on Non-linear dynamics in particles
accelerators, Universita la Sapienza, Rome, Italy, June 2016. 5
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B Introduce “historical” approaches of non-linear
dynamics (i.e. classical perturbation theory)

Show their usefulness

Demonstrate their practical limitation especially in
beam dynamics

Connect naturally with the lectures of W. Herr on
“Non-linear dynamics methods and tolls” and the
lectures on “Non-linear dynamics phenomenology”
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B Non-linear magnets, such as
chromaticity sextupoles
(especially in low emittance
rings), octupoles,...

B Magnet imperfections and
misalignments

5 B Insertion devices (wigglers,
5 undulators) for synchrotron
E radiation storage rings

fef B Injection elements

2 W Magnet fringe fields

5 (especially in high-intensity
% machines)

= B Power supply ripple

= ® Ground motion (for e+/e-)
g B Electron (Ion) cloud

% B Beam-beam effect (for

: colliders)

E B Space-charge effect (especially

in high-intensity machines) 4
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Non-linear magnets, such as
chromaticity sextupoles
(especially in low emittance
rings), octupoles,...

Magnet imperfections and
misalignments

Insertion devices (wigglers,
undulators) for synchrotron
radiation storage rings

Injection elements

Magnet fringe fields
(especially in high-intensity
machines)

Power supply ripple
Ground motion (for e+/e-)
Electron (Ion) cloud

Beam-beam effect (for
colliders)

Space-charge effect (especially

in high-intensity machines)

)

B Performance impact

Reduced injection efficiency
(especially in low emittance rings)
Particle losses causing

B Reduced intensity and/or beam
lifetime

B Radio-activation (hands-on
maintenance, equipment lifetime,
super-conducting magnet quench)

B Reduced machine availability
Emittance increase

Reduced number of bunches and/or
increased crossin% angle, affecting
luminosity (for colliders)

Allow to damp instabilities (see
V. Kornilov lecture on “Landau
damping”)

Can be used for beam extraction
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B (Costissues

Magnetic field quality and
alignment tolerances

Number of magnet correctors and
families (power convertors)

Design of collimation system (for
colliders and high-intensity
machines)
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=

. Reminder of Lagrangian
and Hamiltonian
° formalism
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d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time ¢,

O It can be achieved by the Lagrangian function
L(ql, ce oy Qn, (jl, e ,qn,t) W1th(q1, ce ,qn) the
generalized coordinates and (41, ..., ¢y) the
generalized velocities
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d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time ¢,

O It can be achieved by the Lagrangian function
L(ql, ce oy Qn, le, e ,qn,t) W1th(q1, ce ,qn) the
generalized coordinates and (41, ..., ¢y) the
generalized velocities

0 The Lagrangian is definedas [, =7 — V , i.e.
difference between kinetic and potential energy

dThe integral W = [ L(g;, ¢;,t)dt

defines the action

JdHamilton’s principle: system
evolves so as the action becomes
extremum (principle of stationary action)

Non-linear dynamics, CERN Accelerator School, September 2017
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By using Hamilton’s principle, i.e. oW = 0,
over some time interval ¢; and t, for two
stationary pointsdq(t1) = dq(t2) = 0 (see
appendix), the following differential
equations for each degree of freedom are
obtained, the Euler-Lagrange equations

d 0L 0L
dt ﬁqz 8(__]1

EIIn other words, by knowing the form of the
Lagrangian, the equations of motion can be
derived

— 0
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dFor a simple force law contained in a potential
function, governing motion among interacting
particles, the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that...”)

|

=

i=1
4 For velocity independent potentials, Lagrange
equations become I/
miq; = ’

0q;

i.e. Newton’s equations.

Non-linear dynamics, CERN Accelerator School, September 2017
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JSome disadvantages of the Lagrangian formalism:

L0

No uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

dLagrangian function provides in general 1 second

order differential equations (coordinate space)

1 We already observed the advantage to move to a
system of 2n first order differential equations,
which are more straightforward to solve (phase
space)

L These equations can be derived by the Hamiltonian
of the system "

Non-linear dynamics, CERN Accelerator School, September 2017
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O The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

z oL
04
1 The generalised velocities can be expressed as a function of

the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

d Example: consider  1(q,¢) = % Z mig; — V{qi,-..,qn)

i oL ,
1 From this, the momentum can be determined as pi = o, ~ M

where the generalised momenta are P; —

which can be trivially inverted to provide the Hamiltonian
2

D;

Non-linear dynamics, CERN Accelerator School, September 2017
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The equations of motion can be derived
from the Hamiltonian following the same
variational principle as for the Lagrangian
(“least” action) but also by simply taking the
differential of the Hamiltonian (see

=

appendix)
.o . OH 9L  0H
= Op; b= Oqg > ot Ot

These are indeed 2n + 2 equations describing
the motion in the “extended” phase space

(Qia ceesdnyP1y .- 7p’nat7 _H)

Non-linear dynamics, CERN Accelerator School, September 2017
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A The variables (q;, ..., ¢n,p1,...,pn,t,—H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

1 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

L The variables used in the Lagrangian do not
necessarily have this property

JdHamilton’s equations can be written in vector form
7 = J - VH(Z) with z = (Qia'“ac_In)pl)"')pn)
and V = (8%7 s 7aq”,7 8}?1, = 76pn)

A The 21 x 2n matrix J — ( (i (I)) is called the

=

Non-linear dynamics, CERN Accelerator School, September 2017
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JCrucial step in study of Hamiltonian systems is
identification of integrals of motion

1 Consider a time dependent function of phase space.
Its time evolution is given by

d ~—(dg: Of | dpi Of of
dtf(p’q’t) B ; ( dt dg; AT 8p7;> T

" (OH Of OH Of\ Of 9
->( ) f

Op; 0q; B 0q; Op; " E B [H’ f] " ot

1=1

where [H, f] is the Poisson bracket of f with H
dIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.

commutes with the /), it is a constant (or integral)
of motion (as an autonomous Hamiltonian itself)

Non-linear dynamics, CERN Accelerator School, September 2017
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"~ UThe Poisson brackets between two functions of a set
of canonical variables can be defined by the

00

differential operator

B “/O0f Og Og Of
91 = ; (8]%' dq;  Op; 3%‘)
0 From this definition, and for any three given

functions, the following properties can be shown
laf +bg,h| =al|f, h] 4+ blg,h] ,a,b € R bilinearity
f.g9] = —lg, f] anticommutativity

filg, h]] + g, [k, f]] + [k, [f, g]]) = O Jacobi’s identity

“ f,gh] = [f, glh + glf R]
- OPoisson brackets operation satisfies a Lie algebra

z4 17
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Canonical
transformations
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variable (q, p)to (Q,P) so system becomes simpler to study

l
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[ Find a function for transforming the Hamiltonian from

[ This transformation should be canonical (or symplectic), so
that the Hamiltonian properties of the system are preserved

1 These “mixed variable” generating functions are derived by

0F OF} OF%5 OF;
F - Pi — ’ PZ — F: ’ - g = — ’ P’L —
(6, Q) : p 90, T 3(Q:P) 1 g . 0.
8F2 6F2 8F4 8F4
- Pi = P = Fa(p,P) 1 qi = — y Wi =
F>(q,P) : p; 90, @ 9P, 1(P,P) : ¢q op; Q 9P,

d A general non-autonomous Hamiltonian is transformed to

OF;
H(Q7P7t):H(q7p7t)+a—tj7 j:1727374

[ One generating function can be constructed by the other
through Legendre transformations, e.g.

FZ(qap):Fl(an)_Qpa FS(Q,p):Fl(qu)_qu
with the inner product define as q-p =) _ aip:

1

Non-linear dynamics, CERN Accelerator School, September 2017
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[ A fundamental property of canonical transformations is the
preservation of phase space volume

[ This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpz‘d% :/ﬁdpiin
i—1 i—1

O The volume element in old and new variables are related
through the Jacobian

- oP,..., P, Q)
HdpquZ: é 1, ) 7Q17 7Q )HdPZdQ’L
Pl (D1 P @iy Qn)

1 These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to 1

O(Pr,..., P, Q1,...,Qy)
a(pla"'apn7Q17'“7qn)

a(pla ey Pnyq1, - - 7qn)

=1
O(Pp,....,P,,Q1,...,Qn)

20
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o0

A The transformation () = —p , P = g, which interchanges
conjugate variables is area preserving, as the Jacobian is

oPQ) _ |ap ap|_ 10 —1} _
d(p,q) ~— |9P 9Q 1 0 =1
dq 0q

Non-linear dynamics, CERN Accelerator School, September 2017
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2

d The transformation () = —p, P = q, which interchanges
conjugate variables is area preserving, as the Jacobian is

or 0Q
9(p,q) or  0Q 1 0
0q 0q

[ On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

9(q,p) _ |—PsinQ Pcos(

9(Q,P) cos () sinQ | -

Non-linear dynamics, CERN Accelerator School, September 2017
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d The transformation () = —p, P = q, which interchanges

conjugate variables is area preserving, as the Jacobian is

or
9(p,q) opr
dq

9(Q,P)

oQ
Op
oQ
dq

cos ()

[ There are actually “polar” coordinates that are canonical,

givenby ¢ = —V2PcosQ), p=+V2Psin@ for which

9(q,p) __ V 2PSII1Q

Non-linear dynamics, CERN Accelerator School, September 2017

a(Q,P) — cos &

0 —1
I 0

[ On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

9(¢;p) __ |—PsinQ Pcos(

sin ()

V2P cos )

sin
V2P

=1

SR &
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Hamiltonian for
electromagnetic fields
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JNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

€

-

-
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H(x,p,t) = C\/(p -~ %A(X,t))Q + m2c? + ed(x,t)

J x = (z,9,2)
d p=(p,, DysDz) conjugate momenta

Cartesian positions

Q A= (A,,A,,A,) magnetic vector potential

Qo electric scalar potential

L The ordinary kinetic momentum vector is written
— — _ £
P=yymv=p—=Z-A

with v the velocity vector and v = (1 — 2 / 02)—1/ 2 the
relativistic factor

Non-linear dynamics, CERN Accelerator School, September 2017
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d Itis generally a 3 degrees of freedom one plus time
(i.e. 4 degrees of freedom)

0 The Hamiltonian represents the total energy
H=FE =~ymc* + ed

O The total kinetic momentum is
HQ 1/ 2
P = ( m2 62>
d Using Hamilton's equations
(5(7 P) — [(Xa p)? H]

it can be shown that motion is governed by Lorentz
equations 2

Non-linear dynamics, CERN Accelerator School, September 2017



=

JdMaking a series of canonical transformations and
approximations (see appendix)

From Cartesian to Frenet-Serret (rotating) coordinate
system (bending in the horizontal plane)

Changing the independent variable from time to the path
length s

Electric field set to zero, as longitudinal (synchrotron)
motion is much slower then transverse (betatron) one

Consider static and transverse magnetic fields
Rescale the momentum and move the origin to the

Non-linear dynamics, CERN Accelerator School, September 2017

periodic orbit 1
For the ultra-relativistic limit 5o =1, —5— — 0
the Hamiltonian becomes 0
U pln p(s)
with =0

PO 27
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 Note that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)!

L Last approximation: transverse momenta (rescaled
to the reference momentum) are considered to be
much smaller than 1, i.e. the square root can be
expanded. Considering also the large machine
approximation z << p, (dropping cubic terms), the
Hamiltonian is simplified to

p2+p2  z(1+6) .
eA,
2(1+0)  pls)
L This expansion may not be a good idea, especially
for low energy, small size rings

H =

Non-linear dynamics, CERN Accelerator School, September 2017
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B Considering the general expression of the the longitudinal
component of the vector potential is (see appendix)

In curvilinear coordinates (curved elements)

O

B x by, + tan, 1
As=(1+ o) )Boiﬁe;_:o — (x + iy)
N = by, +ia
i i Ay = ByRe Y " )"
In Cartesian coordinates o-ne 2T (z + 1y)
with the multipole coefficients being written as
Bon! 0z™ lz=y=0 Bon! 0x™ lz=y=0

B The general non-linear Hamiltonian can be written as

H (2, Y, Pas Py, ) = Ho(2, Y, D2 Dy, 8) + Y by i, ()25
ka ks

with the periodic functions hy, i, (s) = by, k, (s +C)

Non-linear dynamics, CERN Accelerator School, September 2017
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p - 2p2  2(1+56)

B Quadrupole:

=

vy +p;

1
H = §]€1(ZC2 — y2)

B Sextupole:

2(1

School, September 2017

0)

vy +p;

1
H = gkg(xg — 3zy?) A

B Octupole:

Non-linear dynamics, CERN Accelerator

2(1+0)

vy +p;

1
H = Zkg(:ﬁl — 62%y* + y*)

2(1 + 6)

30



Je'e  Line:

B Assume a simple case of linear transverse magnetic

Non-linear dynamics, CERN Accelerator School, September 2017

2

fields, B, = bi(s)y
By = —bg(s) +bi(s)x
main bending field — By = bo( S) _ 61;(85) [T]
normalized b (8)
quadrupole gradient K (s) —Pb 1(s )Cpo = [1/m?
c
magnetic rigidity Bp = ey T - m]

€
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B Assume a simple case of linear transverse magnetic

Non-linear dynamics, CERN Accelerator School, September 2017

2

fields, B, = bi(s)y
B, =—0bo(s) +bi1(s)x
main bending field —By = by(s) = 61;%5) T
normalized b1 (s)
quadrupole gradient K( ) —Pb ( )cPo o [1/ 11 ]
()C
magnetic rigidity Bp = . T - m]|

B The vector potential has only a longitudinal
component which in curvilinear coordinates is

__ 1 0A; _ 1 0A;
By = 1—|—ﬁ oy By_1_|_$ ox

B The previous expressions can be integrated to give
As(x,y7 S) — % [—ﬁ — (ﬁ + K(S)) % -+ K(S)%] — POC As(xaya 53)2
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B The Hamiltonian for linear fields can be finally written as

2 2
R 2 2 0 x2 K(s)/ 2 2
=317 ~ o T ez T 2 (" =y7)
A dp, 0 B 1 o)
ds 1+6° ds  p(s) <,02(3) + & )>

B Hamilton’s equation are
dy _ py  dpy

ds 140 d

and they can be written as two second order uncoupled
differential equations, i.e. Hill’s equations

= K(s)y

5057 (S((6) o) + als) cos(v(s) + )

; K,

: |

E 1 1 0

< 2+ ( +K(s)5x=

Z 146 5)2 S , ,

5 ! p(s) p(s) with the usual solution for
Y -T——=K(s)y=0 6=0and y=ux,y

: L+ - ’

f K u(s) = \/€06(s) cos(1(s) + o)

Z
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B There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

B This set of variables are the action-angle variables

B The action vector is defined as the integral J — 7{ pdq
over closed paths in phase space.
B An integrable Hamiltonian is written as a function of only
the actions, i.e. Hy = Hy(J). Hamilton’s equations give
OHo(J)

Ji = 96 0 = J; = const. x

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

B The actions define the surface of an invariant torus,
topologically equivalent to the product of n circles %

Non-linear dynamics, CERN Accelerator School, September 2017
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B Considering on-momentum motion, the Hamiltonian can

be written as , 4 , ,
H _ Pz TDy, | Kg(s)x®—Ky(s)y
2

The CERN Accelerator School

2
B The generating function from the original to action angle

variables is
Fl(xa Y, be, ¢y7 8) - =

3]2 y2
35,() D F 555

tan @y, (s) + ay(s)]

Non-linear dynamics, CERN Accelerator School, September 2017
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. C0n51dermg on-momentum motion, the Hamiltonian can

be written as , 4 . ,
Y — Pz TDy, | Kg(s)x®—Ky(s)y

2 | 2
B The generating function from the original to action angle
variables is
Y

F1<ZU, Y, gbaﬂ ¢ya 8) — _2/8:6 (S) [tan¢x<8) T ax(s)] o 25?4(5) [tanﬁby(S) + ay(s)]
B The old variables with respect to actions and angles are

\/25u )Ju oS Py (8) . puls) = Y. 5 (S) (SIn ¢y (8) + au(s) €OS Py (s))

and the Hamiltonian takes the form

2

Jy
HO(Jm7Jy7S) 533(8) | By (s)

B The “time” (longitudinal position) dependence can be
eliminated by the transformation to normalized coordinate

()= (7 73) (1) or(fp) = va7 (Gntes) Jwith o= - f 505

Non-linear dynamics, CERN Accelerator School, September 2017
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Canonical perturbation
theory

chool, September 2017
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2

B Consider a general Hamiltonian with 72 degrees of freedom
H(J,p,0) = Ho(J) + eH1(J,p,0) + O(c?)
where the non-integrable part H;(J, ,0)is 2m-periodic
on the angles ¥ and the “time” 0

B Provided that € is sufficiently small, tori should still exist
but they are distorted

O We seek a canonical transformation that could “straighten
p" the tori, i.e. it could transform the non-integrable part
of the Hamiltonian (at first order in ¢) to a function only of
some new actions H (J) plus higher orders in ¢

B This can be performed by a mixed variable close to 1dent1ty
generating function S(J,p,0) = J - @ + eS1(J, ¢,0) + (’)( %)
for transforming old variables to new ones X
(J, P)

B |n principle, this procedure can be carried
to arbitrary powers of the perturbation

Non-linear dynamics, CERN Accelerator School, September 2017
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the old action and new angle can be also represented by a

e’ Canonic

B By the canonical transformation equations (slide 19), the

power series in €

J=J+ easl(‘]’(’o’e) + O(€?) J=J+e¢ 95:(J,#.9) + O(€?)
Jp 0P

— aSl(ja P, 9) 2 Of - 651(‘77 P, 6)) 2
— - O — QO — -

P =@+e 57 + O(e?) p=@—¢ 57 + O(e)

Non-linear dynamics, CERN Accelerator School, September 2017
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the old action and new angle can be also represented by a

Je'e, Can

B By the canonical transformation equations (slide 19), the

power series in €

J=J+ eaSl(J’(’O’e) + O(€?) J=J+e¢ 95:(J,#.9) + O(€?)
Jp 8go

. 851(J (,0,9) 2 or . 851(J,go,6’) 2
— O — 3 — _

p=pte—5—+0() p=¢p—c o7 T OE)

B The previous equations expressing the old as a function of
the new variables assume that there is possibility to invert
the equation on the left, so that S1(J,$,0) becomes a
function of the new variables

N The_ new Hamiltonian is thfzn 55, (J. 3.6)
H(J,$,0) = H(J(J; ), p(J; §),0) + e————— + O(")
B The second term is appearing because of the “time”
dependence through 6

Non-linear dynamics, CERN Accelerator School, September 2017
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B The question is what is the form of the generating function
that eliminates the angle dependence

B The procedure is cumbersome (see appendix for details),
but here is the final result,

— - Hyx(J) kBt 0
S(J,3)=dJ -G+ ei eilk-2+p0) 4
(J,P) @+ € kg;éO:k w(J)+p (e7)

—. O0H
with the frequency vector w(J) = 80} /)

and the integers k,p # 0

If the denominator vanishes, i.e. for the resonance
condition k - w(J) + p = 0, the Fourier series
coefficients (driving terms) become infinite

[t actually implies that even at first order in the

perturbation parameter and in the vicinity of a resonance,

it is impossible to construct a generating function for
seeking some approximate integrals of motion a1

Non-linear dynamics, CERN Accelerator School, September 2017
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disentangling of variables becomes difficult even to 2nd order!!!

y
w : B.‘
The CERN Accelerator School

B |n principle, the technique works for arbitrary order, but the

B The solution was given in the late 60s by introducing the Lie
transforms (e.g. see Deprit 1969), which are algorithmic for
constructing generating functions and were adapted to beam
dynamics by Dragt and Finn (1976)

B On the other hand, the problem of small denominators due to
resonances is not just a mathematical one. The inability to
construct solutions close to a resonance has to do with the un-
predictable nature of motion and the onset of chaos

B KAM theory (see appendix) developed the mathematical
framework into which local solutions could be constructed
provided some general conditions on the size of the perturbation
and the distance of the system from resonances are satisfied

B Very difficult though to apply directly this theorem to realistic
physical systems, such as a particle accelerator

Non-linear dynamics, CERN Accelerator School, September 2017
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Example: Perturbation
- treatment of a sextupole
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perturbation and restrict the study only to one plane. The

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,
2 2 3
_ pa+K(s)x K. (s)x
H(x,psz,s) = 2 | (3)
where K (s)and K,(s)are periodic functions of time.

Non-linear dynamics, CERN Accelerator School, September 2017

44



=

perturbation and restrict the study only to one plane. The

The CERN Accelerator Schoom

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,
2 2 3
_ pa+K(s)x K. (s)x
H(x,psz,s) = 2 | (3)
where K (s)and K,(s)are periodic functions of time.

B We proceed to the transformation in action angle variables
to write the Hamiltonian in the form

H = Ho(J) + Hi1(9,J) = 5{8) + 2\/5:[;8(8) (JB(S))B/2 cos® ¢
J K( )

3/2 COS COS
51 T s (70" (cos 30+ Bcos o)

Non-linear dynamics, CERN Accelerator School, September 2017
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perturbation in an average part over the angles and

~
E.‘
The CERN Accelerator School - .

B The perturbation procedure implies to split the

an oscillating part

PO . TN \/ik‘ S
Hy ={Hy)gi {H1} = 13( ) (78(5))%/2 (cos36 + 3 cos 6)

1
where <H1>90 — <%> %Hl(J, g&)dg&
{H,} = H, — (Hy),
=3 Hi(J)el et
k,p

Non-linear dynamics, CERN Accelerator School, September 2017
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B The average part should be only a function of the action

The CERN Accelerator Schoo1

B [ts derivative with respect to the action should provide the
frequency shift (tune-shift) due to the non-linearity

B [t can be shown that this quantity vanishes for a sextupole
perturbation

<8H1(¢,J)> _ Fa(s)B(s)
0J - 827

2
(Jﬁ(s))l/Q/O (cos 3¢ + 3cosp)dep =0

B Sextupoles do not provide any tune-shift at first order

B But we know by experience that this is not true, i.e. first
order perturbation theory fails to give the correct answer

B One has to go to higher order (see appendix)

Non-linear dynamics, CERN Accelerator School, September 2017
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B The oscillating part is then the same as the original
Hamiltonian

(H\} = Hy, — (Hy)5 = H, K4(s)

-5

B Following the canonical perturbation procedure the
generating function is -

o R H .
S(J,p)=J-d+i Y 1 (/) elkotpl) 4
o kov(J) +p

B The only non-zero Fourier terms are for £ = 1,3 and

(J_B(S))B/2 (cos 3¢ + 3 cos @)

S(J,¢)=J-¢+i 55 (JB(s)) +

- K(s) /= 32 = [ €3tp0)  3ei(d+po)
3V +p vV+Dp

p=—00

Non-linear dynamics, CERN Accelerator School, September 2017
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B We derived (with a lot of effort) the common result that

Non-linear dynamics, CERN Accelerator School, September 2017

=

sextupoles at first order excite integer and third integer
resonances

B Again this is not generally true! It is known that sextupoles
can drive any resonance (either if they are large enough, or
if the particle is far away from the closed orbit)

B This can be shown again by pursuing the perturbation
approach to second order (as for the tune-shift)

B A useful application is to use the generating function for
computing the correction to the original invariant, as the
new one should be an integral of motion (at first order)

J%j | aSl(ngpve)
Oy

49
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B For small perturbations, the new action variable is almost
an invariant but for larger ones phase space gets deformed

B Close to the integer or third integer resonance, canonical
perturbation theory cannot be applied

B The solution is provided by secular perturbation theory

500 50
Turn #
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B The general accelerator Hamiltonian is written as

H(Qj’ Y; Pz Py; S) — HQ(ZC, Y, Px, Py, S) + Z hkw,ky (S)kayky
ki, k ) .
B The transverse coordinated can be expressed in action-angle

variables as

u(s) = /Ju52u(8) (ei(¢u(s)+9u(s)) _|_€—i(¢u(s)—|—0u(s)))

B The Hamiltonian in action-angle variables is

H (Js Jys bur Oy) = Ho(Js, Jy) + Hi(Ja, Iy, $a, dy)

=

Non-linear dynamics, CERN Accelerator School, September 2017
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B The general accelerator Hamﬂtoman is ertten as

H('CU YyPxs Py, S ) HO(:C YyPxy Py, S + E hk Ky ) y
ky . .
B The transverse coordinated can be expressed in action-angle

variables as
U(S) _ uﬁu( ) ( (o (8)+04(8)) 4 e i(Po (8)+04 (3)))

2
B The Hamiltonian in action-angle variables is

H/(Ja:a Jya ?bxa Qby) — HO(JZL‘? Jy) T Hl(JfL’v Jyv qu, gby)
The integrable part  Hy(J,, J,) = %(ijx + vy, Jy)
The perturbation

Hy(Jo, Jys G b3 8) = Y T/ 2Ty /QZZ% et (5)e1T—R)Pa+ 1=y

ke ky

=

Non-linear dynamics, CERN Accelerator School, September 2017
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B The general accelerator Hamlltoman is ertten as

H('CU YyPxs Py, S ) HO('CC YyPxy Py, S —'_ Z hk Ky ) y

kz,ky
B The transverse coordinated can be expressed in action-angle

variables as

u(s) — U’BQU’( ) ( i(¢Pu(s)+0u(s)) Le” i(Pu(s)+0u (8)))
B The Hamiltonian in action-angle variables is

H/(Jaza Jyv ?bxa ¢y) — HO(JZC? Jy) T Hl(Jivv Jyv qu, ¢y)
The integrable part  Hy(J,, J,) = %(Vxe + vy, Jy)
The perturbation

Hy(Jo, Jys G b3 8) = Y T/ 2Ty /QZZ% et (5)e1T—R)Pa+ 1=y

kz,ky

« e h .
B The coefficients g;.(s) = 2‘@%&3 (’Zx) ( z ) 502 ) o 2 ) G080 (5 +1=m)8, (5]

depend on the optics, with the indexes k., =j+k, k,=1+m

Non-linear dynamics, CERN Accelerator School, September 2017

53



=

B As the coeff1c1ents hi, 1, (s) are periodic, the perturbation
can be expanded in Fourier ser1es

Hl(']ib7']y7¢x7¢y;0) — Z Jk /QJk /2yy Y 9j.k.l,m [(j—k)dz+(l—m)dy —pb]

The CERN Accelerator School

with the resonance driving terms

ko (K 11 e
Fltimip = ( )(z) T ]{ B, ey () 55272 (5) /2 ()19 (5) +(L=m)du ():+£6]
J 2 2 s

Non-linear dynamics, CERN Accelerator School, September 2017
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=

B As the Coeff1C1entS hi, 1, (s) are periodic, the perturbation
can be expanded in Fourier serles

Hl(t]ac7(]ya¢x7¢y§0) — Z Jk /QJk /QYY Y 9j.k.lm l[(j_k)ﬁbx‘i‘(l_m)@by—p@]

with the resonance dr1v1ng terms

ko (K 11 e
Fltimip = (J>(l)2—m o 7{ B, ey () 55272 (5) /2 ()19 (5) +(L=m)du ():+£6]

W Forng, =7 —k, n, =10—m,resonance conditions
appear for n v, + nyv, = p

B Goal of accelerator design and correction systems is to
minimize the resonance driving terms

Change magnet design so that hy, 1, (s)become smaller
Introduce magnetic elements capable of creating a cancelling effect

Sort magnets or non-linear elements in a way that phase terms are
minimised

Non-linear dynamics, CERN Accelerator School, September 2017
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B The general resonance conditionsis M,V —+ NylVy — P

with order T, —+ Ty

BFor all the polynomial field terms of a 2m -pole, the excited
resonances (at first order) satisfy the condition 70y, + Tbyy = TN
but there are also sub-resonances for which 71, Ny <M
B For normal (erect) multi-poles, the resonances (at first
order) are (n;,n,) = (m,0), (m —2,£2),... whereas for skew
multi-poles (nz,ny) = (m —1,£1), (m — 3,%3),. ..

B[f perturbation is large, all resonances
can be potentially excited N
B The resonance conditions form lines , [ ;
in frequency space and fill it up as the ‘
order grows (the rational numbers
form a dense set inside the real |
numbers), but Fourier amplitudes |
should also decrease "o e o oe ox o

08

|

S B A T N B
04 f e g

Non-linear dynamics, CERN Accelerator School, September 2017
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2

B [f lattice is made out of N identical cells, and the

perturbation follows the same periodicity, resulting in
a reduction of the resonance conditions to the ones
satisfying Mg Vg + Ny Vy = JIN

B These are called
systematic resonances

B Practically, any (linear)
lattice perturbation breaks
super-periodicity and any
random resonance can be
excited

BMCareful choice of the
working point is necessary

Vertical Tune
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B First order correction to the tunes is computed by the
derivatives with respect to the action of the average part of
perturbation. For a given term, hy, x (s)z"*y"the leading

order correction to the tunes are
ky/2 ki FEy

Jhe/2=-1 g
Ovy = — 2y ZZQM 7{ T =k) ot (I=m) ¢y ]
X 47_‘_ 7am

k:/21/-€ Ky

Jir gy A[(G—k)bo+(1—m) by ]
by = 303 g e

where G; k. 1.m is the average of g, k.1.m(s)around the ring.

=

B In the accelerator jargon if 0V, is independent of the
action, it is referred to as tune-shift, whereas, if it depends
on the action, it is called tune-spread (or amplitude
detuning)

B At first order, § Vey = 0, for odd multi-poles k., = j + k.
k, = | +m (trigonometric functions give zero averages). 58
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B Hamiltonian formalism provides the natural framework to
analyse (linear and non-linear) beam dynamics

B Canonical (symplectic) transformations enable to move from
variables describing a distorted phase space to something simpler
(ideally circles)

B The generating functions passing from the old to the new
variables are bounded to diverge in the vicinity of resonances
(emergence of chaos, see next lectures)

B Calculating this generating function with canonical perturbation
theory becomes hopeless for higher orders

B Need clearly a new approach (through Lie transformations of
accelerator maps) enabling derivation of the generating functions

in an algorithmic way, in principle to arbitrary order (see Lectures
of W. Herr)

B For real accelerator models, we have to rely on numerical
integration of the equations of motion, i.e. particle tracking and
methods to analyse it (see Lectures of NLD Phenomenology) 59

Non-linear dynamics, CERN Accelerator School, September 2017
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Je’e) Derit

=

A The variation of the action can be written as

b2 2 (OL OL
t1 t1

0 Taking into account that 54 =

L
0L s

oW = 54

d0L 0L

Non-linear dynamics, CERN Accelerator School, September 2017

=0

dq dq
doq

rl the 27 part of the

integral can be integrated by parts giving

to t
2 (0L d [OL
+ — — : dgdt = 0
t /tl (5‘61 dt((9Q)) !

QThe first term is zero because §q(t1) = dq(t2) =0
so the second integrant should also vanish,
providing the following differential equations for
each degree of freedom, the Lagrange equations

61



Je'e) Derivatic

0 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

’ oL oL oL

dH = Zp}sz + q;dp; @fj{ﬂ{q.i 90 dq; — 0_d
P Di

=

Non-linear dynamics, CERN Accelerator School, September 2017
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0 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

oL .. 0L oL

[ These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (¢;,...,qn,p1,...,Pn,t,—H) &

. dH =) pidi + Gidpi — 5 i — 5 —dgy —

3 a4 0q; Ot

E 1.7 /\’_Y_’ \_Y_I

¥ or ' Di

- 3 OH  OH
:g q p7 Z qupz pdeZ — —d Z apz dp@ 8% qu + a—dt
g d By equatmg terms, Hamilton’'s equatlons are derived

. _OH . 0H 0L  0H

g qdi = api y Pi = 5’q oy = o
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It is useful (especially for rings) | 4 Parice wajecor
to transform the Cartesian
coordinate system to the
Frenet-Serret system moving p
to a closed curve, with path length s

dThe position coordinates in the two systems are
connected by r = rq(s) + Xn(s) + Yb(s) = zuy + yuy + zu,
U The Frenet-Serret unit vectors and their derivatives

. d d?
are defined as (t,n,b) = (gro( s), —p(s )@ro( s),t X n)
1
d t 0 —p(s) 0 t
)= 0 0 7(s) n
> \b 5 0 —7(s)) \b

with p(s) the radius of curvature and 7(s)the torsion
which vanishes in case of planar motion o



COORIE @)

JdWe are seeking a canonical transformation between

(a,p) — (Q,P) or
(x,Y, 2,2, Py, P2) +— (X,Y,s, Py, Py, Ps)

L The generating function is

OFs3(p, OFs3(p,
(q,P) = — (2R opQ))

By using the relationship between the positions, the
generating function is

F5(p, Q) =—-p-r+I5Q)=—p-r

Non-linear dynamics, CERN Accelerator School, September 2017
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Jo'e, From

dfor planar motion, the momenta are

X
P = (Px,Py,PS) — p-(n,b, (1 + ?)t)

L Taking into account that the vector potential is also

transformed in the same way

X
(AX,Ay,AS) — A-(n,b, (1 + ;)t)

the new Hamiltonian is given by

mics, CERN Accelerator School, September 2017

S
n
Q

o
o]

H(Qapat)zc\/(PX_iAX>2+(PY_iAY)2‘|— CXv S; —I—m202—|—€q)

Non-linear dyn.
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O It is more convenient to use the path lengths,
instead of the time as independent variable

=

1 The Hamiltonian can be considered as having 4
degrees of freedom, where the 4t “position” is
time and its conjugate momentum is F; = —H

Non-linear dynamics, CERN Accelerator School, September 2017
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O It is more convenient to use the path lengths,
instead of the time as independent variable

1 The Hamiltonian can be considered as having 4
degrees of freedom, where the 4t “position” is
time and its conjugate momentum is F; = —H

QIn the same way, the new Hamiltonian with the
path length as the independent variable is just
P, = —H(X,Y,t, Px, Py, P, s) with

H = —%AS—<1 + %) \/(Pt +c “Pro 22— (p, - ZAX)2 —(Py — SAY)2

1t can be proved that this is indeed a canonical
transformation

[ Note the existence of the reference orbit for zero

vector potential, for which (x,v, Px, Py, P.) = (0,0,0,0, Py)

Non-linear dynamics, CERN Accelerator School, September 2017
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0 Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

=

C

p(s) ¢ J

P2
d The Hamiltonian is then written as

H=-4,— (1 + i) \/(ﬂ)2 —m?2c? — (P, — %AX)2 — (Py — ZAY)2
\

p(s)
L If static magnetic fields are considered, the time
dependence is also dropped, and the system is

Non-linear dynamics, CERN Accelerator School, September 2017

H=—"A - (1 + i) \/(P2 — (P — SAx)? — (Py — SAy)?
C C

having 2 degrees of freedom + “time” (path length)
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[ Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (a,p) or

The CERN Accelerator Schooi

Px Py P

Py’ Py’ Py

(JThe new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

(X7Y7t7PX7PY7Pt) = (jj7g7t_7pxapy7ﬁt):(X7Y7_c t: )

_ H _ T L, m2c? _ _
%(x7y7tapm7pyapt) - X5 — —€A3—(1 + —) \/p% — — (pg; — 6143;)2 — (py — eAy)Q

Non-linear dynamics, CERN Accelerator School, September 2017

) p(s) Fo
| o 1
with (4,4, A,) = — (4., 4,, As)
2 .2 1 Foc
m-c
and Py, B3¢ 70
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0 Along the reference trajectory 5,0 =

dt OH _ 1 Bo
‘P Py a—pt!P Py = —Pt0 = —%

Q It is thus useful to move the reference frame to the
reference trajectory for which another canonical

transformation is performed
(@p) = (4p) or

=

1
and

S—So . 1
7px7py7pt )
Bo

(f7g7t_apxapyaﬁt) = (j\jagai\vﬁmap\yvﬁt) — (j\f,?),t_—l— 60

Non-linear dynamics, CERN Accelerator School, September 2017
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e B
1

0 Along the reference trajectory p,, = — and
dt OH 1 0

ds\ 7=y = g, 1P=r = TP ="
O It is thus useful to move the reference frame to the
reference trajectory for which another canonical

transformation is performed
(@p) — (§p) or
- TS . .- S—S80 . . _ 1
(xayatapxapyapt> = (x7y7tapxapyapt) — (x7y7t+—7pxapyapt__)
: : : . Do, 0
L The mixed variable generating function is

o OF(65) BF,(Ge o,
(4,p) = (2F §§ p) OF 6(2 P)) providing 1
R . . . S—So.,.
F2(@p) = e + 0y + T+ — °><pt+5—>
dThe Hamiltonian is then 0 0

- . 1 1 N T 1 1
T H(Z,9,t, D, Dy, Pt) = — (—+P —eA—<1+—> Drd —)2 — ——

Non-linear dynamics, CERN Accelerator School, September 2017
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A First note that p, = p, — L = Dt — Do = P — Fo =)
and | — § Bo Py

1In the ultra-relativistic limit 5, — 1, 21 5 — 0
and the Hamiltonian is written as 0

2017

sH(x,y, 1, ey Dy, 0) = (14+0)—eA — (1 + %) \/(1 +6)2 — (py — eAy)? — (p, — eA,)?

where the “hats” are dropped for simplicity

Non-linear dynamics, CERN Accelerator School, Septembe
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1 First note that ﬁt:pt—ﬁ—:pt—pw: tP 0 =5
and | = ¢ 0 0
e e e ge . 1
QIn the ultra-relativistic limit 3y -1, —— —0
and the Hamiltonian is written as 0

2017

s H(x,y,l,pz, Py, 0) = (1+5)—efls— (1 + %) \/(1 +0)2 — (py — eflx)2 — (py — eAy)z

where the “hats” are dropped for simplicity

J1If we consider only transverse field components,
the vector potential has only a longitudinal
component and the Hamiltonian is written as

O Note that the Hamiltonian is non-linear even in the

absence of any field component (i.e. for a drift)! »

Non-linear dynamics, CERN Accelerator School, Septemb
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[ It is useful for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

=

[ For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

1 Considering also the large machine approximation
r << p , (dropping cubic terms), the Hamiltonian
is simplified t(2) ,
» T 1+0 A
H = Potpy z(l+9) eAs
2(1+0)  pls)

L This expansion may not be a good idea, especially
for low energy, small size rings s

Non-linear dynamics, CERN Accelerator School, September 2017
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1 First note that ﬁt:pt—ﬁ—:pt—pw: tP 0 =5
and | = ¢ 0 0
C e e e 1
QIn the ultra-relativistic limit gy -1, —— —0
and the Hamiltonian is written as 0
57‘[(56,:% l7p$7py75) — (1_'_5)—6143_ (1 i %) \/(1 + 5)2 o (pm o 6A$)2 o (py o 61419)2

where the “hats” are dropped for simplicity

L 1If we consider only transverse field components, the
vector potential has only a longitudinal component
and the Hamiltonian is written as

O Note that the Hamiltonian is non-linear even in the

absence of any field component (i.e. for a drift)! -

Non-linear dynamics, CERN Accelerator School, September 2017
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B From Gauss law of magnetostatics, a vector potential exist

V-B=0 — dJA: B=VXxA
B Assuming transverse 2D field, vector potential has only one
component A,. The Ampere’ s law in vacuum (inside the

beampipe) V x B=0 — 3JV: B=-VV
= B Using the previous equations, the relations between field
components and potentials are

OV _0A. OV _ A
or oy Y Oy  Ox y
i.e. Riemann conditions of an analytic function !

Exists complex potential of z = z + iy with /

power series expansion convergent in a circle
with radius |z| = r. (distance from iron yoke)

oo

A(x +iy) = As(x,y) +iV(z,y) = Z/ﬁ}n —Z n+ in)(x + iy)"

n=1

B, = —

Non-linear dynamics, CERN Accelerator School, September 201
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B From the complex potential we can derive the fields

. 0 o
B, +1iB, = — &U(A (x,y) +1V(z,y)) Zn i) (z +iy)"
u Settlng bn — _n)\n ; Ap = Nin
O
: : : 1
B, +iB, = E (bp, — 2ay,)(z + iy)"
n=1
B Define normalized coefficients
/ bn n—1 / Qn n—1
b a, =

"T1074B, 0 0 T 10-4B,
on a reference radius r,, 10 of the main field to get

| B . + 1y
B, +iB. —10~B b —ial V(& n
Y T Onz::l( n Zan)( ro )

B Note: n’ = n — 1 is the US convention 78

Non-linear dynamics, CERN Accelerator School, September 2017



The CERN Accelerator Schoom

=

B Expand term by term the Hamiltonian H(J(J,@),e(J,p),0)
to leading order in €
Ho(J(J,®)) = Ho(J) + €

OHo(J) 951(J, @,0)
9T 9
M\ (J(J, @), o(J,$),0) = eHi(J, @) + O(c?)
B The new Hamiltonian can also be expanded in orders of €
H:H0+€H1—|—...
B Equating the terms of equal orders in € , we obtain
Zero order Hy = Hy(J)

+ O(€?)

- — 831(:7,95,9) T 8S1<j79579) T —=
First order [, — + w(J) - ~ Hq(J,
1 90 (J) 8_90 1(J, p)
OHo(J)

where the frequency vectoris  ((J) =

Non-linear dynamics, CERN Accelerator School, September 2017

79



=

Je'e, Can

B From the first order Hamiltonian, the angles have to be
eliminated. For this purpose, it can be split in two parts:

1\" _
Average part: (Hi)g = <%> %Hl(J,QB)dQB

Oscillating part: {H1} = H1 — (H1)g
B The 1%t order perturbation part of the Hamiltonian then

becomes

iy = PUE20 () 2D (e + (T 9))

B Thus, the generating function should be chosen such that
the angle dependence is eliminated, for which

(D) = (T @) and P20 o). 20 _ (7,

B The new Hamiltonian is a function of the new actions
H(J) = Ho(J) + € (Hi(J,$))g + O(¢*)  With the
new frequency vector

w(J) = 61;13]) w(J)+68<ngz_’“5)>¢+0(e2)

Non-linear dynamics, CERN Accelerator School, September 2017
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"W The quest10n that remains to be answered is whether a
generating function can be found that eliminates the angle
dependence

B The oscillating part of the perturbation and the generating
function can be expanded in Fourier series

{H\(J,¢)} = Z Hiyy (J)e' B0 g ( Z S (J) etk Ptr0)

with k-@=Fkoi+- -+ knpn
B Following the relationship for the angle elimination, the
Fourier coefficients of the generating function should

satisf _ H.oo(J

T () =i )
k-w(J)+p
B Then, the generating function can be written as

- _ - Hix(J)
S(J,o)=J -+ €t =
(J.¢)=J-¢ gﬁ%k.w(])w

with k,p#0

e!k@+rd) 1 O(¢2)
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B Original idea of Kolmogorov (1954) (super-convergent series expansion)
later proved by Arnold (1963) and Moser (1962)

B [f a Hamiltonian system is subjected to weak nonlinear perturbation,
some invariant tori are deformed and survive

B Trajectories starting on one of these tori remain on it thereafter,
executing quasi-periodic motion with a fixed frequency vector
depending only on the torus.

B The family of tori is parameterized over a Cantor set of frequency
vectors, while in the gaps of the Cantor set chaotic behavior can occur

B The KAM theorem specifies quantitatively the size of the perturbation
for this to be true.

B The KAM tori that survive are those that have “sufficiently irrational”
frequencies

The conditions of the KAM theorem become increasingly difficult to
satisfy for systems with more degrees of freedom. As the number of
dimensions of the system increases, the volume occupied by the tori
decreases

B A complement of KAM theory for the stability of dynamical systems
were given by Nekhoroshev (1971) who proved that if the density of tori
is large all solutions will stay close to the tori for exponentially long
times showing practical stability of motion

Non-linear dynamics, CERN Accelerator School, September 2017
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2

B |t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written _ 1 §2H, (351)2 OH,; 05,

OH, 054

2 0J2 \ 0¢
B This can be simplified to H,(J) = (

9H, K. o0J 5’q§>
&fl = 2\}) JY28(5)3/%(cos 3¢ + 3 cos d)
9S4 J3/2 s+C

05 s [€08(6 4 () —bls) —m) | cosB(@+ () —bls) ~m)]
ole) 2v/2 Js Ko(#)8(5) [ . si{l(wy). i sin(37v) ] d
B The 2"d order Hamiltonian is given by the angle-averaged
product of the last two terms.
B [t is quadratic in the sextupole strength and the new action.

The 214 order tune-shift is the derivative in the action
V() = OHy J (¢

s+C
(Gee =15 | asKu@B) [ K3

y [COS(Cb +9(s') —4(s) — ) L cos3(+ (s') —d(s) —mv) | -,

d
sin(7v) sin(37v) 78

B The two terms are
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. Expand both the perturbatlon and generating function in
Fourler series of the form

S1(J,6,0) = Sin(J,0)e**and {Hi(],$,0)} = ZHM (], )™
B The equatlcfn relating the amplitudes is
. 051k
1 kv Slk -+ — _Hlk
which can be solved yielding 00

O0+27
S, — .z )/ H, ek (8’ —6-m) g/
9

2 sin(mkv
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B Expand both the perturbation and generating function in
Fourier series of the form

w: =y
The CERN AcceeratorSchOOﬁ— T

S1(J,6,0) = Sin(J,0)e**and {Hi(],$,0)} = ZHlk (], )™
B The equatlcfn relating the amplitudes is
. 051k
1 kv Sk + = —Hyy,
which can be solved yleelg%ng 00
p— Z " iku(@’—@—w) /
Stk 2sin(mkv) /@ Hye d0

B Following the canonical perturbation procedure the
generating function is

. O-+2m
(4 : /
f— H zk[¢+’/(0 _H_W)]del
o1 Z 2sin(mwkv) /9 the

B For the sel;(tupole and letting (s /

we have

B(s

73/2
Si=-2s [ K8 |
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" B The single resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,
1978))

2 _kx ky
H<Jx7¢]yv¢a:7¢y>5) — VCCJ +Vy<]y> +gnx, _']5132 Jy2 COS<nx¢a: +ny¢y +¢O —p@)

’I’LyR

with In,,n, €
B From the generating function

Er (@, by, jﬂcv jya s) = (Na@z + nyPy —p@)jx T (byjy
the relationships between old and new variables are

A

Qg:c — (nx¢x + ny¢y —pé’) , Jp = ngdy
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Py = Py Ty = nyJs + J,
B The following Hamiltonian is obtained
I:I(JA:E7 jy7 éw) - <nmyx + nyVyR— p)Jm + Jy + gnx,ny %(nxjm)%(nij + jy)kTy COS(&:U + ¢O)86
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B There are two integrals of motion
The Hamiltonian, as it is independent on “time”

The new action J as the Hamiltonian is independent on ¢y

B The two invariants in the old variables are written as:

L
Ny Ny
:c ky
co = (Vg — _]i ) + (vy — ﬁ)J + 290, n, Jz* Jy 2 co8(Ng ¢y + nydy + do — ph)

B Two cases can be distinguished

ng ,n, have opposite sign, i.e. difference resonance, the motion is
the one of an ellipse, so bounded

Ny , N, have the same sign, i.e. sum resonance, the motion is the one
of an hyperbola, so not bounded

B These are first order perturbation theory considerations

B The distance from the resonance is obtained as

_2 ky—2
A = g”;%’”y To = J, 7T (kunady + kynyJ,)
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