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Road map for the extension to complex systems:
> Lagrangian and Hamiltonian dynamics (brief reminder,
some more in back up slides)

} How to use that ==» Lie transforms (show accelerator
physics specific usage)

> Provide useful formulae and examples
> How to analyse that ==» Nonlinear normal forms

> How to analyse that easier =% TPSA, one of the most
advanced and useful concept



Describe the particle’s motion by a function L (Lagrange function)

L(Qu(D), .-.On(t), Qu(t),...0n(t),t) short:  L(ci 0, 1)

(1), ...0n(1) ... generalized coordinates ¥

du(t), ...dn(t) ... generalized velocities

The integral S = [ L(qi(t),¢(t),t) dt defines the action **)

Without proof or derivation:
L = T — V = Kkinetic energy - potential energy

*) ¢ can stand for any coordinate and any particle, n can be a very large number
**) Confusion alert; action J (a variable) and S (a functional) are different things



Hamilton principle (stationary action)

2
S :/ L(qi, g, t)dt = stationary
1

ROWAN HAMILTON

Hamiltonian principle: system moves from 1 to 2 such that the
action S becomes stationary, i.e. 06S =0

doL oL

s fulfilled when: =
s fulfilled when dtag g

= 0 (Euler - Lagrange equation)



From Lagrangian to Hamiltonian ..

For our purpose it is an advantage to use Hamiltonian
> Generalized momenta instead of velocities

> g and p; are independent and on equal footing,
g and @ are not

We use fromnowon: g = X

The generalized momenta p; we derive from L as:

oL

pi—a—)-(i

Once we know what the canonical momenta p; are: the Hamiltonian is a
(Legendre-)transformation of the  Lagrangian :

H(X, pi,t) = inpi — L(x;, %, 1)



without proof, write the Hamiltonian:
H =T + V = kinetic energy + potential energy

From Hamilton’s principle *) we obtain 2 first order _ equations of motion

(Hamilton equations):

oH

oH dp OH
%

dx;

R T d
Canonical coordinates:

> The Hamilton equations have always the same form (the Hamilt
itself in general not)

> Form the basis for calculating conserved quatities

> Basic requirement for Liouville’s theorem

*) Backup slides or any textbook on classical mechanics

onian



Frequently asked Question:
(main source of "panic and black despair" for some colleague S):

Why not just Newton’s law and Lorentz force ?

Newton requires rectangular coordinates  and time , trajectories with e.g.

"curvature" or "torsion" * need to introduce "reaction forces".
For example: LHC has locally non-planar (cork-screw) "desi gn" orbits !

For linear dynamics done by ad hoc introduction of new coordi nate frame

With Hamiltonian it is free:  The formalism is "coordinate invariant"
Map approach solves problems with curvature and torsion

For complicated systems (e.g. nonlinear, coupling, radiat lon, spin, etc.):
makes our life a lot easier (and in many cases possible )

*) E.g. solenoids, helical wigglers, helical separation



Hamiltonian for a (ultra relativistic, i.,e. vy > 1, 8= 1) particle in an
electro-magnetic field is given by (any textbook on Electrod ynamics):

H(X B 1) = ¢4/ (B - eAR )2 + MBc? + ed(R 1) (ugly...

where A(X t), ®(X t) are the vector and scalar potentials  (i.e. the V)

Using canonical variables  (2D*) and the design path length sas
independent variable (bending field By in y-plane) and no electric fields:

duetot — s ) kininatic \ due to t z S normalized
: X, X X As(X,Y)
H = —(1+—)-\/(1+5)2—p§—p2+—+ -
p Y p 202 By
N——— N——
yesterday yesterday

where p = VEZ/c2 — mPc? total momentum, & = (p— Po)/Po is relative
momentum deviation and  A¢(X, y) (normalized) longitudinal (along 9)
component of the vector potential.

*) Only transverse fields now, skipping several steps (see e.g. S. Sheehy, CAS Budapest 2016)..



After square root expansion *) and sorting A contributions:

kinematic dipole quadrupole sextupole
R o T o e
H=_* DO = . 2 432 ~(x*-3
2(1+9) " 27 T2 )G
~~

bending  focusing

1 o" 1 5"B
using : kn:kr(]”):__By (k,(f):—a x)

Bo ox" Bo ox"
> The Hamiltonian describes the motion of a particle
through an element

> Each element has a component in the Hamiltonian (but see in a f ew
moments ..)

> Basis to extend the linear to a nonlinear formalism

2 3

9 CVIta =1+ 2 - % + = 4 ..
remember + + > 3 + 16 +



Hamiltonians of some machine elements (3D)

In general for multipole n:

Hn = 11 nRe [(kn + iKY (x +iy)™ ] + F2))2((1++§)§
We get for some important types (normal components K, only):
sow 1= 0 s
quadrupole: = %kl(XZ —V?) + 522(1++p§)2;
sextupole:  H = %kz(x3 3xy?) + 52(1+F2;
octupole: H = %lkg(x4 — 66Xy + ¥ + ngltfg



Side remark 1:

- Whether you like it or not: Hamiltonian treatment is the key to
study and understand the properties (e.g. stability) of
dynamical systems (linear and nonlinear)

To mention a few properties: symplecticity, non-intersect ing of
trajectories, integral invariants (e.g. preservation of p hase space),
Liouville’s theorem (there is no such thing without Hamilto nians)

and many others

- Unlike said in many introductory textbooks and lectures
[references avoided, but found in previous lectures], a
multipole of order nis not required to drive a nth order
resonance - nothing could be more wrong !!

(Nobody to blame, this was o0.k. using the know-how of the 1960 's, but
often just taken over ...)



Side remark 2:

| have mentioned that:

H(X B, 1) = ¢4/ (B - AR )2 + MBc? + ed(R 1) is ugly |

Those who remember the Introductory Course (lectures on EM- theory,
Relativity):

We can write a covariant (valid in any  coordinate systems) Hamiltonian as:
HOCP) = — (P — eA() (" — eAv(X)
’ p — enbc p,u A/—t
where the usual four-vectors are used.

For our purpose we do not gain anything so we do not use that



A first application - the simplest possible:

Keeping only the lower orders (focusing) and 0 = Owe have:

2 2
H = Px + py X2 kl(S) (X . y2)

2 209
\_\,_/ '
dipole quadrupole

Putting it into Hamilton’s equations (for X, ditto for ):

@__dpx__X 1 k(9 oH dx
ox  ds 02(s) opx ds &
it follows immediately:
d?x 1 d?y
92 + (p(S)Z — kl(s)> X =0 92 + ki(9gy = 0

Hill's equations are a direct consequence of Hamiltonian tr eatment of EM
fields to lower orders (without invoking the moon and hand-wa ving
arguments !)



However:
It seems that Hamilton brought us back to the beginning ...

What about the "map approach" ?

Can we do something more useful ??



Cooking with Poisson ...

Introduce Poisson brackets  for a differential operator ( n DOF):

~~[(0f g of og
[f’g]_;<3xi5pi apiaxi)

Here the variables X, p; are canonical variables, f and g are (arbitrary)
functions of X; and pj, (so far just a definition).

We can now write (using the Hamiltonian ~ H for g(x, p;) in the above):

8H dx; dx.
— Y. 3 — =l
aH dp| dpl

Poisson brackets encode time evolution of xand p



Integration ..

Having the principal equations:

1= 3% 1= 9P
[XlaH] - dt [plaH] - dt

They give the state of a system atatime t + dt given the state at t
(or s + dg), i.e. the time evolution of the dynamical system

we have a mapping from one place to another and a procedure for the
numerical integration

The Poisson bracket of the Hamiltonian with a variable provi des the
evolution of this__ variable

The numerical studies of dynamical systems using Hamiltoni an maps is
the only sensible method in the era of fast computers !



It holds more generally for any function

coordinates:

F(x, p) of canonical

[F, H] =

dF

dt

The Poisson bracket of the Hamiltonian with a function provi

the evolution of this function

Not relevant for us, but for F(x, p, t) (to avoid complaints):

dF
dt

[FH = — — —

oF
ot

des



We can define a symbolic operator: g « [f, ]

where : f :is an operator acting on the function g:

for 1D
N - ~
of o of o of o of o
fr =00 1= (oo = o) = o - o
— 0X; 0P OpP; 0X%; oX op 0P OX
The operator : f :is (a special form of) a Lie Operator
Lie operators are Poisson brackets "in waiting"
Look at special cases of the functions  g(X, p):
RV (f.x] = : f:x B af 9x 9t 9x
9= P - AXop Ipox

9

of op Jdf ap
f = :f: — _



In passing: Useful formulae for calculations (and examples )

Some common special (very useful) cases for f:

oy 0
X = o
ot
o a{Jp);e“t\)/(wc.e i (9_2
= “xuox) 507
xp: = i_xﬁ
P = Pap T Xax
X2 :2xi
ap
0
X": = n-xml
ap

. 0
. P.o= %
applied twice
p2 = W _ 5_2
. . . .. . 952
X = . X = 02
p-= b ~9xap
0
2 — —2p—
P pax
0
n — _n.pt1 7
pr- = -Nn-p Ix



Applied to some simple (but most important) cases:

With X coordinate, p momentum:

0X
= — o = — — =
P:X = 1 L p° X 2p6x
ap
= e = — —_— =
p:p=0 PPip = -2p
2 2 apo 3
pP=. XpP~ = _Zp—ax = -2p

Cp>)x= :p°:(p°:X) = :p>:(-2p) =0

:p*:(0) =0

Cp*)?p = :p°:(:p°:p)



Applied to some simple (but most important) cases:

With X coordinate, p momentum:

= — e O
X5 X 2X6p
ap
= 2 = — = —2
X:p=1 X p 2xap X
X% 1 Xp? = _2X(9X_|32 — 4px?
ap
Cx2)Px = 1xi(xix) = 1 x2:(0) =

(x*)2p= 1x:(xX:1p)

X% (=2X) =



How to use them for our purpose ?

: H : g describes evolution of g over an infinitesimal  distance dL

3—2 = [g,H] = (-H:dL)g (afew slides ago ...)

We need to describe the evolution of g over a finite
distance L = dL-n

have to apply the map n times

(-H:L)g=(C-H:dL-njg = (-H:dL)"g

L



We have from the Hamiltonian equations for the motion throug h an
element with the Hamiltonian  H for the element of length L (s as

Independent variable):

d gk
—g:[g,H]::—H:g = (:—H:)kg:d_sil

— ¢ /oK — ¢ .
- Q(S)=ZE (d—sg) :Zﬁ ~:H)kg = e™g

k=0

For the motion through an element of length L and a Hamiltonia n H:

= glL) = e g(0)



We know how to compute powers as:

G f:)g=:f:(f:g)=[f[fqg]] etc

then we can construct an exponential operator:
fodef o~ 1, . .
e =3 SC 1)
i=0
fr e 1, .2 1, 0.3
e _1+.f.+z(.f.)+§(.f.)+...

f

The operator € ' - is called a Lie Transformation



Acting on the phase space coordinates (shown for 1D here):

X e X
o
P/, P/
for the components: X = € 1 'x, and p=¢€ ! 'p

> Lie transforms describe how to go from one point
(X, p)1 to another (X, p)» they are maps

> Crux of the matter: Not restricted to be matrices !!
> The generator f describes the element(s) between 1 and 2

The miracle:

Lie transformations are always symplectic, no matter what is



Whatis f ?

> The generator f is the Hamiltonian H of the element (or a
sequence of many elements) !

> The Hamiltonian describes the exact motion from 1 to 2

> For an element of length L the generator fis: f = L-H

For example a sextupole (remember the Hamiltonian componen ts):

X P2 + p2 X
(p) < en B e s (p)
2 N~ 1

Hsextupole

Instead of multiplications , one performs a more general operation

(examples follow ..)



Another neat package with useful formulae:

With aconstant, f,g, harbitrary functions:
a: =0 — ed =1
f:ta=0 — el'a=a
o T [g.h] = [e f ‘g, € f '
o f:(g-h):e: f g - € L
and very important:

Mg(x) = e f: g(¥) = gle f: X) e.q. o f: 2 =

Mlgx) = (€ T)tgx = e Tigw (this is not



If we know the Hamiltonian H of a machine element then:
o Hiy — H:,
1=X%X and e P1 = P2

It transforms the variables xand p, but that is not all:

This is true for any function of xand p

l.e. any property of a particle or the entire beam:

e M f(x p) = fo(x, p) e.g: X2 X-p, X+pA.

> H and f can be complicated, any nonlinear contraption

> Used for: spin, synchrotron radiation, ..

Not possible with matrices ...



Examples: let’s try with moments

Assume a matrix M of the type:

M1 My o _ - f -
M = impliese.g.: X = € ' "Xg = My1-Xg + Mo P
Mp1  Mpo

described by a generator f, we have for the Lie transformation on
the moment:

e T2 =(e T'%2  (one of the useful formulae..)

therefore:
e '@ =(e T2 = (mux+ miop)?

e: f 'X2 = nﬁlxz + 2 M 1M 2XP + I’Tﬁzpz

Similar for x- pand p? ...



To summarize the moments:

X2 mfl 2m11m12 m%z
Xp = M1y Mo + Moy My2Nho ©
p* S s, 2Mp 1My ms,,

This is the well known transfer matrix for optical parameter

(moments are related to beam sizes etc. ..)

X2

Xp

S

S1



A (most) important feature - assume we have the map:
M = e

we can write it in a different form, one transformation for ea ch
power (factorization):

e:f: - e fz:e: fg:e: f4:_‘_

Here fy are power series of k-th order.

The miracle:
since all exponential maps are symplectic, one can truncate the
factorized map at any order K ... and it remains symplectic !!

This was not possible with Power Series !

We can get closer to the best solution while remaining symple ctic



Warm up exercise:

Try a Lie transformation with  f = —-L-p?/2 = L-H:



Warm up exercise:

Try a Lie transformation with  f = —-L-p?/2 = L-H:

. 2 .
e LP/25 - x_ }L: P’ X + }LZ(: P? )°X + ..
2 8 ~—
=-2p =0
= X+|_p
N Y . 1
e Lp/2.p = p—EL:pZ:p+..
N —
=0
= P

This is the transformation of a drift space of length L !



Drift space - for the enthusiastic

The exact Hamiltonian in two transverse dimensions and with a relative
momentum deviation & is (full Hamiltonian with ~ A(X, t) = 0):

H==/0+0P - B - p§ = faire = L-H

The exact map for a drift space is now (donot use xand X !):

new pX

X = X+L-
NCE R
P = Px
y™ = y+L D
V@02 - g2 - p
o =y

In 2D and with 6 # Oitis a complicated beast !!

In practice the map can (often) be simplified to the well known form.



Let’s try with polynomials:

For example:
el = 2

Looking at the effect of a drift space on X

we would get:

.1 2 .

-

.1 2 .
- (¢ 2P %) = X + 3¢Lp + AXLp° + Lp

with useful formula

Note:

.1 2 . .1 2 .
e 2MP e = (@ 2RI 2 = @ 4 2xip + L2

with useful formula

(=> evolution of x?in a drift space)



Getting warmer:

Try a Lie transformation with f = -L-k-x?/2 = L-H:

e Lk /2y x—%L:ka:x+O+..
=0
= X
C kw29 - 1
e TLKX/20y o ZLik@ip 4+ 0+ ..
2
=kLX
= p+ KkL-x

Transformation of a thin quadrupole of length L and strength k !!



Warm enough (example in 1D):

For:

L

L
f:__k2_ 2
2X

_ _E 2 2
=P = =Sl )

we write for the transformation (map):
fiy o g5k p)

efip = @ —5(kx? + p?) : 0

Remember:




from the useful formulae (for the operators):

f 2Ny — (_1)nkn|_2n . X - f s2n+ly (_1)n+1kn|_2n+1 p

we would get (rather straightforward with the above express lons,
and some intelligent sorting):

(it (et
L) | CarvRyE | > | okt |1
€’ x =D 2n)] X nzo @2n+ 1) VK

\ / \ /

: —L(kXZ 4 p2) : ~ o0 (_1)n( \/RL)Zn | B 0 (_1)n+l( \/RL)Zml | |
€’ b= ;( 2n)] P ; @n+ 1) vk

n=0




Looks familiar !

Starting from:
L
fquad = _i(kxz + pz)

we finally have obtained:

Cf 1 .
e Tix = cos(VKL)- x + — sin(VkL)- p
vk
e Tip = _+vksin(VkL)- x + cos (VKL)- p
=» Thick, focusing quadrupole, 1D !
Comes directly from the Hamiltonian from first principles, n 0 need

to assume a solution of an equation of motion ...



Monomials in X and p of orders nand m (x"p™)

o axip™:

gives for the map (for n # m):

. Nnw\Mm -
o ax'p™ iy

X-[1 + a(n — mx"tpm-1jmm-n

eZ ax" pm Zp = p- [1 + a(n _ m)xn—lpm—l]n/(n—m)

gives for the map (for n = m):
- ax'p" - _aan—l n-1
e XP .y = x.e P

o ax'p" o = p,eanx“‘lp”‘l



Another popular (moderately useful) example (pre-compute rera)...

The well known transport matrix between position 1 (with a1, 1, 41) and
position 2 (with  a», 82, uy) is:

\/ 5 €08 fup — 1) + aaSin(uz — 1)) VB2B1SIN (2 — 1)
——1,+/—gzlg12 SiN (uz — p1) + —(a,lxr;i) COSfup — 1) 4/ %(COS(@ — 1) — a2 SIiN(uz — u1))

For all 2x2 matrices we can always write f as a quadratic form *:
(we have a maximum of 3 independent variables)

f = (@ xX+b-xp+c-p)

How to get a, b, ¢ from the matrix ? see backup slides ...

*) Hamilton, who else ...



A special case ... (a useful one)
If the matrix represents one complete turn, it has a simpler f orm
cosu + asin(u) Bsinu
—y Sinu cosu — asin(u)
and f becomes the Courant-Snyder invariant (derivation in backu p slides):
ehi_ g1 (¥ + 2axp+pp?) 1 _ RTINS
The (linear) normal form transformation WaS'

S @) = (24 ) = 5

\_v_/
elipse circle
Written in our normal (simple) form, i.e. with the invariant Jx
‘h- - J defines - f. .
et =g Hr — et (the generator f; of the transformation)

Note: for a n-turn-matrix we have e —N M- Jx:



Physical Meaning:

The invariant Jy is directly related to the effective Hamiltonian

A particularly important transformation:

M‘]X — e _ﬂ‘]X ‘]X

Jx

The constant area of the ellipse is conservation of energy

For a 3D linear system we have for fs:

27?7
—N—

__ Hx,2 2y My n C o
fo = — 0@+ ) - 2P+ P - Sacs

— HxJdx — pydy —

h.

— a0

2



But note:

U 7 C C
fo = - EX(Xz * p>2<) - Ey(yz + p32/) - Eacéz = = pxdx — pydy - Eacéz
Is for the normal form, i.e. the circle.
For the ellipse and the variables (x, p, z, ¢) we split x and p into:
X=X +Ds6 and p=ps+ D¢
l.e. into a pure betatron and a synchrotron part. Then replac eitin:
f, = —%()fxz + 2aXp + Bp°) =—>

_ _H 2 , ’ N2 E 2

f, = 2[y(xﬂ + Do) + 2a(Xs + Do)(ps + D6) +5(ps + D'6)] + 2%6

Now you evaluate e®'x, ef'p, €'z e™§ and getthe well known 4 x4
matrix (and then it is also obvious what %acéz is doing ... )



Many machine elements

We want again a One-Turn-map for the ring (is now a Lie-transf
but with a single generator)

: et
Mring =g eff

> We must combine N machine elements m by applying one
transformation after the other *:

eNi_gMigM: oM (g FODOCell: = e 1oF ‘g Toig fon ¢

> Not restricted to matrices, i.e. linear elements ...

= Need a procedure to combine Lie transforms

“) Apply left to right (matrices right to left)

orm,



To combine/concatenate:

ehi_gfigg:

We can use the formula (Baker-Campbell-Hausdorff (BCH)):

h=f +g+3fd + Slf0%Ldl + Slo.lof]
+ f1ole f - lo.lo.[g. (g 1
— AALILILIE G + shlo [FIEIL.G + ..

or:
h=f +g+3:f:g+ 5:f2g+ 5:9:2f
+ g fug2f — gt
- =i fftg+ rgnflg+

Stay calm: Software packages exist =» LIEART, LIEMATH, LIEMAP, ...



Some simple tractable cases:

1. If f and gcommute (i.e. [f,g] = [g, f] = 0) then concatenation
IS (exact):
h=1f+g

2. 1f [f,g] = [g, f] = scalar then concatenation is (exact):

h:f+g+%[f,g]

Other simple cases exist .. (in fact: many of the terms are zer oR)



Example thin magnets, i.e. we neglect higher orders:

1. Hg is the Hamiltonian of a thin multipole of order K

2. Hp is the Hamiltonian of a drift space (length of magnet)

For the combination we can write (both are Hamiltonians):
Ho = Hc + Ho (= Hp + Hy)

or alternatively:

1 1
Hip = EHD + H¢ + EHD

What does this correspond to ??



A frequently applicable case:
e hi_g figg:

if one of them ( f or Q) is small, can truncate the series and get a
very useful formula.

Assume gis small comparedto f:

f: 9 _ oh: _ . . .
el el =-e¢ _exp[.f+<1_e_:f:)g.]

(How to use it: next example ...)



Some comments:

Applied to simple (linear) cases, the formalism looks
complicated and rather awkward !
Seems we need more effort to get the same result.
Doing concatenation by hand can drive you crazy !

Its power lies in the application to nonlinear problems :

Lie transformations generate transfer maps

They are always symplectic

They can be applied when the equation of motion is not
integrable !! (because they use only differentiation)

The formalism does not change when coupling or
nonlinearities are added

The effort does NOT increase with the complexity of the problem !



A (challenging) real life example: beam-beam interaction

Interaction Point

> Linear beam transport around the machine

> Beam-beam interaction localized and very nonlinear, canno t be
treated as "spectator” (ideally requires self-consistent treatment)

> But essential to understand single-particle stability
We need to know:
> How do particles behave in phase space ?

> Do we have an invariant (stable beam) and how to compute it



We look for invariants - start with single IP

Here in 1D, same treatment for higher dimensions

Linear transfer around the machine e fi: and beam-beam
interaction e B-
It is factorized into the two parts (see before):

e iig Bl _ gh:
with (see before):

f1 = —%(XZJFF))Z() = u- Jx

with the usual transformation to action - angle variables

X= +/2JB cosY, p:—,/%‘]sin‘P



Beam-Beam part B(x):

For a Gaussian beam we have for for the kick/force  b(x) of the beam-beam
interaction (derived from the fields, see e.qg. [WH1]):

for simplicity
N . & 2 =2 ~ = 2 =X
b(X) = - —(1-e2? —> b(x) = —(1 - e2~?
(9= Zrendy ) (9 ="( )
For the generator (potential of the beam-beam force = H) we get

(extremely non-linear due to exponential !):

B(X) = /O de’b(x’)

and written as Fourier series (will soon be clear why):

o0

- 1 [ _
B(¥)? = > c(DE™  with  cy(J) = o / d¥ B(x) e
0

N=—oo

) Note: x = +/2JBcos¥



We evaluate the expression (because the beam-beam part is mu
smaller than the rest of the machine, typically 107°):
: A e i - “udy
o g B _ ght _ exp[: +( Hx ) B:]
To do that we can now use (again) useful properties of Lie
operators
For each n-th component of B (i.e. o e™):
FTRNET AL ST L1 9C: 1y )ENY = gliny) - €N¥
where we have used:
with g(t udy:) = 1 = (Inu) = 1

ch



gives immediately for h:

no beam-beam 1
P, )
h= " —ud  + cn(Jd) -inu - . ¥
7 (; () i )

or written differently:

h=—-ud+ (Z Cn(J) ZSln( (In‘I’ +i F‘))

Note: we can use the identical procedure for other "lenses"



Some inspection - analysis of h

Sin? +i%)

= _,UJ + Z cn(J)

Ilnear

23|n(

On resonance:

_P
Q_n

H
2n
with ¢, # O:
sin(n%p) =sin(pr) =0 V integer p

and h diverges, find automatically all resonance conditions

Not a big deal, but can we also reproduce the distorted phase
space (in action angle variables) ?



Invariant from tracking: Poincaré section of one IP

X Qx=0.31 X Qx=0.31
" 127 ) ",
| I | - u 50-2
[ ] [ L .
“12.65 . _ 501
12.6 o - . Lt - - -
B R - S B T S R B
| u [ ]
12.55 9.9 |
| | | o o 49,8
15 -1 -05 05 1 15 Y+m2

=» Phase space (action-angle) coordinates plotted each turn
=P Shown for particle amplitudes of 5 o and 100

Without beam-beam: a straight line



Invariant versus tracking: one IP

Ix X =0.31 IX x-0.31

12. 7}
50. 2¢

7/ 2

=p  Shown for particle amplitudes of 5 o and 100
one can reproduce and analyse the motion ...

works also for more than one interaction point (see backup
slides), for LHC we treat up to 124 interactions per turn



First summary: Lie transforms and integrators

> We have powerful tools to describe nonlinear (and obviously
linear) elements

» They are always symplectic !

> Can be combined to form a ring (and therefore a nonlinear
One-Turn-Map)

> Tools and programs are available for their manipulation and
computation

> How do we analyse the maps ? =» Normal Forms



Normal forms nonlinear case

Normal form transformations can be generalized for nonline ar
maps. If M is our usual one-turn-map, we try to find a
transformation:

N = AMA™
> where N is a simple form (like the rotation we had before)

Of course we now do not have matrices, we use a Lie transform F
to describe the transform A:

simple form

N = e—.h. :ﬂMﬂ_lze'F'Me_'F'

The objects A and A~! describe the transformation between the

"Ideal" and "real" motion.

Note: the inverse of e F “isjust e - F 1



Use beam-beam example:

Horizontal Phase Space

Horizontal Phase Space

px

> Non-resonant contours can (maybe) transformed into a circl e’
> More complicated transformation  F required
> Transform to coordinates where map is a rotation (as before)

But: Rotation angle (i.e. phase advance) is amplitude depen dent:
¥ =» Y(J) Y > % > ¥

“) | have picked some of the amplitudes with closed contours



The transformation A = e - F - should be the transformation to
produce a simple form

"Simple” means: Remove the dependence on ¥y and ¥y
Once we know het¢(Jx, Jy) we can derive everything !

A analyses again the complexity of the motion, e.g. amplitude of
the wiggles etc.

Formalism and software tools exist to find F (see e.g. ChaoV or
E.Forest, M. Berz, J. Irwin, SSC-166)

[ SRy Chao, Lecture Notes on Topics in Accelerator Physics, 200 1 e i |



Normal forms - nonlinear case

Once we can write the map as (now example in 3D):
N =¢e : heff(Jx, Jy, 6) :

where heis depends only on  Jy, Jy, and ¢, then we have the tunes:

1 Ohets
QX(‘JX7 ‘Jya 6) - Z 8JX
1 Ohets

Jy, Jy, 0) = —
ACR 21 9y

and the change of path length:
ONet 1
Az = —
00

Particles with different  Jy, J, and 6 have different tunes:

=P Dependence on Jis amplitude detuning, dependence on
chromaticities !

o are the



How does hess lOOK like ?

The effective Hamiltonian can always be written (here to 3rd order) as:
1 2

and then tune depends on action Jand momentum deviation §:

detuning chromaticity

1 0hets 1 — e

QX(‘JX’ ‘JY’ 6) = o 63)( - o Uy + 2CxJdy + nyJy + Cy10 + Cx252
detuning chromaticity

1 Ohey 1 e

Qy(Jxs Jy, 0) = = Hy + 2CyyJy + Cydx + Cad + €0

2n 83, 2«



What's the meaning of it ?
> Hx, My linear phase advance or (- 2r)*tunes for rings
> %dc, C3, C4. linear and nonlinear "momentum compaction”
> Cx1, Cy1: first order chromaticities
> Cx2, Cy2: second order chromaticities

> Cxx» Cxy» Cyy: detuning with amplitude

The coefficients are the various aberrations of the optics

A few examples (in brief - no derivation)



Example 1: sextupole
A linear map (3D !) followed by a single (weak) sextupole:

2. A2
. PX+PY
M= e M+ pdy + %agcéz e k(x3 — 3xy?) + 2>(<1+r:53)/ _

we get for hets (see e.g. [AC1, EF]):

1

Then it follows:

1 Ohets 1
QI 3,0) = o~ ajx = o (1tx — 3K5xDY)
1 Ohets 1

Qy(\]x, Jy, 6) = A

_ D
27 93, o Wy + 3Ky D0)



Side note:

Before the Normal Form Transformation, the Hamiltonian h (1D) is:
3 sin(3¥ + %)  sin( + &)
h(L¥) = —ud-=uk(283)%2 2 - 22| = cong.



Example 2: octupole (1D - to emphasize important part)

Starting with: M =¢e “HI g lai gl g ks - 7 :

we get (without derivation, see [EF1, AW]):
heff

N

3 N\
. . :—J+—k'JZ: . .
M:e—Fe’u 83 eF

Ve

Note: the normalized map (our most simple map):

— - — . - p— — —
R=exp:—uJ+ =k3-J° : =» Q = ; (u+ -ksJ)

IS again a rotation in phase space, but the rotation angle (tu ne) now
depends linearly on the amplitude J

Particles with different amplitudes have different tunes == tune spread




Example 3: once more beam-beam ...

We had:

U (in? +i%)
h=— § | 2
ud + : C”(J)Zsin(%“)e

away from resonance, a normal form transformation takes awa
the angular dependence (see before) and we have only:

hett = —ud+ cp(J) = const. (for cp(J) see e.g. [AC1])

oh 8Co(J) N . & 2| i

AO = et _ o0GlJ) _ ' 1o 0a(SY. e 2
Q= 53 (47reomc2~y) g|tTe(3)e

lo Is the modified Bessel function

Different amplitudes J imply different tunes =% tune spread




Amplitude detuning

Detuning Detuning is amplitude dependent

Very nonlinear (unlike octupoles)

Largest effect for small amplitudes

For calculations : see proceedings

Advanced CAS (Trondheim, 2013)

AQ =

ohert  dco(d) N - € 2 J. -
9l 8



Tunes in tune grid, now in 2D: with and without beam-beam

working point two dimensions tune footprint for headon coll isions
0.311 0.311
031f X 1 0.31y 06) X
Qy Qy = —\(6,6)
0.309 , 0.309
(6,0)
0.308 - 0.308
0.307 ¢ 0.307f
0.306 | 0.306 - (0,0)
0.305 ‘ ‘ ‘ ‘ ‘ 0.305 ! L ] L L
0.275 0.276  0.277 0.278  0.279 0.28 0.281 0.275 0.276 0.277 0.278 0.279 0.28 0.281
Ox Ox
2 12
X,y —(X* +y°)
force for2D F=> by (xy) = o——- (1 - exp )
X +y 200

> Without beam-beam: all particles at the same tune X
> With beam-beam: all particles have a different tune !

Here for a single collision, LHC has many ...



It can be worse;:

0312 ‘ ‘ ‘ ‘ ‘ Beam — beam with offset beams

Qy
0311 . .
(so — called "Long Range” interactions)

031 r
Very different behaviour

0.309 r

Here calculated for 1 interaction

0275 0216 0277 028 0219 028 0281 (LHC has 120(!) of them)
Ox

0.308

Analysis of the hgs¢ allows relevant predictions and optimization, e.g.

W.Herr, D. Kaltchev, "Analysis of long range studies in the LHC", in ICFA
beam-beam workshop, CERN-2014-004



What about particle on resonance (beam-beam again):

Horizontal Phase Space Horizontal Phase Space

px
px

Particle "jumps" from one island to the next each turn, i.e. m ove fast,
big jumps

Stroboscopic analysis: use only every  nth turn (6th in this example)
== Particle moves slowly around the (now lonely) island

=P Can be analysed (very involved, for a simple example see [AC1 ])



Are nonlinear effects always bad ??

Horizontal Phase Space near resonance Horizontal Phase Space near resonance
T T T T T T T T
)
i
/ /

x YA x
oo QO\ xo
2 ’ 2
4 4
6 6
6 4 2 0 2 4 6 6 4 2 0 2 4 6
X X

> Left: close to 3rd order resonance with sextupole, particle S are
lost (or extracted)

> Right: close to 3rd order resonance with sextupole and
octupole

> Octupole has stabilizing effect due to strong detuning



Is it always bad ?7?
Landau Damping (see previous lecture):

> Octupole or space charge or beam-beam (!) introduce large
tune spread

> Tune spread within beam suppresses coherent beam
oscillations (Landau Damping)

> Tune spread from Normal Form analysis allows to compute the
Stability Diagram

> Stability Diagram determines optimal operating condition S,
maximum intensity, maximum allowed impedance

> lon (e.g. proton) storage rings cannot  work without Landau
Damping (e.g. LHC relies on it)



Assume:

Many nonlinear elements

M:e_::“‘]x:e: fg:e: f4:e: fB:e: fy

The map can be (most of the time) factorized

Since we get an analytical expression for
"correction element"

Examples:

Chromaticity correction with sextupoles

fx

Final focus linear collider

What about fy
What about fy

— fg ?

hef £, We can insert a



Putting it together
Conventional tools and methods fail for nonlinear (i.e. rea listic) systems

But we can provide a suitable framework for complex systems

> The main steps needed:

Get the (linear or nonlinear) map from the Hamiltonian

Lie maps are the natural extension from linear to nonlinear
dynamics

Always symplectic and allow analytical solutions

Normal Form analysis to obtain all relevant properties

> Recommendation

- Right from the start use an approach which leads automatica |ly
into the application of advanced concepts and methods

- Without Hamiltonians you can do linear dynamics, but compl etely
fail for nonlinear effects



Putting it simple

Object : linear non — linear
Propagator : Matrix Lie map
Procedure: multiplication CBH

Analysis : Normal form Normal form

Once you have the "effective Hamiltonian" of your
machine you get everything (at least a lot) ...



What about a complicated arrangement, e.g. one that can only be
simulated by a computer program ?

JL; Tracking Program

initial -
(black box) final
\rz

A tracking program takes some input, e.g. initial coordinat es, and
produces (after some time) an output, e.g. final coordinates :
(... any creative inspiration ?)

> Tracking particles with a computer code is the most reliable (and
flexible) method, but we cannot track every  particle

> Can we get an "effective Hamiltonian" (and therefore a Norma | Form)
for a huge and messy computer code ?



C=> answer tomorrow ...



