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Reminder: Dynamical systems (types)

> Linear dynamics,

Highly ordered motion, deterministic, predictable
well understood, provides important foundation

. . %0 g
Typical example (ideal pendulum): 2 - E@
> Nonlinear dynamics,
Disorder and irregularities, deterministic, unpredictab le, chaotic
motion
. . 0’0 g .
Typical example (nonlinear pendulum): =2 = Esm(@)
d?u au

Gravitational system: m— = — —
Y a2 WE



Glossary: Dynamical systems (classes)

- Continuous Iin time domain:

Typically described by differential equations

In general hard to solve, hard to analyse,

- Discrete in time domain;:

Typically described by difference equations, matrices, ma pS,
simulation programs, measurements (!)

Easier to extract relevant information, good tools exist
(Poincare sections, ...)

Visualization allows much better understanding than formu lae



If you do not believe me: how do these countours look like ?

General linear case (rather easy to see):

f(xy) = xX* + y* = const.

Simple example nonlinear case (a lot harder):

sin(y+2)  siny+3)
sin®@)  sin@)

f(xy) = —a-X—:—;-a-b-(ZCX)S/Z-

(a, b, c are constants)

= Const.



Some basic issues:

» Linear dynamics
- A closed solution often exists
- Well established methods for solving the equations

- Combination of two solutions is another solution

» Nonlinear dynamics
- A closed solution usually does not _ exist
- Traditional methods and analysis are problem dependent

- Combination of two solutions is not a solution



When can we not use a linear approach ?

A few examples relevant for accelerators and driving forces for
developments:

- In the presence of nonlinear fields (e.g. single particle ef fects,
non regular and chaotic motion, mostly non-integrable ) .n)

- Problems with "small" machines, fringe fields

- In the presence of more than one particle (e.g. self fields,
beam-beam ¥, ..))

Good news: enormous progress in the last 30 years, gradual
assimilation into our field:  reset your beam dynamics, time warp
from 1952 to 2014 summarized in 3 hours

“) worst case scenario for large machine/storage rings



A highly non-linear signal - can we get something out of it ?
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=» Modern tools (e.g. filtering, fractal analysis (in this case
wavelets, variogram, ...) can get substantial information

=» \What is the situation for beam dynamics ?



Worse: Linear cases well described using heuristic (but effective )

techniques, however insufficient to treat nonlinear system S
Consequence:

most introductory textbooks switch to "panic mode", nonlin ear dynamics
treated with some tinkered add-ons, often leading students to a dead end

This approach: show (at least some) basics of  state-of-the-art :

- Introduce concepts that handle complex nonlinear cases and linear
beam dynamics with the same general formalism

- Fully exploit computing capabilities

- Demonstrate features for "rings" (not a restriction for th e arguments):
but approximations used for linear systems most critical

Rely on many examples to illustrate the concepts and ideas, n ot on
mathematical rigour. For more details, see  [EF1]



Recommended Bibliography (and acknowledgement):

[AW] A. Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial
College Press, 2014.

[AC1] A. Chao, Lecture Notes on Topics in Accelerator Physics, SLAC, 2001.
[WH] W. Herr, Mathematical and Numerical Methods for Nonlinear Dynamics

in Proceedings of the CERN Accelerator School:  Advanced Accelerator Physics,
Trondheim, Norway, 18-29 August 2013, CERN-2014-009, pp. 1 57-198.

[EF1] E. Forest, Beam Dynamics - A New Attitude and Framework, Harwood
Academic Publishers, 1998.

[EF2] E. Forest, From Tracking Code to Analysis, Springer, 2016.

[AD] A. Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator

Physics
[MB] M. Berz, Modern Map Methods in Beam Physics, Academic Press, 1999.




Some general remarks:

Quite some overlap unavoidable, start slowly
Strictly follow conventions as defined in the syllabus
Demonstrated for transverse motion, but generally applica ble

To save typing, slides, space and time:
where possible | use 1D for demonstration of the concepts,
but everything valid for more dimensions without change of f ormalism

C—> no need to assume uncoupled motion



New concepts should only be introduced if they are useful !

==p Spend some time on the motivation !
==p Everyday applications instead of "textbook" examples ..

Lecture 1
- Key concepts, Linear and Nonlinear maps
- Analysis Methods - linear Normal Forms

- Symplectic integrators - vital tool for tracking codes

Lecture 2
- Lie operators and transformations

- Analysis Methods - nonlinear Normal Forms

Lecture 3
- Use of Truncated Power Series Algebra, TPSA



There was a machine at CERN where a beam was regularly
kept (1982, 1983) for =~ 1 week, (max. up to 3 weeks)

=» HERA and LHC are lousy mchines



For what follows one should (!) always use canonical *) variables !

In Cartesian coordinates: R = (X, Py, Y, Py, Z Pz,t)

If the energy is constant (i.e. Pz =const.), we use: (X, Px,Y,Py,Zt)

This system is rather inconvenient, what we want is the descr iption of the
particle in the neighbourhood of the reference orbit/traje ctory:

Ri = (X, Px,Y,Py,Z1)

which are considered now the deviations from the reference a nd which
are zero for a particle on the reference trajectory

Very important: it is the reference  not the design trajectory !

(so far it is a straight line along the Z-direction)

“) see lecture by Yannis



The independent variable is usually the time  t (Newton)

Problem: particles with different initial conditions gene rally require
different times to pass through an element. Better to measur e the
progress using a longitudinal coordinate Z.

We therefore replace time t by Z and eventually by s using:

s=Z+ct =» R = (X Px,Y,Py,s s isthe distance along reference path

Non-trivial: strictly speaking requires the Hamiltonian f ormalism

=P using s is Hamiltonian in disguise ...



For a "curved" trajectory, in general not circular , with a local radius of
curvature p(9) in the horizontal (X - Z plane), we transform to a new
coordinate system (XY, S) (co-moving frame) with (see e.g. [AW]):

S
X = (X+p) COS<—> - p (needed tomorrow)
P

Y =y

Z =  (x+p)sin (f’)
0

The new canonical momenta become:

S . (S
Py = chos<—> +stm<—>
P P

b = Py
ps = Pz (1 + 5) cos<§> — Px (1 + )—(> sin (§>
P p p P

finally for the transverse coordinates: r= (X pxY By




Some clarification (again):
F.A.Q.: Phase Space ( X, py,...) or Trace Space ( X, X,...)

It is not laziness nor stupidity to use one or the other:

- Beam dynamics is strictly correct  *) only with ( X, py, ...), but in general
guantities cannot be measured easily

- Beam dynamics with (X, X, ...) needs special precaution **), but
guantities much easier to measure

- Some guantities are different (e.g. emittance)

Be aware of that when you do the calculations ...

*) Using (X, X, ...) implies that a particle can receive an infinite amount of tra nsverse
momentum (e.g. kick from a magnet) without changing its tota | energy !
) Strictly speaking, not valid in the presence of electromagn etic fields ...



Usual starting point: Linear  dynamics in synchrotrons

Each element at position sacts as a source of forces, i.e. we must write
for the forces K =% K(s) (so long harmonic oscillator ..... )

To justify the Courant-Snyder ansatz:
linear (uncoupled !) optics in rings often introduced using 1D Hill type
equation where K(s) is assumed to be a periodic functionin s:

dZ);(Zs) + (ao = Zg a - cos(ms)> X(§)=0 and K(s+C) = K(9)

N — J ring...
K(s)

Solution of a Boundary Value Problem  (rings !) must be periodic too !

Not applicable in the general case (e.g. Linacs, Beamlines, FFAG,
Recirculators, ...), much better to treat it as an Initial Va _ lue Problem

*) What about 2D ??



As an Initial Value Problem - what follows immediately:

First.  For any linear, 1st order equation of the type
dx(s)

is - K(s) x(s) (and initial values at &)
the solution can always be written as (Floquet, Hamilton, e.g. [AD]):
A
X(s) = a-X(s) + b- X () X ab X
— =
X(s) = ¢c-X() + d-X() X’ cd X’

S

(now K(s) does not have to be periodic)
Second: The determinant of A is always 1

Third: No need for an "ansatz"

==P Much better to use matrices for our linear __ systems from the start
just have to know whatis A between the locations sand s



Real life: adding nonlinear elements (e.g. magnetic fields)

Nonlinear elements can be described by polynomials of highe r order:

2 o
O kX9 =D py(9ey

i,j>0

Electromagnetic fields can be described with the multipole e Xpansion:

By +iBy = » (bn+iag)(x+iy)™"
n=1

(in LHC needupto n = 20!

Equations of motions become (here horizontal plane):

d2x(s) _Fdxy,9)  ByxYy,9
12 + K(9)X(9s) = Vxp - 0

(Note: we have now coupling between the planesif 1#0and j#01!)



Some problems with this approach:

It is rather hopeless to describe a complicated system

It is totally hopeless to find a closed solution

Perturbation treatment required, but does not always give
satisfactory results and does not fully exploit potential o f
computing technigues

Many concepts (more or less) valid in 1D become incorrect for 2D,
leading to misconceptions and permanent damage ..

It's going DownHill: Different approach needed - invest in m ore
powerful tools ...



The most reliable tools to study realistic models (i.e. description of the
machine) are simulations (e.g. tracking codes)
a.k.a: No Computer, No (good) Beam

Particle Tracking:

.. a numerical solution of the (nonlinear) Initial Value Pro blem:

It is a "Integrator” of the equation of motion

Vast amount of tracking codes available, many analysis tool s available
(Examples: Lyapunov, Chirikov, chaos detection, frequenc y analysis, ...)

Dilemma:
Theoretical and computational tools exist side by side with out an
undertaking how they can be integrated

Ambition;
Find an approach to link simulations with theoretical analy sis, would allow
a better understanding of the physics in realistic machines

== Based on finite maps i.e. discrete systems




Recap: what is a map ? (remember first week university)

A map M performs an operation on e.g. coordinates:

Iy
initial

M (k)

w
P

The map M depends on system parameters

k (e.g. fields) and sends the

initial to the final coordinates. Maps are more general than matrices which

are restricted to linear systems.

What happens inside M is important only when it is constructed !!

There are different ways to do it ! (with the same result)



An every day example - a discrete system ...

i \*ﬁ% = r;* S

> Given initial conditions, the map would tell us where we end u p

> Most important to know trajectory of the arrow/beam at begin ning and
end of flight (or any position of interest)

> Not important (and useless in this example) to know exact tra jectory
as function of time  (speed is not the issue here ..)

> Overall timing not important (unless somebody shoots at you ..)



If it cannot be measured - it Is not worth the effort ...

> We are interested in the motion at (discrete !) fixed location S
where we can observe/measure it, not the full time evolution

> We should not invest in tools to get unnecessary and
irrelevant details carried by approximate methods

> Relevant information for us: is the beam stable and confined
and for how long, tune, beam size, «,p,y, closed orbit, particle
distribution, region of stability, a.k.a. Dynamical Apert ure (DA),

> Map approach is the obvious choice
Maps are used by simulation codes and can be analysed

Provides a link between simulations and analytical methods !



Look at the linear treatment first, then generalize to nonlin ear
theory

Linear optics was already treated in detall, | use the very ba sics to
show the idea and demonstrate the transition

The procedure and formalism is identical
For consistency with some (classical) textbooks and other | ectures
| sometimes (where not critical) use X, X',y, Y instead of X, px,Y, Py

=P Linear maps are usually written as matrices

=P Some simple (accelerator elements) examples



First example of a map: (often derived based on intuition)

A drift space (one dimension only) of length L, starting at position s and
endingat s+L

(AL, X(s+L)
X(6), X(9)
L
S s+L

The simplest description (1D, using X, X') is (should be in 3D of course):

X 1 L X X+ X -L

X ] 0 1 X X
S+ S

I
o
I

This is only an approximation, something may go badly wrong, see later ... !




Another example (often "derived" assuming the solution):

Focusing quadrupole of length

L and constant strength k; (k; > 0):

1 .
X _ cosl - vki) W -sin(L - vki) ] X
X ) \ ~VkosinL-vk) o cost - vki) X
similar for a defocusing quadrupole, i.e. for ki <O
. . d?x(s)
(it is the solution of i@ K(s) Xx(s) when K(s) = k; = const.)

However: fundamental for the map approach w—>

Can we get the maps:

1. For all elements, including nonlinear (e.g. sextupoles) where no

solution exists ?

2. From first principles (i.e. fields), without reference to t heir use ?
(a particle does not know what the element is (supposed) to do ?)



What's the point ?

> Primary Objects in an accelerator: e.g. magnets, drifts. Th ey know

nothing about the layout and their purpose, the formulation of the
maps must not depend on concepts like closed orbit, tune etc.

e.g. ALS (LBNL) had no dipoles , "bending magnets" were shifted
guadrupoles (non trivial change of coordinates) !

e.g. SPS (CERN) used sextupoles , to control tunes in the collider !

Coordinates: magnets as such best described using Cartesia n
coordinates, (a rectangular magnet contains nonlinear ter ms in some
other coordinate systems). A reasonable description of fri nge fields
only in Cartesian coordinates.

Traditional (in particular "advanced") dynamics treat the objects as
localized fluctuations  in an s-dependent function. Better: To study a
machine (synchrotron, beam line, linac, ...) , take the magn  ets as they
are and build a mathematical structure ("maps").




Next: more than one element in the machine

Mechanically, a ring or beam line is a finite collection of elements
Mathematically, a ring or beam line is a finite collection of maps

> Combine the maps of all elements together
> The new map represents a bigger part of the machine

> In a ring, the elements can be lumped at one location: we
obtain a "one-turn-map"

For simplicity try a combination of matrices first:
(matrices are the simplest form of a map, but limited to linea r
systems)



Starting from a position 55 and combining all matrices to get the matrix to
position S + L (shown for 1D only):

X X
= MN o MN—l ©c .. O M]_ o
. ~ 4 Xl
S + L M(so.L) S

X/

For a ring with circumference  C we get the One-Turn-Matrix (OTM) at s

X M1 Myo X
= O
X My My X
s +C . P 0
MoTwm
Without proof (trust me for a few minutes), the scalar produc t:
X X
- Motwm - = const. = J
X X
0 S0

IS a constant of the motion: invariant of the One-Turn-Map Motwm



Now:

X M1 Mo X ]
X Mp1 M2 X
0 0
always describes an ellipse (and Jis its area):
M1 - X2 + (m12 + m21) XX+ Mo - X’2 = J
true for any linear, iterative system, no assumptions or int uition

needed

Motm has all information what happens to the particles in one turn
Need analysis tools to extract this information



The key: matrices can be transformed into ~ Normal Forms

Starting with our One-Turn-Matrix M, we try *) to find a (invertible)
transformation A such that (called "similarity transformation"):

AMA?TL = R (or : AIRA = M)

The matrix R is:
> A "Normal Form", (or at least a very simplified form of the matr IX)

> Example (most important case): R becomes a pure rotation

The matrix R describes the same dynamics as M, but:
> All coordinates are transformed by ‘A

> This transformation A "analyses" the complexity of the motion, it
contains the structure of the phase space

“) Do. Ordonot! Thereisnotry! (itis always possible !)



Transformation to Normal Form (pictorially)

N\-C

M=AoRo AL or: R=ALoMoHA

Motion on an ellipse becomes motion on a circle (i.e. a rotati on):
R Is the "simple" part of the map - shape is "dumped" into A

How to get that (i.e. ‘A) ? Remember lectures on Linear Algebra
(Eigenvectors, Eigenvalues ...), see also backup slides



We find the two components of the original map:

VB(s0) 0 -
. () . and R = CoSfuy)  Sin(ux)

TBE VB ~Sinl) - €0st)

The Normal Form transformation gives plenty of information

> We have stable oscillations when the eigenvalues  uy (and uy etc.) are
real, (forget about the Tr(M) < 2 business). This concept is valid
also for 2D or any complicated systems, e.g. coherent motion with
6000x 6000matrices etc: many modes !

> Uy is the "tune" Q- 27 (now we can talk about phase advance )

> B, a, ... are the optical parameters and describe the ellipse
> The closed orbit (an invariant, identical coordinates afte rone turn!):

Motm © (X X)eo = (X X)eo



Note 1:

- The only assumption was that particles make more than one turn !!!
No ansatz or any kind of other folklore needed

- Matrices R and M are called similar (i.e. have the same eigenvalues)
(to be equivalent is not sufficient !)

Note 2:
in 2 dimensions the normal formisa4 X 4 matrix:
( COSfuy)  Sin(uy) 0 0 \
R _ —sSin(uy) COS(uy) 0 0 _
0 0 COSfy)  sin(uy) O B
\ 0 0 —sin(y) cosfuy) )

What if the two planes (oscillators) are linearly coupled ?



Assume a one-turn-matrix in 2D (4 X 4 matrix):

coupling!

A O A~ M n

O B m N

M,m,N,n are 2-by-2 block matrices.

In case of coupling: m=+ 0,n # 0 we can try to transform as:

M n 1
T = — VR,V
m N

with (same procedure as before, find the simple case):

A0 yI  C
R = and V =
0 B —Ct



What have we obtained ?

The matrix R’ is our simple rotation, now in 2D:

> A’ and B’ are the separate 1D rotations for the "normal modes"
(what Rhodri was talking about ..)
Frequencies in A’ and B’ are notthe onesin Aand B

> The matrix V transforms from the coordinates (X, X', v, Y') into
the "normal mode" coordinates  (w, W, V, V') via the expression:

(X, X,V,¥Y) =V(w,W,v,V)
> The matrix C contains the "coupling coefficients"
Coupling is included and handled in straightforward way wit h this
approach !

Correction: add skew quadrupoles and you get a parametric
dependence to "diagonalize"



A short comparison of the different approaches (not rigorou S)

> Classical perturbation method:
- Transform/expand solution  in terms of distortion parameter
- Analytical/symbolic expression for the solution

- Solution is approximate (eigenvalues inexact, not always useful)

> Map/Normal Form approach:

Transform Differential Equation  in terms of distortion parameter
(Normal Form) to get an equation that can be solved

No symbolic expression for the solution

Requires some approximation of the model

Solutions/eigenvalues are exact

Using the map/Normal Form approach we get an exact solution a t the
expense of giving up a closed analytical form for the solutio n

What to choose (assuming we have a good computer) ??



Can we learn something from celestial mechanics (beyond Hil ) ?
Not the same hardware, but both are interested in long term be haviour
== Numerical studies of Hamiltonian maps save the day ...

Motion of planets is chaotic, but is it certain that it is not a n artifact of the
numerical integration (finite number of bits on computers) ?

For a few Myr.  numerical integration gives reliable results (i.e. GPS

satellites are 0.k.)

For a few Gyr: new approach necessary: M.Duncan et.al.,
"The Long-Term behaviour of Orbits in the Solar System -
A Mapping Approach” , (1989)

Even if not exact, analytical maps do not  have truncation errors and can
give a qualitatively correct picture (the physics) for t —= oo!

For the very enthusiastic see also: Exact Integration using Integer Maps




TAKE
AN AY

—> Exact model but approximate solution can fabricate
non-existing features and conceal important
underlying physics (unwanted)

—> EXxact solution but approximate model may give
some inaccuracy, but get the physics right. Methods
exist to evaluate and improve the predictions
(preferred)



Impact on a key concept:

A central question in accelerator theory is to find, understa nd and
guantify invariants :

A property of a system that is unchanged, i.e. conserved as th e
system evolves (typical examples can be: energy, momentum,
angular momentum, charge, ..)

Given a map M we look for / with

Examples (energy):
Exact solution, approximate model —> energy may be slightly wrong
Exact model, approximate solution —> energy may not be conserved ...



More appropriate for studies: using Action - Angle variable S

Once the particles "travel” on a circle (i.e. always !), the m otion is better
described by the canonical variables action Jy and angle WV,:

X = \/Tx,gx COS(PX)
b= % (SINE,) + a COS(,)

Je = Ly + 2a5xpx + Bxp2)

> Angular position along the ring ¥ becomes the independent variable !

> The trajectory of a particle is now independent of the position S!

_ defines . : : -
> Constant Radius Vv2J ——— action J (invariant of motion )

) Never call that "emittance”, this is brain clobbering !



Interlude : If we have many particles, action is related to beam emittan ce
(this is valid also for sources, electrons, linacs and beam | ines, and
non-Gaussian beams, see also recap by Hermann !):

If we can measure < x>, < p2 > and < xpy > of a beam, and define a
beam emittance ¢, (see e.g. [AW, AC2], also CERN convention):

€ = < Jy>

this means:

& = V<X><PE> — < Xpy >2

We can use action-angle variables defined before as:
2J :
X = 2J,B; cos(,) Py = — ,B—X (sin(¥,) + ax cos(¥,))
X

and from above we get ( YV disappears by the averaging)

2 2
< X > = [8X€X7 < pr > - - axex, < pX > = ?/XEX



What about the amplitude function g ?

Using the above expression

and (see earlier lectures):

plugging that into Hill’'s equation, we get:

d? /By 1
d\s/zﬁ_+K(S)\/Fx_ﬁ -0

i.e. a nonlinear Differential Equation for B(s) !

No solution to this equation, always need numerical integra
—> requires use of maps (and computers) !

tion



What do nonlinearities do to our particles (in phase space) ?

Linear motion traces only circles  in normalized phase space

Horizontal Phase Space Horizontal Phase Space Horizontal Phase Space

Here a sextupole, away and close to a (13th order) resonance

Qualitatively and Quantitatively very different

We find circles distorted, islands, irregular motion, chao S

Transformation to a "simple" form not possible with the too 5
we know so far



Side note:

Horizontal Phase Space Horizontal Phase Space Horizontal Phase Space

O

The figure in the centre is described by (1D):

f(J¥Y) = —Iu-\]—g. 'k2‘(2,8\])3/2-

sin(3¥ + %) ~sin( +4)

: const.
sin(%) sin(5)

For 2D: no space on a slide, see e.g. [AC1]



Horizontal Phase Space Horizontal Phase Space

pXx

- Here a beam-beam interaction, many resonances (6th, 7th, 8
10th, 13th, 26th, ..) seen ...

- Some look like circles ! Can we transform them ?7?

- If yes: we can understand the system, let’s go ..

th,



The general philosophy (linear to nonlinear systems):
> Describe the elements by a linear map

> Combine all maps into a ring or beam line to get the linear one turn
matrix

> Normal form analysis of the linear one turn matrix will give all the
iInformation

U the hope [}
> Describe the elements by a nonlinear map

> Combine all maps into a ring or beam line to get the nonlinear one
turn map

> Normal form analysis of the nonlinear one turn map will give all the
information

all these require new techniques and methods ..



Various types of nonlinear maps

} Choice depends on the application, some examples:
- Taylor (Power) maps
- Lie transformations

- Truncated Power Series Algebra (TPSA), can also generate
maps from tracking

» Not all maps are allowed !

- Key concept: Symplecticity most relevant for rings !



A symplectic matrix M has to fulfil the condition:

(0 1 0 0)

M.S-M=s with s=| ~° 20
0 0 0 1

\ 0 0 -1 0

im M" = finite = requires det M= 1"

n—oo

1. M is area preserving (X, p) and Jis an invariant :

2. All eigenvalues of M are non-zero and it is invertible
3. Products of symplectic matrices are symplectic

) (Butnote: det M =1 alone is not_sufficient)



Introducing nonlinear elements (e.g. 2nd order)

Effect of a sextupole-like element with strength Ko is (normal
component):

[ x ) (<) 0 )

X' X —skol - (5, — ¥3)

y y 0
\v /., \v/

\ %kzL (X Ysy) )
=P Amplitudes appear as second power

S1

=» (Normally) Cannot be written as a matrix



We need something like (here for x-coordinate), i.e. Power Series .

matrix part (power 1)
N\

Xew = Ri1-X +Rp-X +Re1ry +Rxn-yY+

sextupole part (power 2)
o N

~

+T111 . X2 + T112 XX + T122 . X’2 + T113 - XY + T114 . X)/ + ...

octupole part (power 3)
- N

~

+U1111- X:3 + U1112- X2X’ + ...

and the equivalent for  Xo,» Ynew» Ynew @Nd higher orders

Note: for sextupoles and higher we have coupling terms xX"yMetc.



Normally , because one could write it as (1D, horizontal plane only):

[ x)

X/
X Riz Riz Tin Tiz Tz 5

_ o X
X’ . Ro1 Roo To11r To1o Tooo

XX
\ X )
Just a fake, looks good but does not win anything ..

Easier to implement as (here up to 3rd order):

6 6

ZRJkaJF ZZTMZkZW > UjumZazn for j =

k=1 1=1 k:Ilm:l

1..6



Explicit map (2D) for a sextupole with length L and strength  ko:

e =x+ld —ke (08 -1 + S00x - vy + 506 - vD)
% o= ke (50¢ -3+ 0 - yay) + 0 - yD)
Yo =yi+Ly; +k (L742X1Y1 + Ii_?;(xlyll +Y1X7) + Ii—i(x'l)"l))
Vs =V + e (Sxaya + 5 0yt +yax) + 506y

- Can this be used in this form ?

- This is not a matrix - what about the "symplectic" condition ?
How to test it ?

(if bored: find Tozs, Tazs ...)



=P |t is the associated Jacobian matrix 7 (all 1st order partial
derivatives) which must fulfil the symplecticity condition

0 9%
Ji = 0Z (e'g' I = 8y1)

J mustfulfil: g7.-S.-9=8

The coordinate zand the phase space dimension can be very high order:
(number of particles) - (number of degrees of freedom)

(LHC ~ 10%, in most of my examples n = 4)

L = Mz

... an interesting consequence —>



Transformation of the occupied phase space

g
L

Vo = dn22 = /
V2 Vi

0z
-2 an]_ = IM| an]_ = an]_ = Vi
07 Vi Vi

Under symplectic transformations  ==> phase space volume is
conserved !!

This is Liouville’s theorem (see also recap by Hermann) !!

(not to be mistaken for Poincare invariant: [ p-dg = const.)



There is also a problem, | said:

I
Q|
=&
N—

% 0%
Jik = 62‘{ (e'g-jxy—

J mustfulfil: g7.-S.-9=8

In general: Jix # const (i.e. depend on X, X3, ...)

Confusing ?? o.k. =» example sextupoles



Jik =

[ O

0Xq
X,
0X1
dY>
0Xq
Y,

— ks
— ks L
+ k2 7 X1y1 +
+ k2 %
0X%o 0X%o 0X%o
ox; 0y1  0y;
ox, 0x, 0%
ox; 0y1  0y;
oy, 0y, 0y
oxy  dyr 9y;
ay, oy, Y,
ox; 0yr  oy;

)

%(X1Yi +Y1Xp) + 5-2(%%))

Xays + b Oayy + yo4) + 5 06y,

/1 L

0O 1
O O
\O 0

3 4
L 0& - yD) + B0 —yav) + 5062 - D)

(

(z(X% - ¥2) + S 0ax, - yay) + 5 (2 - y’f))
(%

(

)

.



(508 -¥2) + 500 - yav) + 5502 - y)
(508 -¥8) + 500 —yay) + 502 - y)
Voo =vitlyr + ke (v + B0ays +yax) + 5506y0)

Yo =W rko (Sxayr + 5 (ay; +yax) + %(%%))

( 0% 0Xo 0Xo 0Xo \

o 0% Oy Oy, (1L 0 0}
0xX, 0X, OX, 0% 010 0
oxy O0xy 0y1 0y; ko=0

i = —

«le % ay2 ay2 ay2 0 0 1 L
0xXy O0X; oy1r oy;
a, 9y, 9y, 0Oy, \o 0 0 1 )

\ 0xy O0X; oy1r 0y; )

For k, # O coefficients depend on initial values, e.g.:

2 L3
— =1+k (le + 1—2x’1> ==p Power series are not symplectic, cannot be used



Directly using finite power series maps is ruled out ...

Position and momentum change inside  the magnet, i.e. the
symplecticity condition does not hold for all __initial conditions

Is this a dead end ? Do we have to wave the white flag ?

"Desperate disease requires dangerous remedy ..." —p>

In previous example: AS o L2, L3

Small error forsmall L, no errorfor L = 0!



Zero length elements:
are technically difficult, but much easier to use ...

Thick "magnet":
Length and Strength specified for computation

Example sextupole: L and ko

Thin "magnet":
let the length go to zero, but keep Field Integral

finite ( L and k, are not specified separately):

Example sextupole: L -k



Moving through thin elements (shown for 1D)

\\\éXS

The "momentum" X' receives an amplitude dependent
deflection, "kick" X — X + AX

=» AX = f(X) (polynomials of some - possibly high - order)

Always symplectic: no change of amplitude inside the
element, no dependence on initial angle




Can we approximate a thick element by one or more thin
element(s) ?

> Yes, when the length is small or does not matter

» Symplecticity o.k.
> What about accuracy, what have we lost ??

=P Demonstrate with some simple examples

(What follows is valid for all elements and provides the
tools !)



Check out a quadrupole:

» Start with "exact” *) map, compare with thin quadrupole

cosl - VK) % -sinL - VK)

Ms—>s+L —
~-vVK-sinL- VK)  cosL - VK)

> Thick to thin: make L smaller and smaller, this permits:

Taylor/power expansion (of sin and cos) in "small" length  L:

1 0 0 1 -- 0
M=LC. + Lt +L2 ] 2 |+
0 1 -K O 0 -5

thin lens in "linear lectures”

) . itisn't



» Keep up to firstorder _termin L (contribution with L is small)

0 1 0 1 0 1
M=L". + L -
0 1 -K 0
1 L 5
M= +O(L%)

-K-L 1

» Precise to first order O(L1)

» det M = (1 + KL?) # 1, non-symplectic !



A possible (dangerous ?) Remedy:
If we add a term —KL? the matrix becomes symplectic:

1 L
~K-L 1-KL?

—»> det M = (1 - KL? + KL?) =1

(we have not damaged the accuracy too much, the original
truncated matrix is inaccurate to order ~ O(L?) anyway ...)



Carry on:

Keep up to second order termin L

1 2
1-iKL L

+ O(L3)
-K-L 1-2KL?

M =

> Precise to second order O(L?)

> More accurate than before, but again not symplectic
Make it symplectic by adding —7KL?

1-ZKL? L—-zKL3 .,
M= + O(L>)
-K-L 1-32KL?

A symplectic model closer to ideal model ...



Looks like we made some arbitrary changes
(just trust me for a few minutes ..)

Are we silly or is there a physical picture behind the
approximations ?

No/Yes =» geometry of thin lens kicks ...

A thick element we should split into one or more thin elements
with drifts between them, e.g.:




Thick quadrupole => thin quadrupoles => "kicks"

K some options:

Represented by one or more "thin" lenses (kicks)

How many and where ?

Which is a good strategy ? =% accuracy and simplicity



Thick quadrupole ..

Go to thin quadrupoles = various options



Option 1

K L
|
_

L

One thin quadrupole "kick" and one drift combined

MkiCk I\/Idl’ift
1 0 1 L 1 L
Marift + kick = =
-K-L 1 0 1 ~K-L 1-KL?

Reminder: product of symplectic matrices is symplectic

Resembles our "symplectification™" of order O(1)



Option 2

K L

L/2 L/2

One thin quadrupole "kick" between two drifts of half length

1 3L 1 0 1 3L 1-3KL? L-3KL3
M: =
0 1 -K-L 1 0 1 -K-L  1-21KL?

Resembles more accurate "symplectification" of order O(2)

NI



Accuracy of thin lenses

One kick at the end (or beginning):

=» Error (inaccuracy) of second order  O(L?)

One kick in the centre:

=» Error (inaccuracy) of third order  O(L®)

It is very relevant how to apply thin lenses !

If you describe a quadrupole like :

—| = =
R O

The aim should be to be precise and fast (and simple to impleme

nt)



What about these options ?

K L/2 K L/2

— —

or.

K L

TL/3 ©  2L/3

=» Home exercises (optional, you need about 5 minutes)

=p  Are they symplectic ? (you have about 5 seconds)



How to go on - can we do better ?

» Try more slices, e.g. 3 kicks:
» How to put them ?

> Allow that they are at any positions
and have different strengths

» Find positions and strengths which
minimize the inaccuracy




» Try a model with 3 kicks:

cl c2 c3

dl d2 d3 d4

=P To get best accuracy (i.e. deviation from exact solution):
=P You have 7 free parameters to minimize deviation:
- Kicks c1, c2, c3 (allow different strength)

- Drifts d1, d2, d3, d4 (allow any position of the kicks)



The optimization gives us: (for the derivation, e.g. [AC1])

| a=*K L a=K L |
_a-=*L | |
! | | a L !
I I I l
I bsL | b=L I
BeK L
with:
_1o1 o 1-2R
Y T otam PT T 2o B
1 a1
¥ =5 _ouz p=-2Y "5 _ 013

We have a O(4) integrator ... (without proof)



Resulting matrix M (from 7 matrices: 4 drifts, 3 kicks) becomes:

[(1-3KRL2+ LKLY L B3+ 205

1/3 ° 1/3 242212
21/ 6| 6 2 6| 7
+48(2—21/3)3k . 96(2—21/3)4k .
M(O4) =
—k2L + gkiL3 1-2K2L% + HkAL?
21/3 615 21/3 6] 6
\ +24(2—21/3)2k . + 48(2—21/3)3k . )

For the ambitious - Prove that it is symplectic

(MATHEMATICA® is really a good friend ...)

Why all that ? (answer in a few minutes)



Symplectic integration
What we do isa Symplectic Integration

From a lower order integration scheme (1 kick), construct
higher order scheme:

1 kick 3 kicks ? kicks
~ N A~ N A~ N
02 = 04 = 0B =..

Formally (for the formulation of Sk see later):

From a 2nd order scheme (1 kick) S, we construct a 4th order
scheme (3 kicks = 3 x 1 kick) like:

S4 = Sy(X1) 0 Sp(Xg) 0 So(X1) with scaling coefficients:

213 !
2_213 T o

on



Can be considered an iterative scheme (see e.g.
H. Yoshida, 1990, E. Forest, 1998):.

If Sox is a symmetric integrator of order 2k, then:

Sori2 = Sak(X1) o Sok(Xo) © Sak(X1)

_ 2k+%/§ 1
with: X = X| =
5 _ 2k+\1/§ 9 _ 2k+\1/§

Higher order integrators can be obtained in a similar way:
Sk = Sasz = Saa = Syue =

Stop at the desired order, rather simple to implement on a
computer (with paper and pencil makes you a lunatic)



Example: From a 4th order to 6th order

Se = Sa(X1) 0 Sa(Xo) © Sa(x1)

Replace each kick of a 4th order integrator by a 4th order
integrator, using the same scaling factors

We get 3 times 4th order with 3 kicks each, we have the 9 kick,
6th order integrator mentioned earlier



Integrator of order2 — 4

> Replace kick by 4th order integrator



Integrator of order 4 — 6 - step by step

> Replace each kick by 4th order integrator



Integrator of order 4 — 6 - step by step

> Replace each kick by 4th order integrator



Integrator of order 4 — 6 - step by step

> Replace each kick by 4th order integrator, requires 9 kicks

> We have 3 interleaved 4th order integrators (compute M(06)),
repeat the procedure to go to higher orders



Some remarks:

We have used a linear map (quadrupole) to demonstrate the
Integration

Can that be applied for other maps (solenoids, higher order,
nonlinear maps) ?

> Yes !

} We get the same integrators ! (i.e. same constants)

} Proof and systematic (and easy) extension in the form of
Lie operators (see later)

=» Without proof: best possible  accuracy for thin lenses
(be smart: a scheme with more  thin lenses may be less
precise !)




To remember:

Given a truncated Power map we construct a symplectic map
whose lower order terms agree with the exact non-symplectic

Power expansion and whose higher order (neglected) terms ar e
small.

Key gquestion:

How can we say that the neglected terms do not exceed a tolerab le
limit ?



What isthe point ???

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

0.0003 | Exact map
0.0002
0.0001
5 ot

-0.0001

-0.0002

-0.0003

-0.0004
-2

1
1.5

o
ol
a1
'_\

1 1 1
-1.5 -1 -0.5

Phase space dllipse - quadrupole exact solution



Quadr upole non-symplectic solution L*

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

0.0003  Exact map and non-symplectic map

0.0002

0.0001

pX

-0.0001 | -
-0.0002 | .

-0.0003 | S5 .

-0.0004
-2

1
1.5 2

o
ol
a
'_\

1 1 1
-1.5 -1 -0.5

Non-symplecticity: particles spiral towards outside, artifact of
approximation



Quadrupole symplectic O(L*) solution

0.0004

Exact quadrupole versus thin lens approximation

0.0003 | Exact map and symplectic map O(1) R
0.0002

0.0001

)

-0.0001

-0.0002

-0.0003

T
|

-0.0004
-2

1
1.5

o
ol
a1
'_\

1 1 1
-1.5 -1 -0.5

symplectic, solution order O(L1), but visibleinaccuracy



Quadrupole symplectic O(L?) solution

0.0004

0.0003

0.0002

0.0001

)

-0.0001

-0.0002

-0.0003

-0.0004
-2

Exact quadrupole versus thin lens approximation

Exact map and symplectic map O(2) o

.....

1
1.5

o
ol
a1
'_\

1 1 1
-1.5 -1 -0.5

symplectic, solution order O(L?), but good accur acy




Quantitatively: Accuracy of (nonlinear) thin lenses

> Nonlinear elements are usually thin (thinner than dipoles,
guadrupoles ...)

- Dipoles: =~ 14.3m
- Quadrupole: =2-5m
- Sextupoles, Octupoles: =~ 0.30m

- Decapole: =~ 0.07m

Assume a kick from a general function of X
deflection: AX = f(X)

e.g. quadrupole f(x) = k- x!
e.g. sextupole f(X) = k- x?

e.g. octupole f(x) = k- x®

==p Can try our simplest thin lens approximation O(2) first ...



Drift - Kick - Drift

Ax = f(x)
-— /2 —=——L/2 ——
X 1 L
1.Step = 2 o X
X’ 0O 1 !
Sl+|_/2 XO Sl
2 St X X
olep = =
X X + AX X + f(X)
$1+L/2 $1+L/2 $1+L/2
1 5 X
3.5tep = o
X’ 0O 1 X’

s1+L S1+L/2



Putting it together and written in explicit form:

L
XL | [ Xt 35 (+X(L)
O )\ %L f00+ 5%
/ L2 L /
S R R RPN (O

A\ - -
'

(using: f(z+Az) ~ (2 + /(2 - Az forsmall A2z

L2 L3

= (XD xXx+bl-xg + o T00) + 4 T(x0)X

It is symplectic (... and time reversible) !!



Comparison:

the (exact, but non-symplectic) Taylor expansion of f(X) gives:
L2 L3
X(L) = X0+ XL+ ?f(XO) + Ef’(xo)x(’) + ...

the (approximate, but symplectic) algorithm gives:

|2 L3
X(L) = xo+x6L+§f(xo)+Zf’(xo)x{)+...

» Errors are O(L3) (is correctto O(L?) by construction)

Errors are O(L°) for the O(L*) (3 kicks) scheme

> For small L acceptable, and symplectic

L ecapo
ecapole _
- P ~ 107
dipole

just for illustration :



An application, a (1D) sextupole with:
f(x) = k-x

using the thin lens approximation gives:

1
“kxoX4L3
3 XoXg

i,

Va

- <
x(L) = xo+x{)L+}kx(2)L2+—kxox6L3+

X(L) = x5+ kxgL + kxoxgL? + kxO

Map for thick sextupole of length L in thin lens approximation,
accurate to O(L?)



Short summary: thin lens computations
- Are exactly symplectic
- Simulations based on thin lenses fast and efficient

successfully applied to large (storage) rings (e.g. SPS,
Tevatron, LHC, LEP, ...)

But do not represent an exact model of the accelerator

If used blindly: .. an exact solution to a wrong problem

For (large) accelerators the thin lenses are usually a good
approximation and tool (because we do not have to go to very
high-order integrators to get proper results).



Rap sheet - part 1

> Problems: Linear Beam Dynamics:

- Many effects can be understood using linear approximation S

- Methods not applicable to complex (nonlinear) machines

> Problems: Nonlinear Beam Dynamics:

- Strong impact on beam dynamics

- Traditional methods (may) give unsatisfactory/unreliab le results

> Initial Probation measures:

- Concept of linear and nonlinear maps allow proper integrat ion and
extension, Analysis with e.g. "Normal Forms"

- Symplectic integration techniques, particle tracking

> Progressive Probation measures =% next lectures




