

Instabilities Part I: Introduction – multiparticle systems, macroparticle models and wake functions

Giovanni Rumolo and Kevin Li

Outline

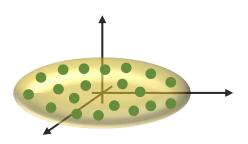
We will look conceptually into **collective effects** and their **impact on beams**. We will first introduce **multiparticle systems** and investigate **multiparticle effects**. This will be important to effectively describe collective effects. We will then introduce the concept of **wake fields** as one very important collective effect.

- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - · Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

 We will study the dynamics of charged particle beams in a particle accelerator environment, taking into account the beam self-induced electromagnetic fields, i.e. not only the impact of the machine onto the beam but also the impact of the beam onto the machine.

- A charged particle beam is generally described as a multiparticle system via the generalized coordinates and canonically conjugate momenta of all of its particles

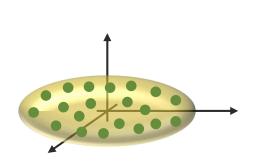
 this makes up a distribution in the 6-dimensional beam phase space which can be described by a particle distribution function.
- Hence, we will study the **evolution of the beam phase space** (or particle distribution function):

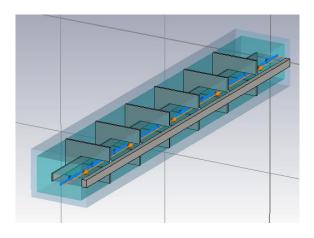


$$\frac{\partial}{\partial s} \boldsymbol{\psi} (x, x', y, y', z, \delta, s)$$

- A charged particle beam is generally described as a multiparticle system via the generalized coordinates and canonically conjugate momenta of all of its particles

 this makes up a distribution in the 6-dimensional beam phase space which can be described by a particle distribution function.
- Hence, we will study the **evolution of the beam phase space** (or particle distribution function):
 - Optics defined by the machine lattice provides the external force fields (magnets, electrostatic fields, RF fields), e.g. for guidance and focusing
 - Collective effects add to this distribution dependent force fields (space charge, wake fields)





$$\frac{\partial}{\partial s} \boldsymbol{\psi} (x, x', y, y', z, \delta, s) \propto f \left(F_{\text{extern}} + F_{\text{coll}} (\boldsymbol{\psi}) \right)$$

dB(may V(m)

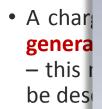
rticles

:h can

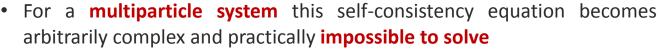
article

agnets,

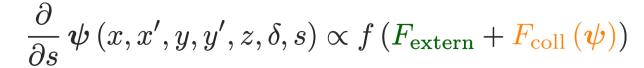
wake



- Hence, distribu
 - o Opt elec
 - o Coll field

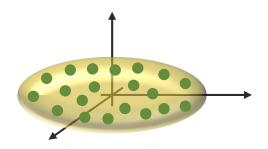


Obtaining the multiparticle dynamics very often requires computer simulation codes



What is a beam instability?

• A beam becomes unstable when a **moment of its distribution** exhibits an **exponential growth** (e.g. mean positions, standard deviations, etc.), resulting into beam loss or emittance growth!

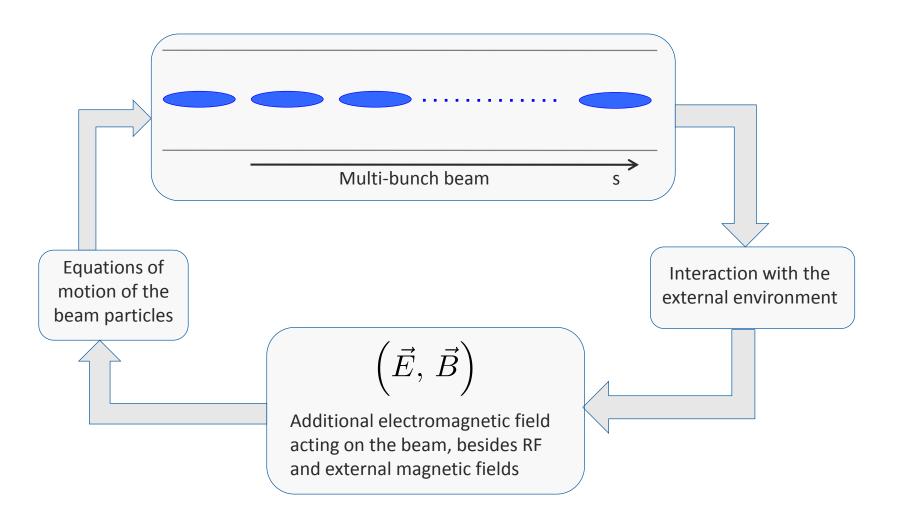


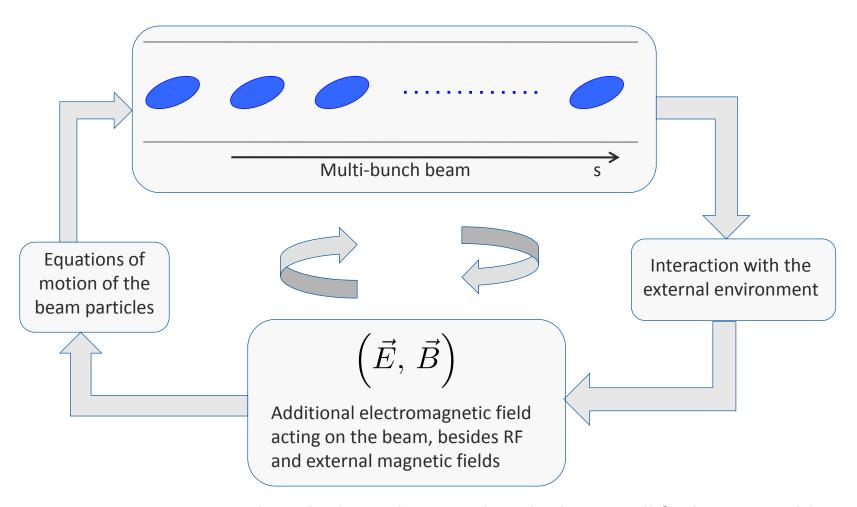
$$N = \int \psi(x, x', y, y', z, \delta) \, dx dx' dy dy' dz d\delta$$

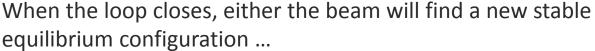
$$\langle x \rangle = \frac{1}{N} \int x \cdot \psi(x, x', y, y', z, \delta) \, dx dx' dy dy' dz d\delta$$

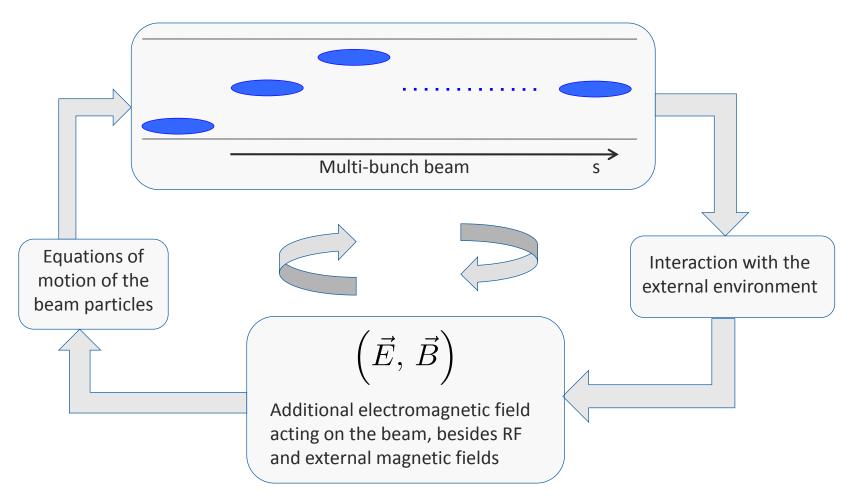
$$\sigma_x^2 = \frac{1}{N} \int (x - \langle x \rangle)^2 \cdot \psi(x, x', y, y', z, \delta) \, dx dx' dy dy' dz d\delta$$

and similar definitions for $\langle y \rangle, \sigma_y, \langle z \rangle, \sigma_z$

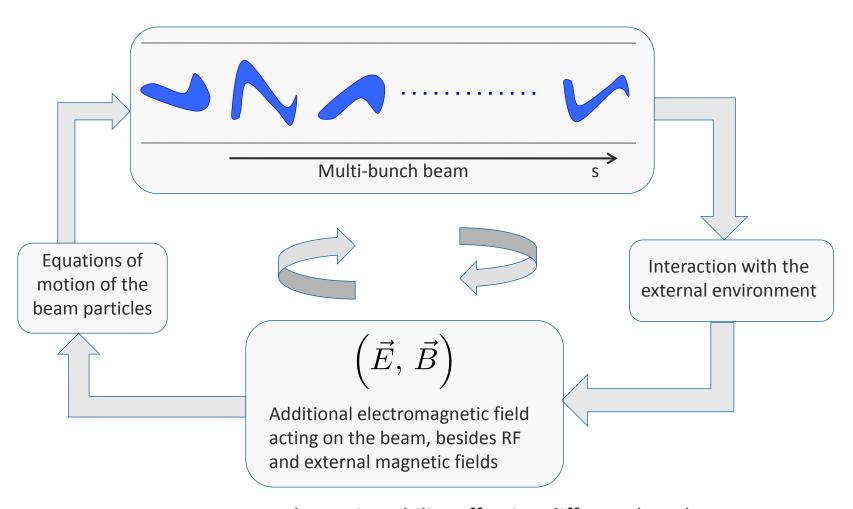




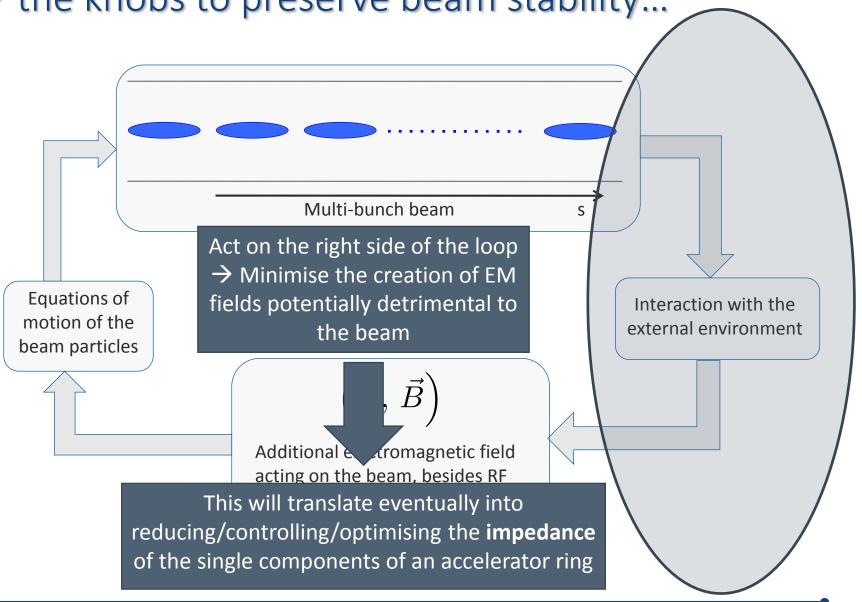




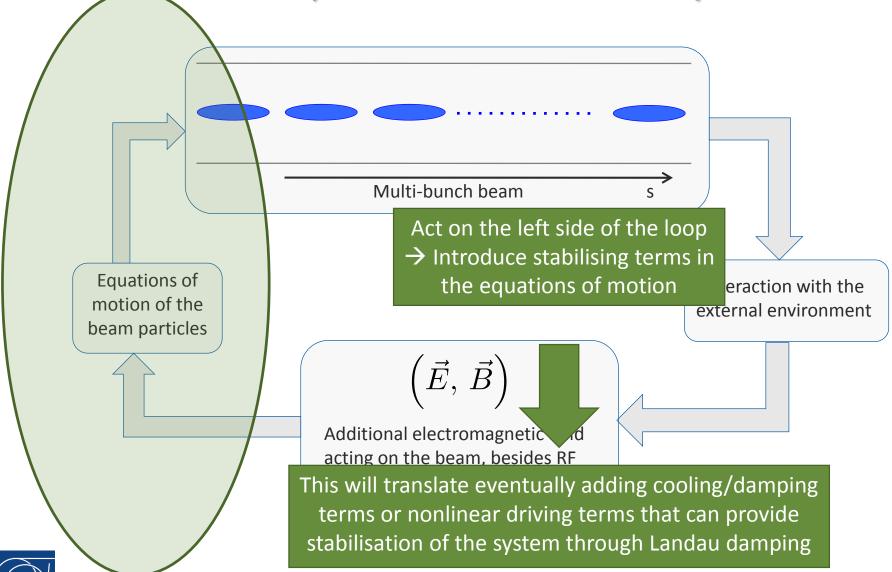
... or it might develop an instability along the bunch train ...



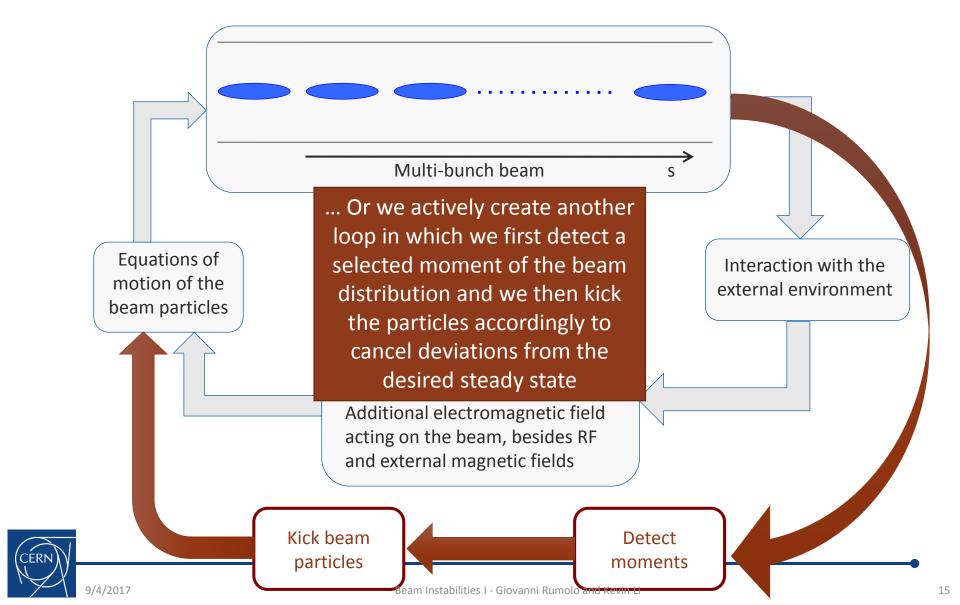
... or also an instability affecting different bunches independently of each other



> the knobs to preserve beam stability...



→ the knobs to preserve beam stability...



 Formally, instead of investigating the full set of equations for a multiparticle system, we typically instead describe the latter by a single particle distribution function:

where

$$\psi = \psi(x, x', y, y', z, \delta, s)$$

$$dN(s) = \psi(x, x', y, y', z, \delta, s) dxdx'dydy'dzd\delta$$

 The accelerator environment constitutes a Hamiltonian system for which:

$$\frac{\partial x}{\partial s} = \frac{\partial H}{\partial x'}, \quad \frac{\partial x'}{\partial s} = -\frac{\partial H}{\partial x}, \quad \frac{d}{ds}\psi = 0$$
 Vlasov equation

It follows for the evolution of this particle distribution function:

$$\frac{d}{ds}\psi = \frac{\partial\psi}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial\psi}{\partial x}\frac{\partial x'}{\partial s} + \frac{\partial}{\partial s}\psi$$

$$= \underbrace{\frac{\partial\psi}{\partial x}\frac{\partial H}{\partial x'} - \frac{\partial\psi}{\partial x}\frac{\partial H}{\partial x}}_{} + \frac{\partial}{\partial s}\psi = 0$$

 $[\psi,H]$ Poisson bracket

06/09/2017

• The evolution of a multiparticle system is given by the evolution of its particle distribution function

$$rac{\partial}{\partial s} oldsymbol{\psi} = [oldsymbol{H}, oldsymbol{\psi}]$$

 With the Hamiltonian composed of an external and a collective part, and the particle distribution function decomposed into an unperturbed part and a small perturbation one can write

$$rac{\partial}{\partial s} oldsymbol{\psi} = \left[oldsymbol{H_0} + oldsymbol{H_1}, oldsymbol{\psi_0} + oldsymbol{\psi_1}
ight]$$

This becomes to first order

$$\underbrace{\left[\frac{\partial}{\partial s}\psi_{\mathbf{1}}\right]}_{\text{Linearization in }\psi_{\mathbf{1}}: \quad \dots \propto \left[\hat{\mathbf{\Lambda}}\psi_{\mathbf{1}} = -i\frac{\Omega}{\beta c}\psi_{\mathbf{1}}\right]}_{\text{Linearization in }\psi_{\mathbf{1}}: \quad \dots \propto \left[\hat{\mathbf{\Lambda}}\psi_{\mathbf{1}} = -i\frac{\Omega}{\beta c}\psi_{\mathbf{1}}\right]$$

 The evolution of a multiparticle system is given by the evolution of its particle distribution function

$$rac{\partial}{\partial s} oldsymbol{\psi} = [oldsymbol{H}, oldsymbol{\psi}]$$

We call these distinct eigenvalues ψ_1 a bunch or a beam mode.

The mode and thus for example also an instability is fully characterized by a single number:

the complex tune shift Ω

Linearization
$$\psi_1$$
: $\dots \propto \hat{\Lambda}\psi_1 = -i\frac{\Omega}{\beta c}\psi_1$

$$\implies \psi_{\mathbf{1}}(s) = \exp\left(-i\frac{\Omega}{\beta c}s\right)\psi_{\mathbf{1}}(0)$$

We are looking for the EV of the evolution
→ becomes an EV problem!

• The evolution of a multiparticle system is given by the evolution of its particle distribution function

$$\frac{\partial}{\partial s} \psi = [\boldsymbol{H}, \psi]$$

Remark:

ullet The stationary distribution ψ_0 is the distribution where

$$\frac{\partial}{\partial s} \psi_0 = [\boldsymbol{H_0}, \psi_0] = 0$$

• In particular, a distribution is always stationary if

$$\psi_0 = \psi_0(H_0), \text{ as } [H_0, \psi_0(H_0)] = 0$$

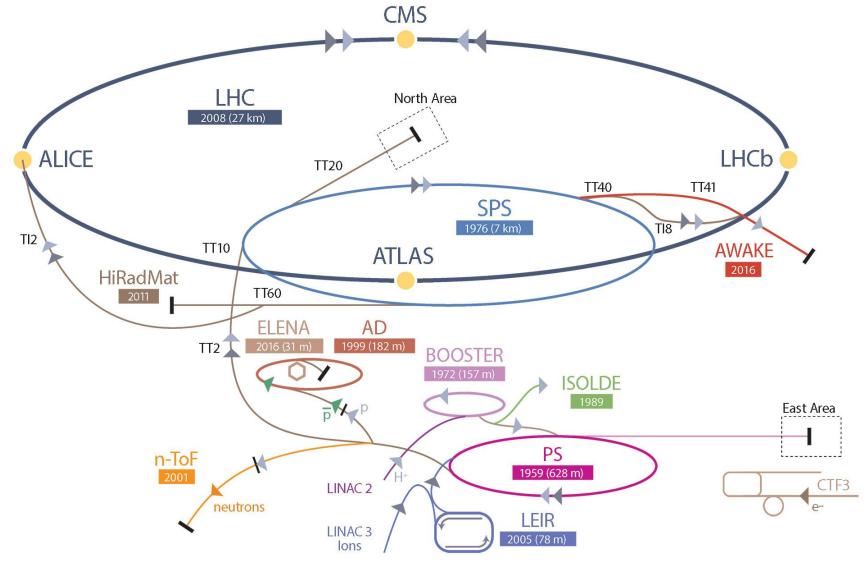
Solving for or finding the stationary solution for a given H_0 (which in fact represents the machine ,potential') will be later referred to as **matching**.

ution

Why worry about beam instabilities?

- Why study beam instabilities?
 - The onset of a beam instability usually determines the maximum beam intensity that a machine can store/accelerate (performance limitation)
 - Understanding the type of instability limiting the performance, and its underlying mechanism, is essential because it:
 - Allows identifying the source and possible measures to mitigate/suppress the effect
 - Allows dimensioning an active feedback system to prevent the instability

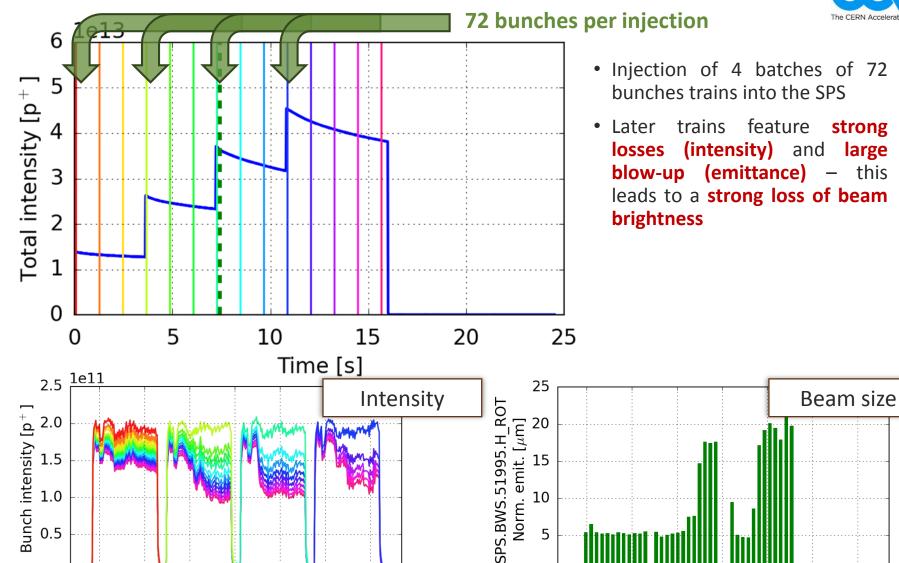
The CERN accelerator complex



Coupled bunch instability in the SPS

25 ns slot

strong



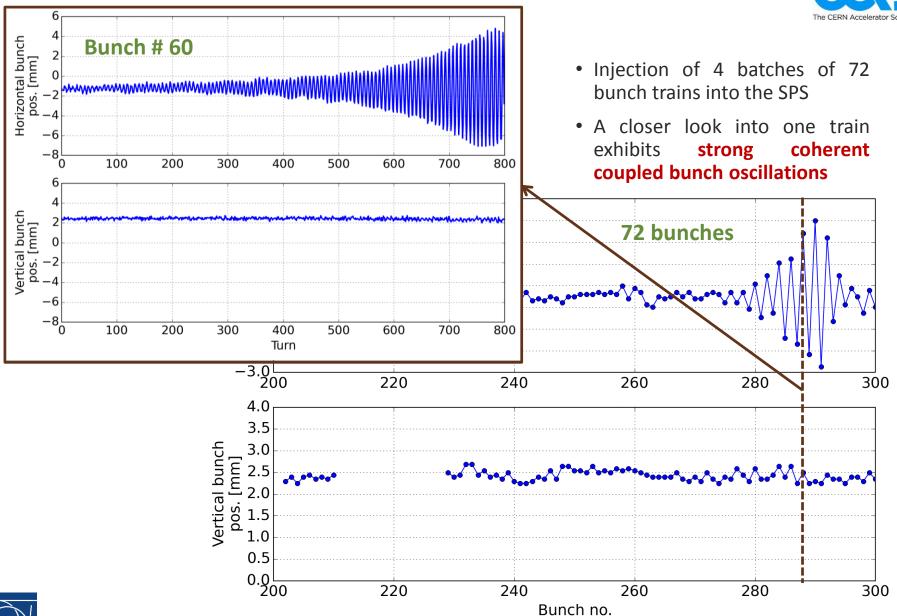
1.0

0.5

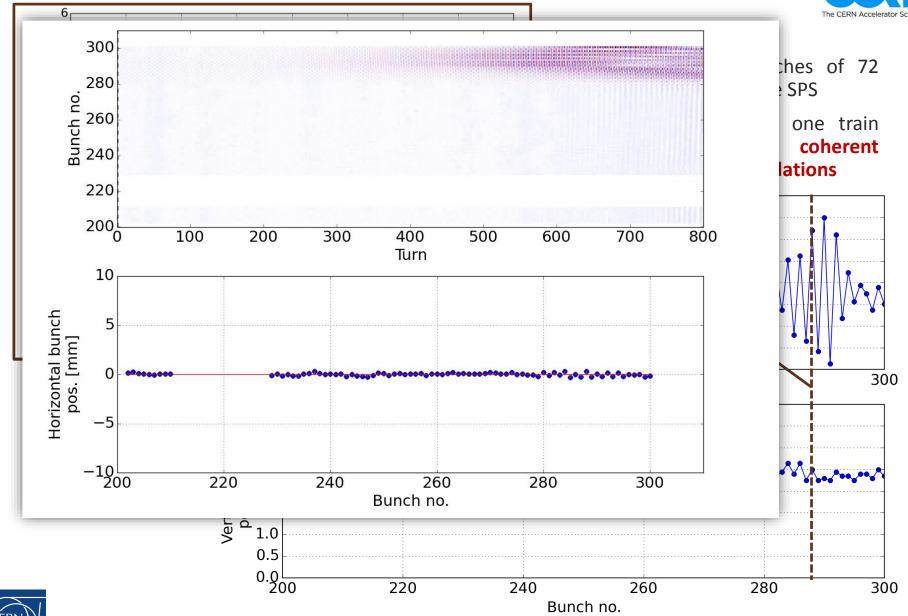
0.0

25 ns slot

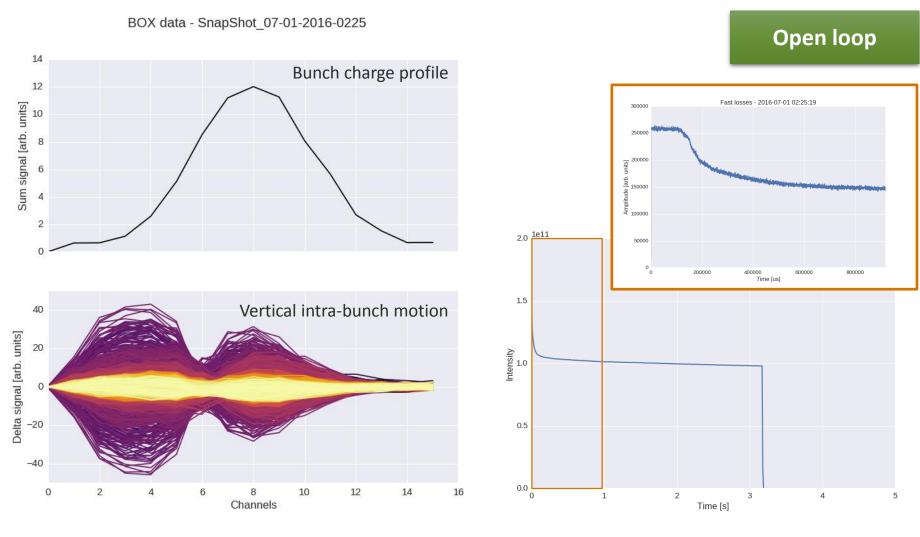
Coupled bunch instability in the SPS



Coupled bunch instability in the SPS

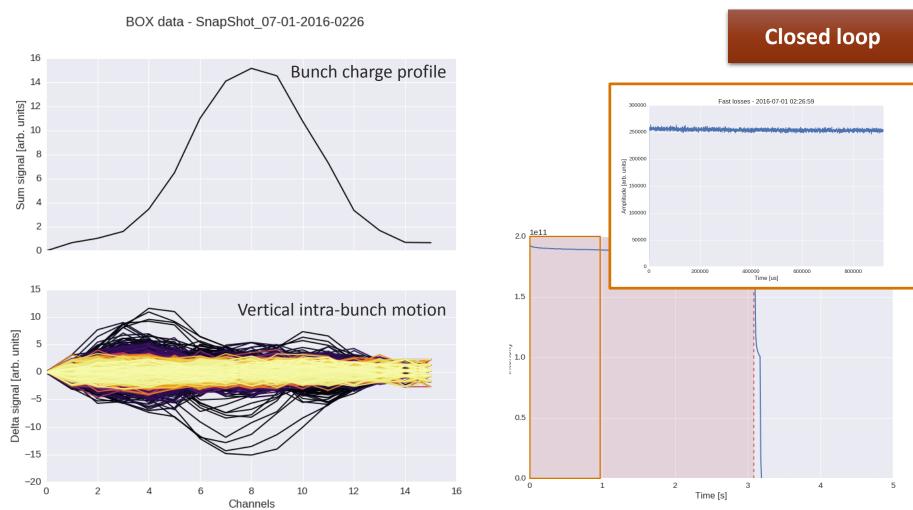


Single bunch instability in the SPS



 Loss of more than 30% of the bunch intensity due to a slow transverse mode coupling instability (TMCI).

Single bunch instability in the SPS

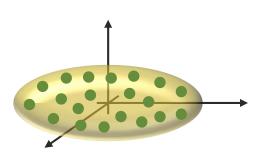


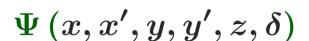
• Loss of more than 30% of the bunch intensity due to a **slow transverse mode coupling instability (TMCI)** → can be mitigated by a **wideband feedback system**.

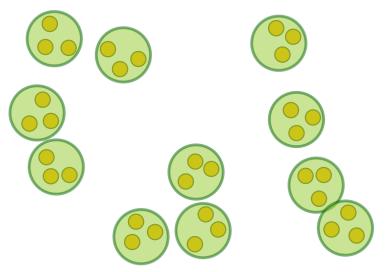
- We have seen the difference between external forces and self-induced forces which lead to collective effects.
- We have seen schematically how these collective effects can induce coherent beam instabilities and some knobs to avoid them.
- We have seen examples of beam instabilities and have understood how they can lead to serious performance limitations.
- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - · Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

The particle description

- As seen earlier, and especially for the analytical treatment, we can represent a charged particle beam via a particle distribution function.
- In computer simulations, a charged particle beam is still represented as a multiparticle system. However, to be compatible with computational resources, we need to rely on macroparticle models.
- A macroparticle is a numerical representation of a cluster of neighbouring physical particles.
- Thus, instead of solving the system for the N ($^{\sim}10^{11}$) physical particles one can significantly reduce the number of degrees of freedom to N_{MP} ($^{\sim}10^{6}$). At the same time one must be aware that this increases of the granularity of the system which gives rise to numerical noise.



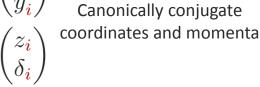


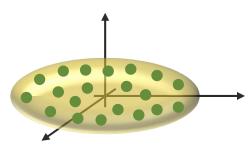


Macroparticle representation of the beam

 Macroparticle models permit a seamless mapping of realistic systems into a computational environment – they are fairly easy to implement

Beam:





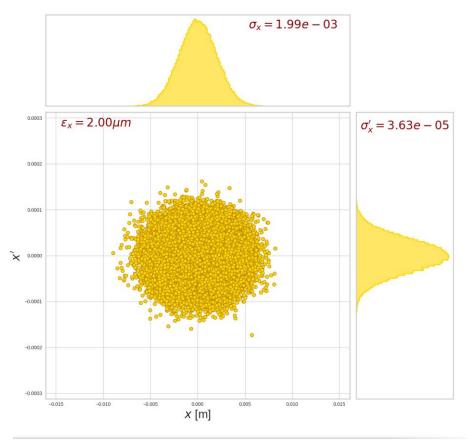
$$\Psi\left(x,x',y,y',z,\delta\right)$$

<pre>In [6]: df = pd.DataFrame(bunch.get_coords_n_momenta_dict()) df</pre>	
--	--

Out[6]:

	dp	x	хр	у	ур	z
0	0.001590	0.000566	-2.285393e-05	-0.001980	4.283152e-06	0.353427
1	0.001978	0.000370	1.954404e-05	-0.000359	5.543904e-05	0.159670
2	0.003492	-0.000829	-2.773707e-05	0.000291	6.627340e-05	-0.251489
3	0.002195	-0.001668	-2.317633e-05	0.001878	-1.870926e-05	-0.038597
4	0.000572	0.000990	5.493907e-05	0.000152	-1.951051e-05	0.492968
5	-0.000418	0.001088	4.778027e-05	0.003320	-7.716856e-06	0.415582
6	-0.000114	-0.000194	1.065400e-05	0.001798	-4.984276e-07	-0.349064
7	0.001100	-0.001257	-6.873217e-05	-0.002374	5.657645e-06	-0.023157
8	0.002706	0.005351	-1.867898e-07	-0.000765	3.012523e-05	-0.291095
9	0.003508	0.000499	1.865768e-05	-0.001032	-5.363820e-05	0.211726
10	-0.001711	-0.003168	4.372560e-05	-0.001933	-2.151020e-05	-0.145358
11	-0.002150	-0.000565	-1.853825e-05	-0.003895	-6.192450e-06	0.072499
12	0.002059	0.003453	-3.808703e-05	0.000118	3.179588e-05	-0.001816
13	0.002709	0.000241	-3.457535e-05	0.000474	5.057865e-05	-0.005464
14	-0.001593	0.000711	-1.667091e-05	-0.002523	-3.804168e-05	-0.08920-
15	-0.000830	-0.000393	-7.473946e-05	-0.003899		
16	-0.001743	-0.003024				

Macroparticle representation of the beam



In [6]: df = pd.DataFrame(bunch.get_coords_n_momenta_dict())
df

Out[6]:

	dp	x	хр	у	ур	z
0	0.001590	0.000566	-2.285393e-05	-0.001980	4.283 152e-06	
1	0.001978	0.000370	1.954404e-05	-0.000359	5.543904	
2	0.003492	-0.000829	-2.773707e-05	0.000291	6.627	
3	0.002195	-0.001668	-2.317633e-05	0.001878	-1	
4	0.000570	0.00000	E 400007- 05	0.000450		

Initial conditions of the beam/particles

Profile	Size	Matching
Gaussian	Emittance	Optics
Parabolic		
Flat		
		·

- We use random number generators to obtain random distributions of coordinates and momenta
- Example transverse Gaussian beam in the SPS with normalized emittance of 2 um (0.35 eVs longitudinal)

$$\varepsilon_{\perp} = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

$$= \beta \gamma \sigma_x \sigma_{x'}$$

$$\varepsilon_{\parallel} = 4\pi \sigma_z \sigma_{\delta} \frac{p_0}{e}$$

- We have learned about the **particle description** of a beam.
- We have seen macroparticles and macroparticle models.
- We have seen how macroparticle models are mapped and represented in a computational environment.

- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

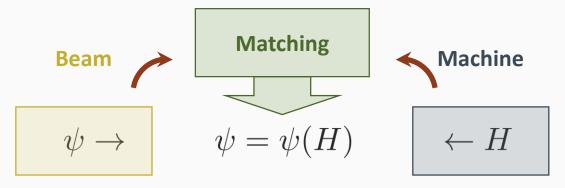
Beam matching

• As seen earlier, given a particle distribution function and a machine (described by a Hamiltonian H) the stationary solution is given by:

$$\frac{\partial}{\partial s} \boldsymbol{\psi} = [\boldsymbol{H}, \boldsymbol{\psi}] = 0$$

and can be constructed via matching:

- In real life, an injected beam ought to be **matched to the machine** for best performance.
- Given a particle distribution function and a machine optics locally described by a Hamiltonian we ensure matching by targeting for:



Matching examples

We take the example of Gaussian distribution functions

$$\psi(H) = \exp\left(\frac{H}{H_0}\right)$$

Betatron motion

$$H = \frac{1}{2}x'^2 + \left(\frac{Q_x}{R}\right)^2 x^2$$

$$H_0 = \sigma_{x'}^2 = \left(\frac{Q_x}{R}\right)^2 \sigma_x^2 \implies \boxed{\frac{\sigma_x}{\sigma_{x'}} = \frac{R}{Q_x} = \beta_x}$$

• Synchrotron motion - linear

$$H(z,\delta) = -\frac{1}{2}\eta\beta c\,\delta^2 + \frac{eVh}{4\pi R^2 p_0}\,z^2$$

$$H_0 = \eta\beta c\,\sigma_\delta^2 = \frac{eVh}{2\pi R^2 p_0}\,\sigma_z^2 \implies \frac{\sigma_z}{\sigma_\delta} = R\eta\,\sqrt{\frac{2\pi\beta^2 E_0}{eV\eta h}} = \frac{R\eta}{Q_s}\,\sigma_\delta = \beta_z$$

Matching examples

We take the example of Gaussian distribution functions

$$\psi(H) = \exp\left(\frac{H}{H_0}\right)$$

In reality the synchrotron motion is described by the Hamiltonian:

$$H(z,\delta) = -\frac{1}{2}\eta\beta c\,\delta^2 + \frac{eV}{2\pi h p_0} \left(\cos\left(\frac{hz}{R}\right) - \cos\left(\frac{hz_c}{R}\right) + \frac{\Delta E}{eV} \left(\frac{hz}{R} - \frac{hz_c}{R}\right)\right)$$

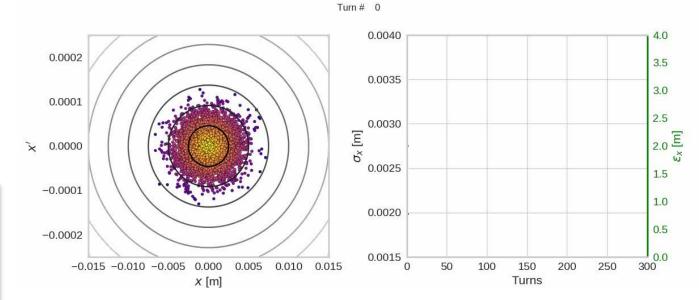
This leads to **nonlinear equations** and the matching procedure becomes more involved.

Matching illustration – matched beams

- Betatron motion
 - linear

$$\frac{\sigma_x}{\sigma_{x'}} = \beta_x$$

Matched beams
maintain their beam
moments and their
shape in phase space

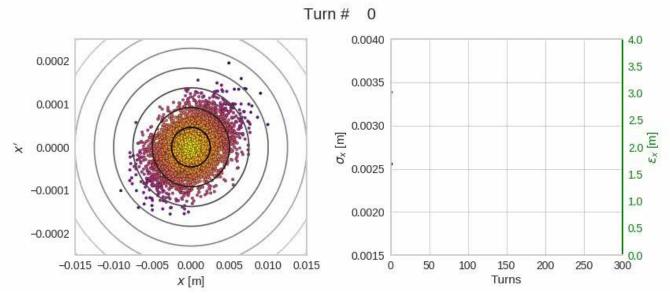


Matching illustration – mismatched beams

- Betatron motion
 - linear

$$\frac{\sigma_x}{\sigma_{x'}} = \beta_x$$

Mismatched beams show oscillations in their beam moments and may change their shape due to filamentation

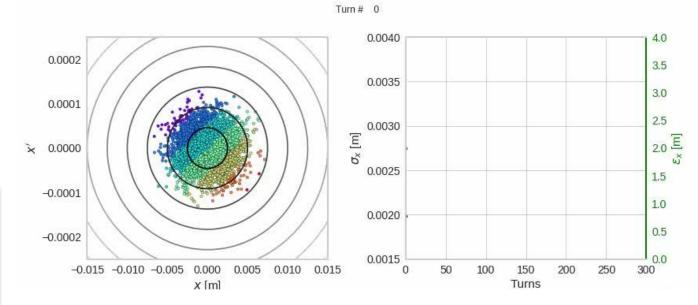


Matching illustration – linear vs. nonlinear

- Betatron motion
 - linear

$$\frac{\sigma_x}{\sigma_{x'}} = \beta_x$$

Nonlinearities lead to detuning with amplitude. This is visible as the characteristic spiraling of larger amplitude particles.

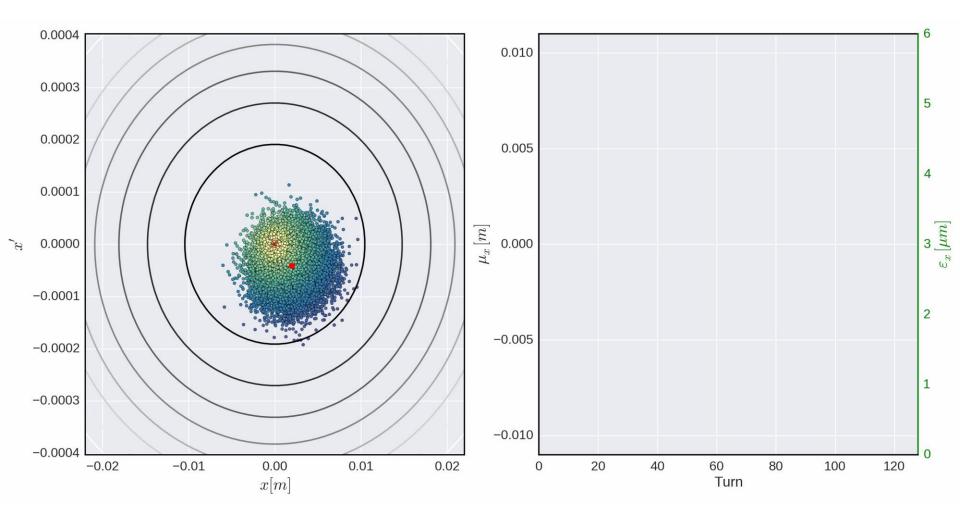


- We have learned about the meaning of matching a beam to the machine optics.
- We have seen how to formally match a beam to a given description of a machine.
- We have seen **examples of matched and mismatched beams** and have seen the difference between **linear and non-linear motion**.
- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

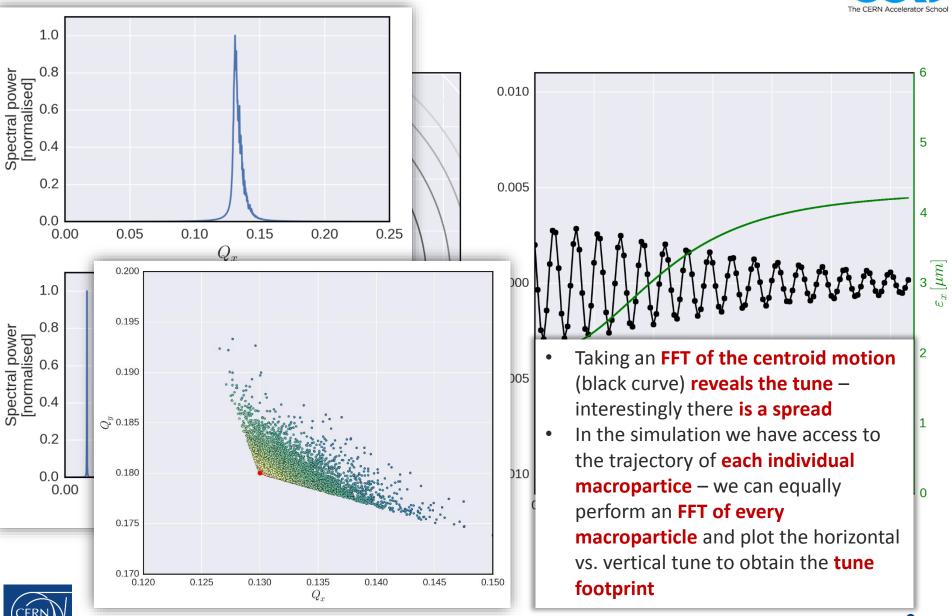
Sources and impact of transverse nonlinearities

- We have learned or we may know from operational experience that there are a set of crucial machine parameters to influence beam stability – among them chromaticity and amplitude detuning
- Chromaticity
 - Controlled with sextupoles provides chromatic shift of bunch spectrum wrt. impedance
 - Changes interaction of beam with impedance
 - Damping or excitation of headtail modes
- Amplitude detuning
 - Controlled with octupoles provides (incoherent) tune spread
 - Leads to absorption of coherent power into the incoherent spectrum → Landau damping

Example: filamentation as result of detuning



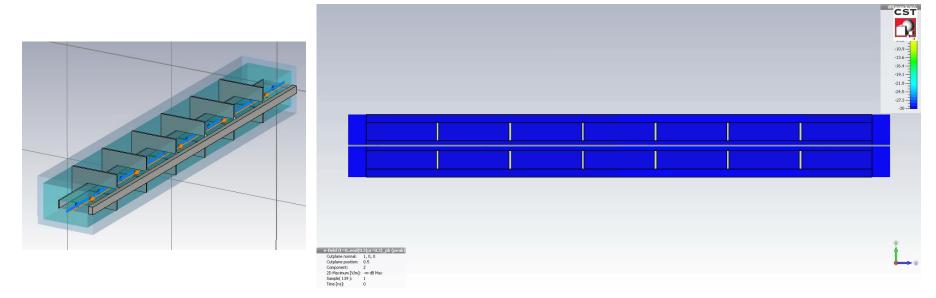
Example: filamentation as result of detuning



- Source for transverse nonlinearities are **chromaticity** and **detuning with amplitude** from octupoles, for example.
- Transverse nonlinearities can lead to decoherence and emittance blow-up.
- The effects seen so far are chacteristics for multiparticle systems but are not collective effects.

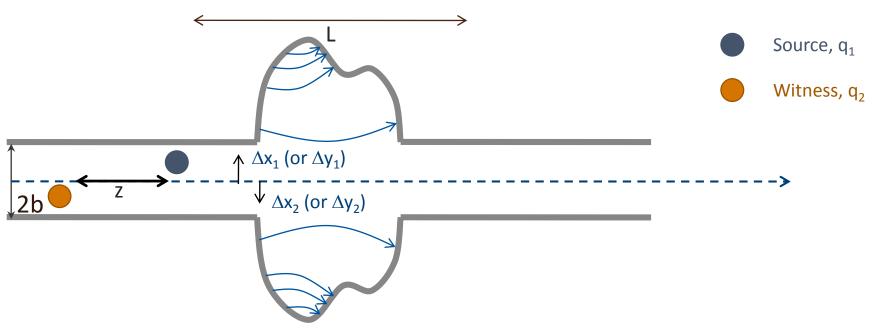
- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

Wakefields as sources of collective effects



- The wake function is the electromagnetic response of an object to a charge pulse. It is an intrinsic property of any such object.
- The wake function **couples two charge distributions** as a function of the distance between them.
- The response depends on the boundary conditions and can occur e.g. due to **finite conductivity** (resistive wall) or more or less sudden **changes in the geometry** (e.g. resonator) of a structure.

Wake functions in general



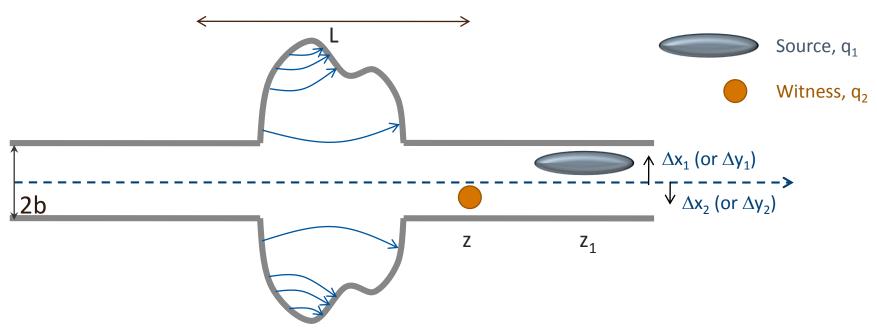
Definition as the **integrated force** associated to a change in energy:

• In general, for two point-like particles, we have

$$\Delta E_2 = \int F(x_1, x_2, z, s) ds = -q_1 q_2 \mathbf{w}(x_1, x_2, z)$$

w is typically expanded in the transverse offsets of source and witness particles. This yields the different types of wake fields (dipole, quadrupole, coupling wakes)

Wake potential for a distribution of particles



Definition as the **integrated force** associated to a change in energy:

For an extended particle distribution this becomes

$$\Delta E_2(z) \propto \int \lambda_1(x_1, z_1) \boldsymbol{w(x_1, x_2, z - z_1)} dx_1 dz_1$$

Forces become dependent on the particle distribution function

Wake fields – impact on the equations of motion

$$\Delta E_2(z) \propto \int \lambda_1(x_1, z_1) \boldsymbol{w(x_1, x_2, z - z_1)} dx_1 dz_1$$

• We include the impact of wake field into the standard Hamiltonian for linear betatron (or synchrotron motion):

$$H = \frac{1}{2}x' + \frac{1}{2}\left(\frac{Q_x}{R}\right)^2 x^2 + \frac{e^2}{\beta^2 EC} \int \lambda_1(x_1, z_1) w(x_1, x, z - z_1) dx_1 dz_1 dx$$

• The equations of motion become:

$$x'' + \left(\frac{Q_x}{R}\right)^2 x + \frac{e^2}{\beta^2 EC} \int \lambda_1(x_1, z_1) \frac{w(x_1, x, z - z_1)}{w(x_1, x, z_1)} dx_1 dz_1 = 0$$

The presence of wake fields adds an additional excitation which depends on

- 1. The moments of the beam distribution
- 2. The **shape and the order** of the wake function

How are wakes and impedances computed?

- Analytical or semi-analytical approach, when geometry is simple (or simplified)
 - Solve Maxwell's equations with the correct source terms, geometries and boundary conditions up to an advanced stage (e.g. resistive wall for axisymmetric chambers)
 - Find closed expressions or execute the last steps numerically to derive wakes and impedances

Numerical approach

- Different codes have been developed over the years to solve numerically Maxwell's equations in arbitrarily complicated structures
- Examples are CST Studio Suite (Particle Studio, Microwave Studio), ABCI, GdFidL, HFSS, ECHO2(3)D. Exhaustive list can be found from the program of the ICFA mini-Workshop on "Electromagnetic wake fields and impedances in particle accelerators", Erice, Sicily, 23-28 April, 2014
- Bench measurements based on transmission/reflection measurements with stretched wires
 - Seldom used independently to assess impedances, usefulness mainly lies in that they can be used for validating 3D EM models for simulations

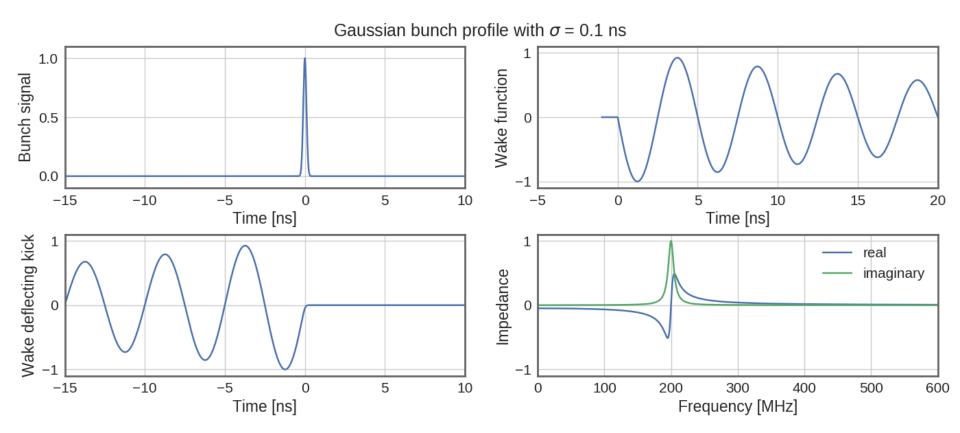
Signpost

- We have learned about the concept of particles, distributions and macroparticles as well as some peculiarities of multiparticle dynamics in accelerators, decoherence, filamentation.
- We have learned about the basic **concept of wake fields** and how these can be characterized as a **collective effect** in that they depend on the particle distribution.
- We now have a basic understanding of multiparticle systems and wakefields and are now ready to look at the **impact of these** in the longitudinal and transverse planes.
- Part 1: Introduction multiparticle systems, macroparticle models and wake functions
 - Introduction to beam instabilities
 - Basic concepts
 - Particles and macroparticles macroparticle distributions
 - · Beam matching
 - Multiparticle effects filamentation and decoherence
 - Wakefields as sources of collective effects

End part 1

Wake fields illustrative examples

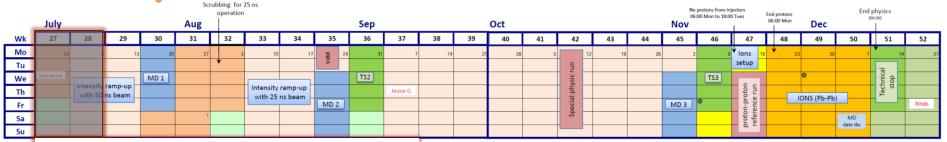
- Resonator wake: fr = 200 MHz, Q = 20 Gaussian bunch charge profile
- The plots show how the bunch moments and the wake function convolve into an integrated deflecting kick at the different positions along the bunch

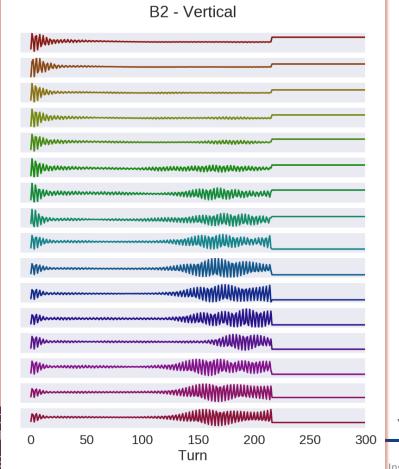


Backup – instability examples

E-cloud instabilities in the LHC

Scrubbing run in 2015 – early stage





Head of batch

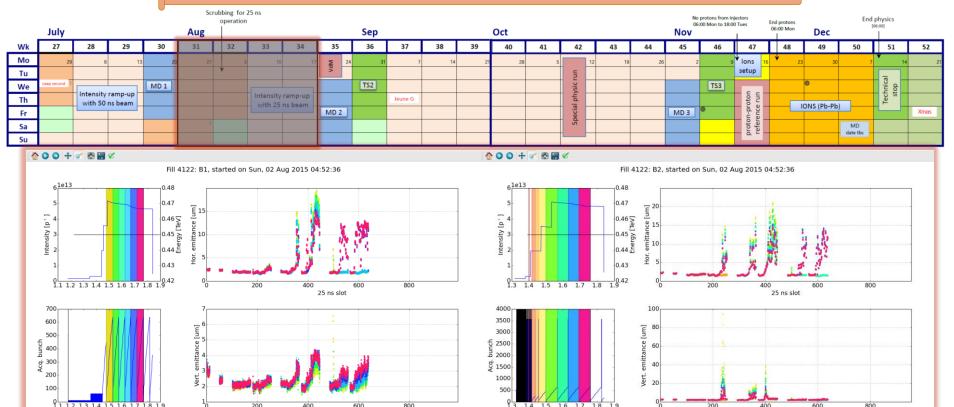
- Injection of multiple bunch batches from the SPS into the LHC.
- Violent instabilities during initial stages
 of scrubbing clear e-cloud signature
- Very hard to control in the beginning slow and staged ramp-up of intensity $(24 \rightarrow 36 \rightarrow 48 \rightarrow 60 \rightarrow 72 \rightarrow 144 \text{ bpi})$

Tail of batch

every 4th bunch just after injection

E-cloud instabilities in the LHC

Scrubbing run in 2015 – second stage



- At later stages dumps under control but still emittance blow-up and serious beam quality degradation.
- Beam and e-cloud induced heating of kickers and collimators.

Time [h]

zoom rect. x=347.852 v=11.4057

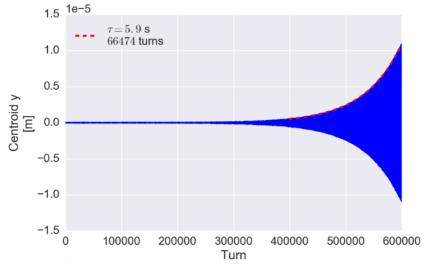
zoom rect. x=63.3781 v=17.838

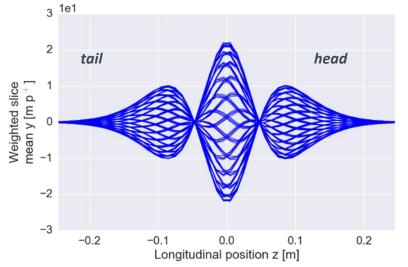
Time [h]

25 ns slot

Headtail instabilities in the LHC

- The impedance in the LHC can give rise to coupled and single bunch instabilities which, when left untreated, can lead to beam degradation and beam loss.
- As an example, headtail instabilities are predicted from macroparticle simulations using the LHC impedance model.
- These simulations help to understand and to predict unstable modes which are observed in the real machine.



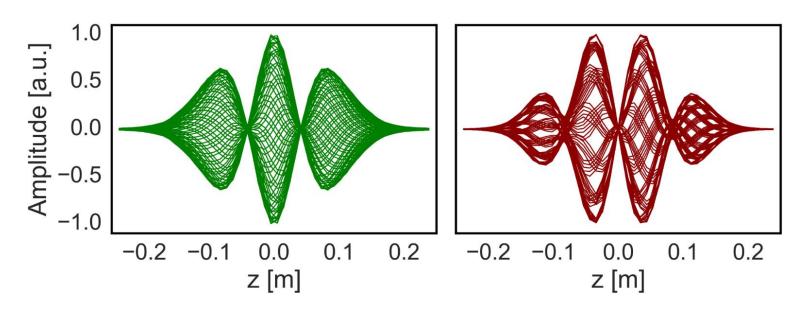


Headtail instabilities in the LHC

$$m = 0$$

m = -1

Macroparticle simulations (PyHEADTAIL)



• These simulations help to understand and to **predict instabilities** which are **observed in the real machine**.

