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Relativistic equation of motion
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A moving body is more inert in the longitudinal direction than in the transverse direction



Relativistic equation of motion are coupled
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Relativistic equation of motion and paraxial approx.
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Beam dynamics in a relativistic capacitor under
the effect of gravity........ free fall particles?
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Trace space of an ideal laminar beam
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Trace space of a laminar beam
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Trace space of non larr
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Geometric emittance: & 0

Ellipse equation:  yx° + 2c0x’ + fBx'° = €,

Twiss parameters: By -a’ =1 B =-2a

Ellipse area.: A = 7e,
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Fig. 17: Filamentation of mismatched beam in non-linear force




Trace space evolution

No space charge => cross over With space charge => no cross over
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Define rms emittance:
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it follows:



It holds also the relation: vp - a’ =1
L o2 o? (0.
Substituting a, B,y we get LA
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We end up with the definition of rms emittance in terms of the
second moments of the distribution:
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Which distribution has no correlations?
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What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?
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Assuming a generic X, X correlation of the type: X '=Cx"
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Constant under linear transformation only
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Normalized rms emittance: €, .ms
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Canonical transverse momentum: P, =P, X = m,cfyx p,=p
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Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px,¥sPy»Z,P,) Temains invariant under conservative forces.
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It hold also in the projected phase spaces (X,p,).(¥,py)(;Z,p,)
provided that there are no couplings



Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two
conjugate variables (x,p, ). According to Heisenberg:

OO0 = h
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This limitation can be expressed by saying that the state of a particle
1s not exactly represented by a point, but by a small uncertainty

volume of the order of %’ in the 6D phase space.

In particular for a single electron 1n 2D phase space it holds:
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Where |&_| 1s the reduced Compton wavelength.
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Now take the derivatives:
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Envelope Equation without Acceleration
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We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.
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Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and

global as:
1
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Definition of beam temperature in analogy:
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Property Hot beam Cold beam

ion mass (m,) heavy ion light ion

ion energy (By) high energy low energy

beam emittance (g) large emittance small emittance

lattice properties (yxy=1/Bxy) strong focus (low ) high B

P

hot cold
beam beam

phase space portrait foins X 0 .

U

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving
cold (light) electron beam.
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Envelope Equation with Linear Focusing
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Assuming that each particle is subject only to a linear focusing

. . )
force, without acceleration: x"+k_x =0

take the average over the entire particle ensemble (xx")=—k; <x2>
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We obtain the rms envelope equation with a linear focusing force
in which, unlike in the single particle equation of motion, the rms

emittance enters as defocusing pressure like term.
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Space Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects
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Continuous Uniform Cylindrical Beam Model

Gauss’ s law
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Elliptical cross section bunch
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Bunched Uniform Cylindrical Beam Model
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L.orentz Force
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1s a linear function of the transverse coordinate
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The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect. Using R=20, for a uniform distribution:
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Envelope Equation with Space Charge

Single particle transverse motion:
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Now we can calculate the term (xx")that enters in the envelope equation
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Including all the other terms the envelope equation reads:
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External Focusing Forces

Laminarity Parameter: |0 =




The beam undergoes two regimes along the accelerator

Fig. 10: Particle trajectories in laminar beam

Fig. 11: Particle trajectories in non-zero emittance bea




Trace space evolution

No space charge => cross over With space charge => no cross over
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Neutral Plasma, Single Component
Cold Relativistic Plasma,

e Ogcillations
e Instabilities

e EM Wave propagation




Surface charge density

o =endx

Surface electric field
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Restoring force

Plasma oscillations
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ko (s,7) Single Component
o' +kioc =220 e s
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:
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Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:
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Continuous solenoid channel

eq Slice equilibrium orbit

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:




Envelope oscillations drive Emittance oscillations
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Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam
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Perturbed trajectories oscillate around the
equilibrium with the

but with
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High Brightness Photo-Injector
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Space Charge De-focusing Force
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Adiabatic Damping / Emittance Pressure

Other External Focusing Forces

Envelope Equation with Acceleration

p=pym;c

€, = ﬁygrms




Beam subject to strong acceleration
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We must include also the RF focusing force: ki = 7/2
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Space charge dominated beam (Laminar)




This solution represents a beam equilibrium mode that
turns out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process




An important property of the laminar beam
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Laminarity parameter p= Al ple’  y21lely
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Matching Conditions with a TW Linac
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Emittance Compensation for a SC dominated beam:
Controlled Damping of Plasma Oscillations

» ¢, oscillations are driven by Space Charge

€n

* ¢, sensitive to SC up to the transition energy
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