

RF Power Generation I

Gridded Tubes and Solid-state Amplifiers

Professor R.G. Carter

Engineering Department, Lancaster University, U.K. and

The Cockcroft Institute of Accelerator Science and Technology

Overview

- High power RF sources required for all accelerators > 20 MeV
- Amplifiers are needed for control of amplitude and phase
- RF power output
 - 10 kW to 2 MW cw
 - 100 kW to 150 MW pulsed
- Frequency range
 - 50 MHz to 50 GHz
- Capital and operating cost is affected by
 - Lifetime cost of the amplifier
 - Efficiency (electricity consumption)
 - Gain (number of stages in the RF amplifier chain)
 - Size and weight (space required)

General principles

- RF systems
 - RF sources extract RF power from high charge, low energy electron bunches
 - RF transmission components (couplers, windows, circulators etc.) convey the RF power from the source to the accelerator
 - RF accelerating structures use the RF power to accelerate low charge bunches to high energies
- RF sources
 - Size must be small compared with the distance an electron moves in one RF cycle
 - Energy not extracted as RF must be disposed of as heat

$$P_{RF in} + P_{DC in} = P_{RF out} + Heat$$

$$Efficiency = \frac{P_{RF out}}{P_{DC in} + P_{RF in}} \approx \frac{P_{RF out}}{P_{DC in}}$$

$$Gain(dB) = 10\log_{10}\left(\frac{P_{RF out}}{P_{RF in}}\right)$$

RF Source Technologies

- Vacuum tubes
 - High electron mobility
 - Large size
 - High voltage
- Tube types
 - Gridded Tubes (Tetrodes)
 - Inductive output tubes (IOTs)
 - Klystrons
 - Gyrotrons
 - Magnetrons (locked oscillators)

- Solid state
 - Wide band-gap materials (Si, GaAs, GaN, SiC, diamond)
 - Low carrier mobility
 - Small size
 - High current
 - Low voltage
- Single Transistors
 - Si LDMOS: 450 W at 860 MHz
 - GaN: 180W at 3.5 GHz; 80 W at
 9.6 GHz
 - GaAs: 65 W at 14 GHz

SOLEIL 352 MHz amplifier

- Output power 180 kW
- 726 × 315 modules in 4 towers
- 2 × Si LDMOS transistors per module in push-pull
- 53dB Gain
- Overall efficiency ~ 50%

Images courtesy of Synchrotron SOLEIL

Solid State

Advantages

- No warm-up time
- High reliability
- Low voltage (<100 V)
- Air cooling
- Low maintenance
- High stability
- Graceful degradation

Disadvantages

- Complexity
- Losses in combiners
- Failed transistors must be isolated
- Electrically fragile
- High I²R losses
- Low efficiency

Tetrode construction

Tetrode characteristics

 $I_a \approx C \left(V_{g1} + \frac{V_{g2}}{\mu_2} + \frac{V_a}{\mu_a} \right)^n$

- *n* = 1.5 to 2.5
- DC bias conditions relative to cathode
 - Anode voltage positive
 - Screen grid positive (~ $10\% V_a$)
 - Control grid negative
- Anode current depends
 - Strongly on control grid voltage
 - Weakly on anode voltage
- In practice Anode is at earth potential

Graph courtesy of Siemens AG

Tetrode common grid connection

- Grids held at RF ground isolate input from output
- Input is coaxial
- Anode resonant circuit is a reentrant coaxial cavity
- Output is capacitively or inductively coupled

Class B operation

×

- Control grid bias set so that anode current is zero when no RF input
- Conduction angle = 180°
- Resonant circuit makes anode voltage variation sinusoidal
- $V_a > V_{g2}$ always
- Theoretical efficiency ~70%

$$P_2 = \frac{1}{2}I_2V_2 = \frac{0.9\pi}{4}I_0V_0$$

Classes of amplification

Class	Conduction angle	Maximum theoretical efficiency	Gain increasing	Harmonics increasing
А	360°	50%		
AB	180° – 360°	50% - 78%		
В	180°	78%		
С	< 180°	78% - 100%		

- All classes apart from A must have a resonant load and are therefore narrow band amplifiers
- Class AB or B usually used for accelerators

CERN 62 kW 200 MHz amplifier

- RS 2058 CJ tetrode
 - Siemens (now Thales)
- Class AB operation
 - Assume Class B for illustration
- Efficiency 64%

Tetrode amplifier design

- Choose $V_a = 10 \text{ kV}, V_{g2} = 900 \text{ V}$
- Choose $V_a = 1.5$ kV when $I_a = I_{pk}$
- Theoretical Class B efficiency

$$\eta_{th} = \frac{0.85\pi}{4} = 67 \%$$
$$P_0 = \frac{62}{0.67} = 92.5 \text{ kW}$$
$$I_0 = \frac{88.6}{10} = 9.25 \text{ A}$$

• Assume $I_{pk} = 4I_0$ (theoretically πI_0)

$$I_{pk} = 37 \text{ A}$$

• and draw the load line

Graph courtesy of Siemens AG

CAS RF for Accelerators, Ebeltoft

Calculation of performance (1)

•

•

Va		I _a		
(kV)		(A)		
1.5		37		
1.8		35		
2.6		30		
4.0		20		
5.7		8.5		
7.8		3		
10.0		0		
10.0	kV	I ₀ =	9.6	Α
8.5	kV	₂ =	16.2	Α
		- 2		-
96	kW	P ₂ =	69	kW
70	0/		524	0
	V _a (kV) 1.5 1.8 2.6 4.0 5.7 7.8 10.0 10.0 8.5 96	V _a (kV) 1.5 1.8 2.6 4.0 5.7 7.8 10.0 10.0 kV 8.5 kV 96 kW	Va Ia (kV) (A) 1.5 37 1.8 35 2.6 30 4.0 20 5.7 8.5 7.8 3 10.0 0 10.0 kV 10.0 Ia 96 kW 96 KW 72 20	Va Ia (kV) (A) 1.5 37 1.8 35 2.6 30 4.0 20 5.7 8.5 7.8 3 10.0 0 10.0 Io 96 kW P2 = 96 KW P2 = 20 524

• Find V_a and I_a in 15° steps

$$V_a = V_0 - V_2 \cos \theta$$

Find I₀ and I₁ by numerical Fourier analysis

$$P_0 = I_0 V_0$$
 $P_2 = \frac{1}{2} V_2 I_2$

$$\eta = \frac{P_2}{P_0} \qquad \qquad R_2 = \frac{V_2}{I_2}$$

- Initial estimate of I_{pk}/I_0 was too high
- Iterate for self-consistent solution

$$I_0 = \frac{1}{12}(0.5I_{a0} + I_{a15} + I_{a30} + I_{a45} + I_{a60} + I_{a75})$$
$$I_2 = \frac{1}{12}(I_{a0} + 1.93I_{a15} + 1.73I_{a30} + 1.41I_{a45} + I_{a60} + 0.52I_{a75})$$

ockcroft Institute

Calculation of performance (2)

Grounded grid operation $V_1 = 80 + 240 = 320$ V $I_1 = I_2 + I_{g1RF} \approx I_2$ $R_1 = \frac{V_1}{L} = 20 \,\Omega$ $P_1 = \frac{1}{2}V_1I_1 = 2.59 \text{ kW}$ Gain = $10\log_{10}\left(\frac{P_2}{P_1}\right) = 14.3 \, \text{dB}$

	Calculated	Measured	
V ₀	10	10	kV
I ₀	9.6	9.4	А
P ₂	69	62	kW
P ₁	2.6	1.8	kW
Gain	14.3	15.4	dB
η	72	64	%

W.Herdrich and H.P. Kindermann, "RF power amplifier for the CERN SPS operating as LEP injector", CERN SPS/85-32, PAC 1985

Tetrode input and output circuits

Input and output circuits are coaxial

$$Z_0 = 60 \ln\left(\frac{b}{a}\right) \quad \Omega$$

- *a* = inner diameter, *b* = outer diameter
- Characteristic impedance is very low (~ few ohms)
- Careful design of matching is essential

$$R_{in} = 20 \,\Omega \quad X_{kg1} = 5.7 \,\Omega$$
$$R_{out} = 524 \,\Omega \quad X_{g2a} = 20 \,\Omega$$

Cooling and protection

Anode Cooling

- Air
- Water
- Vapour phase

Protection

- Coolant flow
- Coolant temperature
- Tube temperature
- Anode, screen and grid
 overcurrent
- Anode voltage (fast)

Switch-on sequence

- Heater voltage
- Grid bias
 - (pause)
- Anode voltage
- Screen grid voltage
- RF drive

Combining tetrode amplifiers

Photo courtesy of CERN

Tetrode limitations

- Cathode current density •
- Anode dissipation •
- Transit time •
 - V_a least when I_a greatest
- Voltage breakdown •

- Anode length $<< \lambda_0$ •
- Anode diameter •
- RF screen grid dissipation •

Thales Diacrode® reduces this

Diacrode 1 MW - 200 MHz

Inductive output tube (IOT)

Differences from tetrode

- Electron flow axial
 - Requires axial magnetic field to prevent beam spreading
- Anode voltage is constant
 - Electron velocity is high
- Bunched beam induces current in output cavity
- Separate electron collector
 - Large collection area
- Increased isolation between input and output

IOT output gap interaction

- Beam current class AB or B like a tetrode
- At resonance electric field in the gap is maximum retarding when bunch is in the centre of the gap
- Effective gap voltage reduced by transit time effects
- Effective gap voltage less than ~0.9V₀ to allow electrons to pass to the collector
- Theoretical efficiency ~ 70%

$$P_2 = \frac{1}{2} I_2 V_{g,eff} \approx \frac{\pi}{4} 0.9 I_0 V_0$$

UHF IOT for TV broadcasting

Frequency	470 - 810 MHz		
Power	64 kW		
Beam voltage	32 kV		
Beam current	3.35 A		
Gain	23 dB		
Efficiency	60%		

Photos courtesy of e2v technologies

LANCASTER

EE1

IOT

Examples of IOTs for accelerators

Frequency	267	500	1300	MHz
Beam voltage	67	40	25	kV
Beam current	6.0	3.5	1.0	A
RF output power	280	90	16	kW
Efficiency	70	>65	62	%
Gain	22	>22	21	dB