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outline
• cyclotron basics

• resonator design techniques
• transmission line 
• 3D finite element 

• tuning

• power coupling

• RF control

• flat topping

• some specific examples
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cyclotron basics
• original observation: homogeneous magnetic field isochronous

(Lawrence & Livingston 1931)
2mv

R
qvB=

centrifugal force Lorentz force

orb
mv BqR
Bq 2 m

= ν =
π
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cyclotron basics
• original observation: homogeneous magnetic field isochronous

(Lawrence & Livingston 1931)
2mv

R
qvB= orb

mv BqR
Bq 2 m

= ν =
π

• accelerate with RF electric field with νRF = h νorb (h integer)

• drift tube linac “rolled up” in a magnetic field

Dee
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why it should not work

• transverse optics
• homogeneous field: fieldindex n = 0

• Qz, νz= 0; no vertical stability
è linear growth of vertical beamsize
• Qr, νr= 1; resonance
è no stable orbit due to imperfections 

• longitudinal optics
• isochronous: no longitudinal stability
• relativistic mass increase
è loss of synchronisation with accelerating voltage 
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why it  works after all to some extent

• fringe field effects: fieldindex n = ε > 0
• Qz, νz > 0; marginal vertical stability 

è large beamsize è bad transmission
• Qr, νr < 1; no resonance
• “weak” focussing

• loss of synchronisation with accelerating voltage gradual
è acceleration possible over limited number of turns
• maximum energy dependent on acceleration voltage

50 keV acceleration voltage: 12 MeV protons
Bethe and Rose, Phys. Rev. 52 (1937) 1254–1255
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how to get it really working
• radially decreasing field +  RF frequency modulation

è vertical and phase stability
E. MacMillan, Phys. Rev. 68 (1945) 144
V. Veksler, Phys. Rev. 69 (1946) 244

• synchro-cyclotron è synchrotron è storage ring
workhorse high energy physics

• radially increasing field + azimuthal field modulation
• vertical stability and isochronism
• Thomas, Phys. Rev. 54 (1938) 580 and 588
• isochronous cyclotron

workhorse nuclear physics
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• λ/2 transmission line with capacitive load on both ends

• frequency variation by variation of CR
• capacitance rotating in vacuum

• acceleration electrode CDee

• operational parameters
• acceleration voltage ~20 kV
• RF power 10 – 100 kW
• self-oscillating
• frequency swing ~20 %

Orsay 19 – 24 MHz
• rep rate 100 - 400 Hz

synchrocyclotron

CDeeCR

synchrocyclotron CERN
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• λ/2 transmission line with capacitive load on both ends

• frequency variation by variation of CR
• capacitance rotating in vacuum

• acceleration electrode CDee

• operational parameters
• acceleration voltage ~20 kV
• RF power 10 – 100 kW
• rep rate 100 - 400 Hz

synchrocyclotron

synchrocyclotron Orsay

CDeeCR
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• orbital frequency (non-relativistic) 
average magnetic field along orbit [T]

Q/A charge-to-mass ratio ion

• typical values
• compact RT cyclotrons 1 – 15 MHz
• superconducting cyclotrons 6 – 35 MHz
• separated sector cyclotrons 1 – 10 MHz
• research machines

• multi-particle
• multi-energy
è large orbital frequency range
• typical example SC AGOR-cyclotron @ KVI

• particles protons – Pb
• energy 190 – 5.5 MeV/nucleon
• orbital frequency 30 - 6 MHz

operational parameters

orb
Q15.2 B [MHz]
A

ν =

B
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• orbital and resonator frequency ranges incompatible
è use different harmonic modes (example AGOR)

different phasing of resonators 

operational parameters

Q/A
0.0 0.2 0.4 0.6 0.8 1.0 1.2

E
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100
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• orbital and resonator frequency ranges incompatible
è use different harmonic modes 

• harmonic mode
• geometry acceleration electrode è possible values
• typical h = 1 – 6, max. 10

• acceleration voltage
• typical V = 50 – 100 kV; max. 1000 kV

• RF power
• typical P = 10 – 100 kW; max 400 kW (excl. beamloading) 

operational parameters
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resonator types
• capacitively loaded transmission line (λ/4 or λ/2)

• dual gap acceleration electrode
• TEM-mode
• most common solution

courtesy Philips

λ/4 coaxial 
transmission line

180° acceleration 
electrode (Dee) 
2 gaps per turn

shorting plate
frequency 
adjustment/tuning
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shape acceleration electrode vs. harmonic
• highest acceleration: particle passes symmetry axis for ϕ = π

• not all harmonic modes possible
e.g. α = 60° è no acceleration for h = 6

( ) ( )DE QV sin h 2 sin∆ = − α ϕ
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resonator types
• single gap resonator

• separated sector cyclotrons 
• used at PSI, RCNP and RIKEN
• TE110 mode
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resonator types
• single gap resonator

• separated sector cyclotrons 
• used at PSI, RCNP and RIKEN SRC
• TE110 mode
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resonator design: transmission line model
• traditional approach (used until ~10 years ago)

• validation on scale models
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resonator design: transmission line model
• sufficient accuracy feasible

• design AGOR cavities
• transmission line model
• model measurements
• results

• ∆ frequency < 1 MHz
range 22 – 62  MHz

• ∆ loop height < 5 mm
range 100 mm

• ∆ Q-factor/power < 10 %

Q
-fa

ct
or

5800
6000
6200
6400
6600
6800

lo
op

 h
ei

gh
t [

m
m

]

20

40

60

80

100

frequency [MHz]
30 40 50 60

sh
or

t p
os

iti
on

 [m
]

0

1

2



sb/CAS1005619

resonator design: 3D simulations
• recent trend; facilitated by computer and ICT revolution

• advantages
• calculation of more complex resonator shapes
• coupling with CAD-packages: input detailed geometry 
• detailed insight in current and voltage distribution

è better optimization of
• cooling
• peak fields (breakdown probability)

• detailed maps RF-field for trajectory calculations
• higher accuracy resonance parameters
• coupling with thermal and mechanical simulations (deformation)
• better insight in higher order modes

• disadvantages
• less insight in critical parameters
• initial stages design significantly slower
• large computing power required
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resonator design: 3D simulations
• optimization electric fields AGOR central region

• reduce breakdown frequency

courtesy Varian P
T

18 MV/m

0

inflector housing

acceleration electrode 
100 kV
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resonator design: 3D simulations
• 75 MHz resonator for 400 MeV/nucleon 12C cyclotron IBA

• 4 parallel transmission line cavities
• optimized voltage distribution
• suppression higher order modes along Dee
• mechanical stiffness

courtesy IBA, JIN
R
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resonator design: 3D simulations
• 75 MHz resonator for 400 MeV/nucleon 12C cyclotron IBA

courtesy IBA, JIN
R
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frequency tuning transmission line resonator

• resonance condition ZD = -ZL

• transmission line resonators
• length transmission line

è mobile short
• characteristic impedance transmission line

è mobile panel, plunger
• capacitance acceleration electrode

è mobile panel
• combination of techniques for coarse and fine tuning 

D
DZ

C
1−

=
ω

L
L 0

cZ tgZ
 ω

=  
 l

CD

Z0, lL



sb/CAS1005624

frequency tuning: VARIAN PT cyclotron
• frequency adjustment and tuning with sliding shorts

• move both to retain symmetry
• move under power

è high performance contacts
• silver plated CuBe spring
• carbon-silver contact grain
• 50 A per contact at 60 MHz
• development GANIL/AGOR
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frequency tuning: GANIL injector cyclotron
• change characteristic impedance transmission line
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frequency tuning: RIKEN ring cyclotron
• change of characteristic impedance at different location

• no high current density contacts on stem
• box to median plane: more capitance è lower frequency
• box to outside: less inductance è higher frequency

• resonator characteristics
• 18 – 45 MHz
• 300 kV @ 45 MHz
• 150 kW @ 45 MHz
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frequency tuning: GANIL main cyclotron

• change capacitance 
acceleration electrode
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frequency tuning: GANIL main cyclotron

• change capacitance 
acceleration electrode



sb/CAS1005629

frequency tuning: single gap resonator
• basically two options

• gap capacitance
• chamber inductance

beam

L

C

RIKEN SRCflapping panel
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frequency tuning: single gap resonator
• basically two options

• gap capacitance
• chamber inductance

PSI ring cyclotron

beam

L

C
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frequency tuning: single gap resonator
• basically two options

• gap capacitance
• chamber inductance

beam

L

C

RCNP ring cyclotron



sb/CAS1005632

power coupling: capacitive
• simple mechanics

• also applicable for tuning control

• high voltage
• insulator
• discharge

matching

LNS, Catania

Dee
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power coupling: inductive
• low voltage è insulator no problem

• multipactor

• variable frequency resonator: 
complex mechanics

• high current rotating/sliding contact
RF power coax 

coaxial 
transmission 
line resonator

matching

tuning

r = 210

AGOR, Groningen
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RF controls
• controlled parameters 

• amplitude acceleration voltage
• phase acceleration phase

• required when using several independent 
resonators

• resonator tuning
• high intensity: possibly matching (beam loading)

• measured parameters
• amplitude acceleration voltage
• phase acceleration voltage
• phase incident wave – acceleration voltage
• reflected power



sb/CAS1005635

RF controls: design issues
• pick-up probes

• mechanical stability

• pick-up electronics
• large amplitude and frequency range

• error signal processing
• high gain for phase and amplitude stability
• compensation resonator response 

• grounds loop via RF circuitry



sb/CAS1005636

RF controls: overview

courtesy Peter Sigg, PSI
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RF controls: amplitude

courtesy Peter Sigg, PSI

• power pulse at start-up to pass through multipactor region

• amplitude stability <10-4
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RF controls: phase

courtesy Peter Sigg, PSI

• essential for multi-resonator system

• phase stability <0.1°
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RF controls: tuning

courtesy Peter Sigg, PSI

• bandwidth typ. 1 Hz
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flattopping with higher harmonic
• cyclotron: no phase stability (always on transition)

• ∆ϕ translates into ∆E 
è radial bunch broadening, overlapping turns
• increased by fieldimperfections: acceleration on slope

• add odd higher harmonic of RF voltage
è reduced energyspread
è compensate longitudinal space charge force

• flat topping resonator extracts power from beam
è complex voltage and phase control @ high beam intensity
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flattopping with higher harmonic

RF phase [deg]
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• accommodate larger bunchwidth and isochronism deviations



sb/CAS1005642

flattopping with higher harmonic
• accommodate larger bunchwidth and isochronism deviations

• compensate longitudinal phase space force
• phase and amplitude intensity dependent
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flattopping with higher harmonics  
• PSI, RIKEN, RCNP: separate higher harmonic resonator

main cavities 50 MHz

flat top resonator 150 MHz
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flattopping with higher harmonic
• JAERI AVF cyclotron: higher harmonic superimposed
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some examples: TRIUMF
• beam 200 µA 520 MeV H-
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some examples: TRIUMF
• beam 200 µA 520 MeV H-
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some examples: TRIUMF
• 80 23 MHz λ/4 resonators

• 2 x 20 above median plane
• 2 x 20 below median plane

• excitation scheme
• above – below   inductive coupling; 0-mode
• adjacent capacitive coupling; 0-mode
• left – right  capacitive coupling; π-mode

• inductive coupling; RF power 1.2 MW 

• tuning by resonator deformation 
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some examples: TRIUMF



sb/CAS1005649

some examples: TRIUMF
• electric field distribution in accelerating gap
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some examples: LNS SC cyclotron
• three 15 – 48 MHz λ/2 resonators
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some examples: LNS SC cyclotron
• three 15 – 48 MHz λ/2 resonators

• vacuum feedthrough
issue: E || B

2.
9 

m

9 m
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some examples: LNS SC cyclotron
• inter-resonator coupling in center

• not operating in Eigenmode 
• power transfer between resonators è perturbation
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some examples: LNS SC cyclotron
• inter-resonator coupling in center

• not operating in normal mode (h = 3)
• power transfer between resonators è perturbation

• some numbers
• reactive power resonator PR = 100 MW
• electrode voltage VD = 100 kV
• operating frequency ν =  40 MHz
• reactive power coupling 1.75 V2ωCc

4.4 MW/pF
è minimize coupling capacitance

achievable value Cc ≤ 10-3 pF 
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some examples: LNS SC cyclotron
• inter-resonator coupling in center

• not operating in normal mode (h = 3)
• power transfer between resonators è perturbation
è minimize coupling capacitance

achievable value Cc ≤ 10-3 pF

frequency [MHz]
36.90 36.95 37.00 37.05 37.10

am
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response resonator 3
resonator 1 excited
Cc = 1.1x10-4 pF

 

measurements AGOR
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some examples: VARIAN PT cyclotron
• 250 MeV protons

• 4 coupled λ/2 resonators; 1 amplifier

capacitive and 
inductive coupling
between resonators

courtesy Varian PT
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some examples: VARIAN PT cyclotron
• 250 MeV protons

• 4 coupled λ/2 resonators driven via one power coupler
• 4 Eigenmodes; only three can be excited
• push-pull mode

ϕ = π

ϕ = π

ϕ = 0

ϕ = 0

courtesy Varian P
T
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some examples: VARIAN PT cyclotron
• 250 MeV protons

• 4 coupled λ/2 resonators driven via one power coupler
• 4 Eigenmodes; only three can be excited
• push-pull mode

• complex tuning control
• control parameters: 4 positions sliding short 
• error signals 

• phase drive power – resonator 1
• 3 voltage ratios resonator 1 – resonator 2; 3 and 4

• 4 x 4 transfer matrix not diagonal
è no independent servo loops
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example: PET isotope production cyclotron
• 2  MHz λ/4 resonators; π-mode for protons, 0-mode for 

deuterons 

courtesy G
E
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conclusions
• wide range of applications

• isotope production
• nuclear physics; radioactive beam production
• meson factory; spallation neutron source

• wide range of beams and energies
• protons up to uranium
• 1.5 MeV/nucleon – 590 MeV/nucleon

• large dynamic range in intensity and beam power
• <1 nA – 5 mA
• <1 W – 1.3 MW

• compact cyclotrons, separated sector cyclotrons

• extraction radius 0.2 – 8 m 

è large variety of RF systems
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