



# Longitudinal Diagnostics part I

- Mario Ferianis -

Sincrotrone Trieste





# Outline - part I



- Basic of Longitudinal Diagnostics
- Longitudinal particle motion
- Beam parameters / effects measurable with longitudinal diagnostics
- Longitudinal phase space
- Longitudinal Instabilities
- Pick-ups for longitudinal diagnsotics
- Coaxial cables and connectors
- Diagnostics beam lines / photo-diodes
- Fast Oscilloscopes







#### Basic of longitudinal diagnostics

- Both the *near field* and the *far field* associated with relativistic particle beams may be used for the Longitudinal Diagnostics
- Near field is sensed by means of Electro Magnetic pickups (EM-PU) located on the beam trajectory, mounted directly on the vacuum chamber
- Far field is acquired by means of dedicated diagnostic beam lines where the radiation can propagate up to the sensor/instrument
  - Typically, on **rings**, we do prefer *non-destructive* diagnostics (to perform the measurement while the beam is circulating), whereas on **single pass** machine also *destructive* or *quasi non-destructive* diagnostics are widely used (...new beam at each injector shot)







#### Basic of longitudinal diagnostics

• On single pass machines (*LINACs* and *Transfer Lines*) the different radiations generated by charged particles interaction with matter are also used for diagnostic purposes:

| Optical Transition Radiation (OTR)  | D   |
|-------------------------------------|-----|
| Optical Diffraction Radiation (ODR) | N-D |
| <i>Cherenkov Radiation</i> (CR)     | D   |
| Smith-Purcell Radiation (SPR)       | N-D |

- The above mentioned radiations are all "instantaneous" i.e. the temporal profile of the emitted field is a replica of the bunch profile
- Also, widely used in diagnosing the longitudinal profile of *ultra short bunches* (4GLS) as the emission is in the Coherent regime (ref. F*emto-second Diagnostics* lectures)







#### Basic of longitudinal diagnostics

#### For EM-PU, the measurement set-up consists of:

- the PU
- the cable
- the acquisition instrument
- For the far field based measurements:
  - the emitting portion on the beam trajectory
  - the extraction / transport / focusing optical line
  - the sensor and / or the instrument

For the destructive/single pass measurements:

- the "radiator" (screen, slit, aero-gel, grating)
- the extraction / transport / focusing optical line
- the sensor and / or the instrument







Longitudinal particle motion [1]

- Accelerating (aka longitudinal) fields are high frequency EM fields (radio frequency / RF fields)
- As free EM wave has no component along Z: need for accelerating structures
- Being the fields AC  $\rightarrow$  synchronicity, bunching

E field expression: 
$$\vec{E}(z,t) = \vec{E}_0 \cdot e^{i(\omega t - kz)} = \vec{E}_0 \cdot e^{i\psi}$$

where:  $\psi = (\omega t - kz)$  is the phase; k wave number, constant.

- **Travelling wave** acc. structures: E phase velocity =  $v_p = c\beta$
- Standing wave acc. structures:

$$\vec{E}(z,t) = \vec{E}_0(z) \cdot e^{i\omega t - \delta}$$

where:  $\boldsymbol{\delta}$  is the phase as the particle enters the acc. structure



CAS





Longitudinal particle motion [1]

Energy gain of the particle

$$\Delta E = (\gamma - \gamma_0)mc^2 = e \cdot \int \vec{E}(\psi) d\vec{z}$$

The degree of acceleration depends of the phase ψ of the field seen by the particle

 $\alpha_{c}$ 

Small oscillation:

$$\ddot{\varphi} + 2\alpha_s \dot{\varphi} + \Omega^2 \varphi = 0$$

 $\Omega^2 \rightarrow$  synchrotron frequency;  $\alpha_s$  damping term

In a resonant cavity:

expanded about the synch. phase:  $\psi = \psi_S + \phi$ and the synch. frequency is now:

 $η_c$ : moment compaction  $α_c$ : moment compaction factor



$$V(\psi) = V_0 \sin \psi$$

$$\ddot{\varphi} + \Omega^2 \varphi = 0$$

$$\Omega^2 = \omega_{REV}^2 \cdot \frac{h\eta_c eV_0 \cos\psi_s}{2\pi\beta cp_0}$$

$$L_0 \quad \eta_C = \gamma^{-2} - \alpha_C$$





Beam parameters / effects measurable with longitudinal diagnostics

- The charge
- The bunch profile
- The bunch length
- The filling pattern / bunch purity
- The S-band satellites (on LINACs)
- The synchronous phase
- The energy loss / turn
- The coherent synchrotron frequency
- The longitudinal instabilities





Longitudinal phase space [2]



- The longitudinal motion of the particles is represented by the longitudinal phase space
- The conjugated variables in longitudinal phase space are: the particle momentum deviation: ΔE/E, δ

the particle phase deviation:  $\phi,\,\sigma_{l}$ 

- The longitudinal extension maybe expressed in **degrees** (of the RF) or **time units**
- The plot shows the result of a simulation [2] where the particles dump around the final equilibrium phase space coordinate values
- On-energy and nominal phase bunch <







#### Longitudinal phase space [2]



- With respect to the nominal bunch we may have:
  - Dipole oscillations, excited by:
    - phase RF modulation
    - injection phase errors
  - Quadrupole oscillations, excited by:
    - amplitude RF modulation
    - injection phase space mismatch





Illustration of bunch oscillations at injection [2]:

a) Phase offset along with phase space mismatch



b) Energy offset with phase space mismatchc) Phase space mismatch only



#### Longitudinal phase space [1]



Due to the energy loss (/turn) as per synch. rad. emission and successive energy recovery (RF fields) particles perform oscillations around the ideal momentum and the synchronous phase:

sfp: stable fixed point

THE CERN ACCELERATOR SCHOOL

ufp: unstable fixed point

- Particles perform incoherent phase oscillations around  $\psi_s$
- The appearance is that of a steady state gaussian longitudinal distribution of the particles which we call the **bunch length**





#### Longitudinal instabilities [3]



- Focusing on bunched beams in e<sup>-</sup> rings
- Impedance  $\rightarrow$  the interaction beam-boundary (vacuum chamber, cavities)
- Wake-fields are acting back on the bunch that produced them
- *Collective effects* (many particles in a single bunch)
- Single traversal effects:
  - change in particle distribution (bunch lengthening)
  - potential well lengthening (inductive impedance)
  - strong self fields and broadband impedance
  - incoherent synchrotron frequency shift
- Multi traversal effects:
  - narrow band impedance (with memory)
  - start even with low self fields
  - energy loss, parasitic mode loss factor

#### Robinson instability

Synchrotron oscillations + narrow band cavity  $\rightarrow$  could lead to growing amplitude of oscillations Modulation of the revolution frequency







Longitudinal instabilities [3, 33]

- Observation of beam spectrum provides useful information
- Bunch with revolution frequency  $\omega_0$
- Synchrotron frequency  $\omega_s$
- At each *revolution harmonics*  $\mathbf{p}\omega_0$  there are sidebands:
  - dipole:  $\omega_{s1} = \omega_s$
  - quadrupole:  $\omega_{s2} = 2\omega_s$









- The CT is a widely used non-destructive instrument sensing the longitudinal profile of the bunch
- Due to its limited bandwidth, typical in the 100s of MHz range, the CT measures (integrating) the bunch charge
- The CT is based on the transformer principle, being the primary circuit the beam and the windings on the magnetic core the secondary
- In order for the beam field to be sensed outside the vacuum chamber, the CT is located across a ceramic gap and conductir shield assembly to close the wall current out of the CT itself











- CTs are available both for single pass machines (pulse transformer) and for circular machine (PCT or DCCT)
- Recently, Fast Current Transformer became available which go up to a bandwidth of 1.75 GHz (200-ps risetime)
- CT are also available in the space saving "in-flange" format



THE CERN ACCELERATOR SCH











- The FC is typically a limited bandwidth device used for the absolute bunch charge measurement
- There are also so called <u>fast FC</u> which are not meant for charge measurement, but rather to obtain the longitudinal distribution of charges
- A coaxial structure is therefore adopted
- The BW is in the several GHz range
- Typically used on LINACs (it's destructive)





#### Fast Faraday Cup [5]



- Two different Fast FC have been mounted on the Elettra 1Gev LINAC:
- A coaxial Fast Faraday Cup adopts a 50Ω SMA vacuum feed-through from Caburn MDC Company (ref. SMAD, part number 9251001), welded to a CF16 flange
- A strip-line FFC has been designed by optimizing the electromagnetic-match of the beam-target to the connecting strip-line circuit





Coaxial FFC



CAS





#### Strip-line FFC



#### Fast Faraday Cup [5]









CAS

THE COURSE ACCESS FRANCES SCHE

Multi Bunch Linac macro pulse acquired with the coaxial FFC and the **Tek 5104 1GHz oscilloscope** HOR: 5ns/div, VERT: 5mV/div.

The 3GHz satellites are clearly visible on both sides of the main bunches.



Single Bunch acquisition, Coaxial FFC+Le Croy 8500 oscilloscope. HOR: RIS 200ps/div, VERT: 1V/div. At V<sub>phase</sub>=3V three 3GHz satellites can be observed

LeCroy8500-Wavemaster (BW=5GHz)



#### Fast Faraday Cup [5]





The simulated (LabView) waveform obtained by summing three equal shifted "single bunch waveforms" matches very well with the measured one with three 3GHz satellites





The (main+3 shifted) waveforms shown



CAS







- EM PU are used also to obtain the "centroid" of the bunch i.e. to measure the phase of the bunch (typically w.r.t. the RF)
- EM PU are non destructive devices
- The ability to replicate the longitudinal bunch profile depends on their bandwidth which may be as wide as several GHz
- Broadly used EM PU on electron machines are:

Strip line monitor Button pick-up Wall current monitor



FERM



# The strip line monitor

@elettra

- $\lambda/4$  (quarter wavelength) monitor
- Frequency response is periodic (for a L=15cm strip-line:
  - $1^{st}$  peak at 500MHz ,  $2^{nd}$  at 1.5GHz,  $\ldots$
  - 1<sup>st</sup> zero at 1GHz, 2<sup>nd</sup> zero at 2GHz, ...
- Measurement of a Single Bunch beam March 1994
- Digitizer Tek SCD 5000
- 15 m. long cable
- ∆t=1ns (15cm x2)



 $BW_{eq} = 3.5 GHz$ 







# The button pick-up

- Mostly used in St. Ring BPMs
- Very large and pretty flay BW (typ. 12.5GHz)
  - Non invasive to the beam



Picture of Elettra low gap BPM fitted with 14mm CAS buttons





Cross section of an SMA button (D=10mm) vacuum feedthrough





The no-button pick-up



For bunch phase information retrieval...

Bunch Arrival Monitor (BAM) P.U. Four N-type vacuum feed-through

no button: antenna!







#### Courtesy of K. Hacker and H. Schlarb, DESY

THE CERN ACCELERATOR SCHOOL



The no-button pick-up



## BAM P.U. has been installed on Elettra LINAC acquired with a 6GHz real time oscilloscope and <10m wideband cable



THE CERN ACCELERATOR SCHOOL



# The no-button pick-up



BAM signal (@10Hz) has been used as trigger for acquisition of the 3GHz optical clock (after O/E conversion)







## Coaxial cables



- Once the EM PU has "captured" the bunch profile (i.e. the spectral content within the PU BW) this signal has to be routed up to a measuring instrument, outside the tunnel
- Dealing with 10s ps profiles (e<sup>-</sup> LINAC or SR) the transmission of the electrical signal from the EM PU to the measuring instrument may be critical
- To preserve a 50ps<sub>FWHM</sub> pulse, a short (L<5m) broadband (≅10GHz) coaxial cable has to be used
- Microwave companies have cables that have acceptable losses up to 50GHz
- As a matter of fact, due to the intrinsic low-pass nature of the cable, the spectral content of the pulse will be altered





## Coaxial cables & ...[7]







## ...wide band connectors



- There are several wide band coax connectors
- When designing a wide-band measurement system, the choice of suitable connector matched to the cable (BW and diam.) is very important not to spoil the resulting bandwidth
- For multi GHz application:

| N-type    | 18GHz |
|-----------|-------|
| SMA       | 24GHz |
| Wiltron K | 34Ghz |

Minimize the adapters (between series), "T" etc. etc.



| Connector Type                              | Frequency<br>Range | Compatibility                 |
|---------------------------------------------|--------------------|-------------------------------|
| BNC (Bayonet Navy<br>Connector)             | DC - 2 GHz         |                               |
| SMC (Sub-Miniature C)                       | DC - 7 GHz         |                               |
| APC - 7 (Amphenol<br>Precision Connector-7) | DC - 18 GHz        |                               |
| Type N (Navy) 50 $\Omega$                   | DC - 18 GHz        |                               |
| SMA (Sub-Miniature A)                       | DC - 24 GHz        | 3.5 mm, 2.92<br>mm, Wiltron K |
| 3.5 mm                                      | DC - 34 GHz        | SMA, 2.92 mm,<br>Wiltron K    |
| 2.92 mm or Wiltron K                        | DC - 40 GHz        | SMA, 3.5 mm                   |
| 2.4 mm                                      | DC - 50 GHz        | 1.85 mm,<br>Wiltron V         |
| 1.85 mm or Wiltron V                        | DC - 65 GHz        | 2.4 mm                        |

taken from: New Focus Application Note:

"Insights into High-Speed Detectors and High-Frequency Techniques"

http://www.newfocus.com/products/documents/literature/Insights.pdf







- It is more convenient to transport out of the tunnel visible (λ>200nm) radiation instead of an electrical signal
- A protected air pipe may be adopted for air turbulence /dust protection
- The length of the link can be of tens of meters
- Optical component mechanical stability is not an issue for **ps pulses** ( $\Delta L=100$ mm  $\rightarrow \Delta t_{air}=0.5$ ps)
- For  $\lambda < 200$ nm the optical path need to be in vacuum due to absorption of UV rad. (water line)



CAS





# Photo-diodes (PD)

- PD are semiconductor light sensors that generate a current or voltage when the P-N junction in the semiconductor is illuminated by light
- The term photodiode usually refers to sensors used to detect the intensity of light (vs. time or position)
- Photodiodes can be classified by function and construction as follows:
- For this application they are particularly attractive as the cable for the PD to the acquisition head can be very short (L<0.5m)</p>





# Photo-diodes



Main features of photodiode are:

excellent linearity with respect to incident light

low noise wide spectral response mechanically rugged compact and lightweight long life



Monolithically integrated detector PD and FET on InP (Trans Impedance Amplifier)

THE CERN ACCELERATOR SCHOOL



High Speed with epitaxially grown active area





### Photo-diodes [8, 9]



- Hamamatsu, New Focus...offer a broad range of PDs
- New Focus: up to BW=45GHz
- Choice criteria:
  - wavelength
  - responsivity
  - bandwidth / area
  - radiation coupling









## Ultra wide band photo-diodes [10]

Ultra wide band PD have been developed at Fraunhofer Institute

The 100Gb/s Photodiode C05-W-26

| lfd. Bf-<br>Nr. | Parameter                                                                      | Actual value<br>Module C05-W-26 |  |
|-----------------|--------------------------------------------------------------------------------|---------------------------------|--|
| 1               | O/E-power -3dB bandwidth (1.55µm)<br>calibrated (P <sub>opt.</sub> , AC-level) | 94 GHz (@ 1.7 mW)<br>@ +2 V)    |  |
| 2               | Photodiode responsivity (1.55µm)                                               | 0.52 A/W                        |  |
| 3               | Polarisation dependent loss                                                    | 0.8 dB @1.55 μm                 |  |
| 4               | Power linearity (1dB compression)                                              | $P_{opt.} \ge$ + 12.5 dBm       |  |
| 5               | Photodiode dark current( +2V)                                                  | 1400 nA (in module @ Z5.6)      |  |
| 6               | Optical return loss @ 1,55 µm                                                  | > 25 dB (?)                     |  |
| 7               | Optional: synthesised eye pattern                                              | 80 / 1                          |  |



1-4: Specs, (device: Warp80#252.5x20 BIASPDRL2 feld: 00

Prof. Dr. Hans-Joachim Grallert E-mail: Hans-Joachim.Grallert@hhi.fraunhofer.de

Fraunhofer Institut Nachrichtentechnik Heinrich-Hertz-Institut









### Ultra wide band photo-diodes [11]

Test at ELETTRA: output from the Pico source 3GHz fiber laser to the 100GB/s Fraunhofer PD acquired with LeCroy 100GHz Wave Expert sampling scope



THE CERN ACCELERATOR SCHOOL





#### Ultra wide band photo-diodes [11]

• 3GHz optical pulse stream at 3HGHz



CAS THE CERN ACCELERATOR SCHOOL







THE CERN ACCELERATOR SCHOOL



aelettra

Cooled copper slit To limit the S. Rad in the hor. plane

Cooled GLIDCOP extraction mirror; acts also as a X-ray absorber



#### Photo-diodes measurements at Elettra [12]







#### aelettra Photo-diodes measurements at Elettra [12] Single Bunch @1GeV I=5.47mA @1GeV $I_{B}=0.5mA @1GeV$ **σ=12.5ps σ=19.1ps** 0.22.24 ESABOIA COMMUNICATIONS SIGNAL ANALYZER date: 8-MAR-97 time: 19:00:50 CSA803A COMMUNICATIONS SIGNAL ANALYZER 3-MAR-97 time: 19:46:22 date: 196mV 22.5mV Ĵ 2mV ZØmV 2dis <d14





$$\sigma_{measured} = \sqrt{\sigma_{beam}^2 + \sigma_{photo-diode}^2} = 12.45 \, ps$$





Photo-diodes measurements at Elettra [12]

comparison PD data vs. streak camera measurement







## Fast Oscilloscopes (...from the last century)

#### Since the early 80's, the fast scope was the: TEK7104, the "1GHz" scope (still in use)

- The display of the CRT was equipped with a MCP to enhance the visibility of very fast signals
- Unique in visualizing low occurrence events in high frequency signals
- Slow amplitude mod. on RF / 500MHz









| CH1 | CH2 | main secondary |
|-----|-----|----------------|
|     | TDR | time base      |





- Fast Oscilloscopes (...from the last century)
- In early 90's, the TEK SCD5000 was the state-of-art : High-Speed Transient Digitizer
  - BW=4.5GHz
    - $t_{RISE}$ =80ps



Later, from TEK, the 11800 series was providing up to 50GHz (sampling)

| Instrument | Bandwidth | Maximum # of<br>Channels | Sample<br>Rate | Maxium Record<br>Length | Vertical<br>Resolution | Digitizing<br>Technology |
|------------|-----------|--------------------------|----------------|-------------------------|------------------------|--------------------------|
| 11801B     | 50 GHz    | 136                      | 200 kS/s       | 5κ                      | 8-Bits                 | sequential               |
| CSA 803A   | 50 GHz    | 4                        | 200 kS/s       | 5 K                     | 8-Bits                 | equivalent time          |







# Fast Oscilloscopes [google]

- Today, several ultra wide band oscilloscopes are available on the market, reaching "incredible" BWs
- "real time" (RT) and "sampling" (S) or Equivalent Time (ET)
  - RT one waveform / trigger event
  - S / ET multiple trigger events / waveform
- The choice depends on:

the signal characteristics

periodic / non periodic electrical / optical

the type of analysissingle shot / averagedthe required bandwidth:are 20GHz OK or need for 100GHz?

It remains good advice to use an oscilloscope that is 3-5 times faster than the fastest signal to be measured





## Fast Oscilloscopes



- The quality of the instrument comes from:
  - analog input BW (magnitude flatness and phase linearity)
  - vertical deflection amplifiers
  - time base stability
    - sets the limit for jitter measurements
  - a flexible trigger
  - friendly and effective User Interface (UI)

Rather than using the *bandwidth banner specification* as a determination of measurement accuracy, a better way of predicting the accuracy is by looking at the oscilloscope's magnitude flatness and phase linearity







## Fast Oscilloscopes: LeCroy RT

#### SDA18000: BW<sub>-3dB</sub>=18GHz

|                                 |                                                    | SDA 18000                      | )                                                                | SDA                                               | 13000                                        | SE                   | DA 11000                                      | SDA              | 9000                                          |
|---------------------------------|----------------------------------------------------|--------------------------------|------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------|-----------------------------------------------|------------------|-----------------------------------------------|
| Vertical System                 | 18 GHz/Ch<br>Mode                                  | 11 GHz/Ch<br>Mode              | 6 GHz/Ch<br>Mode                                                 | 13 GHz/Ch<br>Mode                                 | 6 GHz/Ch<br>Mode                             | 11 GHz/Ch<br>Mode    | 6 GHz/Ch<br>Mode                              | 9 GHz/Ch<br>Mode | 6 GHz/Ch<br>Mode                              |
| Analog Bandwidth @ 50 Ω (-3 dB) | 18 GHz                                             | 11 GHz                         | 6 GHz                                                            | 13 GHz                                            | 6 GHz                                        | 11 GHz               | 6 GHz                                         | 9 GHz            | 6 GHz                                         |
| Rise Time (Typical, 10–90%)     | 27 ps                                              | 40 ps                          | 75 ps                                                            | 35 ps                                             | 75 ps                                        | 40 ps                | 75 ps                                         | 49 ps            | 75 ps                                         |
| Rise Time (Typical, 20–80%)     | 19 ps                                              | 28 ps                          |                                                                  | 25 ps                                             |                                              | 28 ps                |                                               |                  |                                               |
| Input Channels                  | 1                                                  | 1                              | 4, 2, or 1                                                       | 2 or 1                                            | 4 or 2                                       | 2 or 1               | 4 or 2                                        | 2 or 1           | 4 or 2                                        |
| Bandwidth Limiters              | Full B                                             | W only                         | 20 MHz,<br>200 MHz,<br>1 GHz, 3 GHz,<br>4 GHz                    | Full BW<br>only                                   | 20 MHz,<br>200 MHz,<br>1GHz, 3 GHz,<br>4 GHz | Full BW<br>only      | 20 MHz,<br>200 MHz,<br>1 GHz, 3 GHz,<br>4 GHz | Full BW<br>only  | 20 MHz,<br>200 MHz,<br>1 GHz, 3 GHz,<br>4 GHz |
| Input Impedance                 | 50 Ω ±2.0                                          | 0%                             |                                                                  | -                                                 |                                              |                      |                                               |                  |                                               |
| Input Coupling                  | DC, GND                                            |                                |                                                                  | 0                                                 |                                              | LeCroy               | -                                             |                  |                                               |
| Maximum Input Voltage           | ±4 Vpeak                                           |                                | 100 - 100 - 100 -                                                |                                                   | The local linear lines income                |                      |                                               |                  |                                               |
| Vertical Resolution             | 8 bits; up 1                                       | to 11 bits wit                 | h enhanced reso                                                  | olution (E                                        | (insection)                                  | 1.1                  |                                               |                  |                                               |
| Sensitivity                     | 2 mV-<br>(< 10<br>throug                           | –1 V/div<br>mV/div<br>gh zoom) | 2 mV–1 V/div<br>(fully variable,<br>< 10 mV/div<br>through zoom) | 2 mV-1<br>(< 10 m<br>through<br>zoom)             |                                              |                      | T-m                                           | 250              | 000000000000000000000000000000000000000       |
| DC Gain Accuracy                | ±1.5% of f                                         | full scale                     | 1                                                                |                                                   |                                              |                      | Server in Springer                            | 00               | 00                                            |
| Offset Range                    | ±750 mV<br>2 mV-<br>141 mV/d<br>±4 V @<br>141 mV-1 | ′@<br>≸v<br>1V/div             | ±750 mV @<br>2 mV-<br>141 mV/div<br>±4 V @<br>195 mV-1 V/div     | ±750 mV<br>2 mV-<br>159 mV/d<br>±4 V @<br>159 mV- |                                              |                      |                                               |                  |                                               |
| Offeet Accuracy                 | 11 EV of                                           | full apple 115                 | W of offect value                                                | 2                                                 | 504 18000                                    | Seriel Data Analyzer | The Parent State                              | 0                | 0.3                                           |







# Fast Oscilloscopes: LeCroy RT

#### SDA18000

#### timebase: $<350 fs_{RMS}$ Jitter noise floor

| Horizontal System                                        |                                                                                                   |                                                                                                              |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Timebases                                                | Internal timebase com<br>4 input channels; an e<br>100 MHz reference m<br>applied on the rear par | imon to<br>xternal<br>ay be<br>nel                                                                           | Internal timet                                                                               | ase common                                                                                                   | to 4 input cha                                                                               | annels                                                                                                       |                                                                                              |                                                                                                              |
| Time/Division Range,<br>Real Time                        | 10 ps/div–100 µs/div<br>(standard memory)<br>10 ps/div–500 µs/div<br>(-XL memory)                 | 20 ps/div–<br>10 s/div                                                                                       | 10 ps/div–<br>100 μs/div<br>(standard<br>memory)<br>10 ps/div–<br>500 μs/div<br>(-XL memory) | 20 ps/div–<br>10 s/div                                                                                       | 10 ps/div-<br>100 μs/div<br>(standard<br>memory)<br>10 ps/div-<br>500 μs/div<br>(-XL memory) | 20 ps/div–<br>10 s/div                                                                                       | 10 ps/div–<br>100 μs/div<br>(standard<br>memory)<br>10 ps/div–<br>500 μs/div<br>(-XL memory) | 20 ps/div–<br>10 s/div                                                                                       |
| Time/Division Range, Random<br>Interleave sampling (RIS) | N/A                                                                                               | to 20 ps/div<br>(upper time/<br>div limit<br>function of<br>sample rate<br>and memory<br>length<br>settings) | N/A                                                                                          | to 20 ps/div<br>(upper time/<br>div limit<br>function of<br>sample rate<br>and memory<br>length<br>settings) | N/A                                                                                          | to 20 ps/div<br>(upper time/<br>div limit<br>function of<br>sample rate<br>and memory<br>length<br>settings) | N/A                                                                                          | to 20 ps/div<br>(upper time/<br>div limit<br>function of<br>sample rate<br>and memory<br>length<br>settings) |
| Math and Zoom Traces                                     | 8 independent zoom a                                                                              | nd 8 math or zo                                                                                              | om traces                                                                                    |                                                                                                              |                                                                                              | -                                                                                                            |                                                                                              |                                                                                                              |
| Sample Rate and<br>Delay Time Accuracy                   | ±1 ppm, aging < 1 ppr                                                                             | m/year @ 25°C                                                                                                |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |
| Time Interval Accuracy                                   | ≤ 0.06/SR + (1 ppm, a                                                                             | ging < 1 ppm/ye                                                                                              | ear * Reading)                                                                               | (rms)                                                                                                        |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |
| Jitter Noise Floor                                       | < 350 fs rms<br>measured with 35 ps<br>rise time (typical)                                        | 1 ps rms<br>(typical)                                                                                        | < 350 fs rms<br>measured<br>with 35 ps<br>rise time<br>(typical)                             | 1 ps rms<br>(typical)                                                                                        | < 350 fs ms<br>measured<br>with 35 ps<br>rise time<br>(typical)                              | 1 ps rms<br>(typical)                                                                                        | < 350 fs ms<br>measured<br>with 35 ps<br>rise time<br>(typical)                              | 1 ps rms<br>(typical)                                                                                        |
| Trigger and Interpolator Jitter                          | < 2.5 ps rms (typical)                                                                            |                                                                                                              |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |                                                                                              |                                                                                                              |





## Fast Oscilloscopes: LeCroy Sampling



#### Wave Expert 100H BW<sub>-3dB</sub>=100GHz

| Timebase                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                  |                                  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|
| Parameter                                          | Sequential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | With Coh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erent Timebase                    |                                  |                                  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (WE-CIS a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd WE-HCIS)                       |                                  |                                  |
| Sample Rate                                        | 1 MS/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 MS/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                  |                                  |
| Frequency Range                                    | DC to 5 GHz, using Trigger input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.5 MHz-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 MHz, using Trigger input       |                                  |                                  |
|                                                    | 5 GHz–14 GHz, using CLK/Prescale input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125 MHz-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 GHz, using CLK/Prescale input   |                                  |                                  |
|                                                    | up to 40 GHz, using SDA-TPS accessory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | up to 40 GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z, using SDA-TPS accessory        |                                  |                                  |
| Pattern Lock                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES, up to I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRBS23                            |                                  |                                  |
| Minimum Time Per Division                          | 1 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                  |                                  |
| Time Resolution                                    | 100 fs rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 fs rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                  |                                  |
| Timebase Range                                     | I ps/div to I ms/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I ps/div to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500 hs/div (4 IVI memory)         |                                  |                                  |
| Timebase Delay Time Range                          | 25 ns-10 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±1 pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l hustrian en einnel              |                                  |                                  |
| Long Term Stability                                | ±1 ps ±0.1% of reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by trigger signal                 |                                  |                                  |
| Maximum Record Longth                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i by trigger signal               |                                  |                                  |
| Standard                                           | 100k samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 M samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | les 1 Ch 16 M samples 4 Ch        |                                  |                                  |
| Optional                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 510 M/1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h, 256 M/2 Ch, 128 M/4 Ch         |                                  |                                  |
| Jitter                                             | 1 ps typical, 1.2 ps guaranteed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCIS: 230 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s rms typical, 250 fs rms guarant | eed                              |                                  |
| -                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIS: 500 fs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rms typical, 600 fs rms guarantee | ed                               |                                  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3 Gb/s–40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gb/s)                             |                                  |                                  |
|                                                    | eCroy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST-20 (20 GHZ)                    | SE-30 (30 GHZ)                   | SE-50 (50 GHZ)                   |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.92 mm                           | 2.92 mm                          | 2.4 mm                           |
| File Vertical Timebase Trigger Dispray Cursors Maa | sure Math Analyzes Utilities Help Zoott 20 and 20 a | Et all and a second sec | 18 ps                             | 12 ps                            | 8 ps                             |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 GHz                            | 30 GHz                           | 50 GHz                           |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ende 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Vpp                             | 2 Van                            | 2 Van                            |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10 (000 m)/ signal)             | 2 vp-p<br>< 10/ (000 m)/ signal) | 2 vp-p                           |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 1% (800 mvp-p signal)           | < 1% (800 mvp-p signal)          | < 1% (800 mvp-p signal)          |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | First 40 ps: ±10%, 40 ps-200 ps:  | First 40 ps: ±10%, 40 ps-200 ps: | First 40 ps: ±10%, 40 ps-200 ps: |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±5%, 200 ps-10 ns ±2%             | ±5%, 200 ps-10 ns ±2%            | ±5%, 200 ps-10 ns ±2%            |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700 µV max. (500 µV typical)      | 1 mV (max.)                      | 2 mV (max.), 1 mV (typical)      |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +1 V                              | +1 V                             | +1 V                             |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AME N<br>PERSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                  |                                  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE-70 (70 CHz)                    | SE-100 (100 GHz)                 |                                  |
| COHa ata                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.05 mm                           | 1                                |                                  |
| 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0             | 020701 50210 FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.85 mm                           | Imm                              |                                  |
| Lector                                             | Sampling Oscilloscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 ps                              | 4 ps                             |                                  |
| W waveExper                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 GHz                            | 100 GHz                          |                                  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 Vp-p                            | 2 Vp-p                           |                                  |
| 4                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 1% (800 mVp-n signal)           | < 1% (800 mVn-n signal)          |                                  |
| C LCov A C A 1234 cm 2                             | AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | First 40 ps; +10% 40 ps-200 ps;   | First 40 ps; +10% 40 ps-200 ps;  |                                  |
| ÷ 1 = = = = = = = = = = = = = = = = = =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . EV 200 m 10 m 200               | EV 200 mg 10 mg 200 ps.          |                                  |
| 2 2350                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±5%, 200 ps-10 ns ±2%             | ±5%, 200 ps-10 ns ±2%            |                                  |
| 040                                                | RMS N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 mV (max.)                       | 3 mV (max.)                      |                                  |
| NAY CAS                                            | Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±1 V                              | ±1 V                             |                                  |

THE CERN ACCELERATOR SCHOOL





# Fast Oscilloscopes: Tektronix RT

- DPO 70000 series: up to 20GHZ real time; 50GS/s samplers
- Digital Phosphor Oscillscope
  - Clever idea to emulate the "old" analogue oscilloscope to capture low occurrence events on ultra fast signals
  - Increased the transfer rate from the acquisition to the display memory







## Fast Oscilloscopes: Tektronix RT



#### Vertical System

| DPO/DSA Model                                                | s                                                                            | 70404                                                              | 70604                                     | 70804                                           | 71254                                                             | 71604                                             | 72004                            |              |
|--------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|
| Input Channels                                               |                                                                              | 4                                                                  | 4                                         | 4                                               | 4                                                                 | 4                                                 | 4                                |              |
| Bandwidth<br>(user selectable DSP enh                        | nance)                                                                       | 4 GHz                                                              | 6 GHz                                     | 8 GHz                                           | 12.5 GHz                                                          | 16 GHz                                            | 2 settings: 20 GHz<br>and 18 GHz |              |
| Rise Time 10% to 90% (                                       | (typical)                                                                    | 93 ps                                                              | 62 ps                                     | 47 ps                                           | 34.3 ps                                                           | 27.5 ps                                           | 22.5 ps                          |              |
| Rise Time 20% to 80% (                                       | (typical)                                                                    | 65 ps                                                              | 43 ps                                     | 33 ps                                           | 23 ps                                                             | 21 ps                                             | 17 ps                            |              |
| Hardware Analog Bandw                                        | idth (–3 dB)                                                                 | 4 GHz                                                              | 6 GHz                                     | 8 GHz                                           | 12.5 GHz                                                          | 16 GHz (typical)                                  | 16 GHz (typical)                 |              |
| DC Gain Accuracy                                             |                                                                              |                                                                    |                                           | ±2% (of                                         | reading)                                                          |                                                   | - Alastati Abay Addi Aktoba      |              |
| Bandwidth Limits                                             |                                                                              | Depending on in                                                    | strument model: 19 G<br>9 GHz, 8 GHz, 7 ( | Hz, 18 GHz, 17 GHz, 1<br>GHz, 6 GHz, 5 GHz, 4 ( | 6 GHz, 15 GHz, 14 GHz,<br>GHz, 3 GHz, 2 GHz, 1 GH                 | 13 GHz, 12 GHz, 11 Gi<br>z or 500 MHz             | Hz, 10 GHz,                      |              |
| Input Coupling                                               |                                                                              |                                                                    |                                           | DC (50 s                                        | 2), GND                                                           |                                                   |                                  |              |
| Input Impedance                                              |                                                                              |                                                                    | 5                                         | 0 Ω ±1.5%, 1 MΩ wi                              | th TCA-1MEG adapter                                               |                                                   |                                  |              |
| 18 GHz and below<br>20 GHz and 19 GHz<br>Vertical Resolution | Time Ba<br>DPO/DSA N<br>Time Data Data                                       | ase System<br>Aodels                                               | 70404                                     | 70604                                           | 70804                                                             | 71254                                             | 71604                            | 72004        |
| Max Input Voltage, 50 $\Omega$                               | Time Base Hange                                                              | e<br>Gel ET (Tiles e de)                                           | 20 ps/div                                 | 10 1000 s/dw                                    |                                                                   |                                                   | 10 ps/div to                     | ) 1000 s/div |
|                                                              | Time Resolution                                                              | (In E1/IT mode)                                                    | 2                                         | 200 TS                                          |                                                                   | 200 Stores 2020                                   | 100                              | J TS         |
|                                                              | Time Base Delay                                                              | Time Range                                                         |                                           |                                                 | -5.0                                                              | ks to 1.0 ks                                      |                                  |              |
|                                                              | Channel-to-chan                                                              | nel Deskew                                                         |                                           |                                                 | Ran                                                               | ge ±75 ns                                         |                                  |              |
|                                                              | Delta Time Meas<br>(typical) Over <1<br>single shot; with<br>= 1.2X scope ri | urement Accuracy<br>00 ns duration;<br>signal rise time<br>se time | 888 fs                                    | 695 fs                                          | 611 fs                                                            | 504 fs                                            | 482 fs                           | 525 fs       |
|                                                              | Trigger Jitter (RM                                                           | IS)                                                                |                                           |                                                 | 1 ps <sub>RMS</sub> (typical) wit<br>< 100 fs <sub>RMS</sub> with | h enhanced triggering (<br>enhanced triggering Ol | DFF<br>N                         |              |
|                                                              | Jitter Noise Floor<br>(With BW+ band                                         | (typical)<br>width enhance enabled)                                | 450 fs                                    | 450 fs                                          | 450 fs                                                            | 300 fs                                            | 300 fs                           | 400 fs       |
|                                                              | Time Base Accur                                                              | acy                                                                |                                           |                                                 | ±1.5 ppm initial accu                                             | racy, aging <1 ppm per y                          | lear                             |              |
|                                                              |                                                                              |                                                                    |                                           |                                                 |                                                                   |                                                   |                                  |              |



# Fast Oscilloscopes: Tektronix sampling

#### DSA8200: up to 70GHz



| Trigger Sensitivit                               | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External Direct                                  | 50 mV, DC - 4 GHz (typical)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Trigger Output                                   | 100 mV, DC - 3 GHz (guaranteed)                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Trigger Level<br>Range                           | ±1.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Trigger Input<br>Range                           | ±1.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Trigger Holdoff                                  | Adjustable 5 µs to 100 ms in 0.5 ns<br>increments                                                                                                                                                                                                                                                                                                                                                                                                                             |
| External Trigger<br>Gate (optional)              | TTL logic 1 enables gate, a TTL logic 0<br>disables gate, maximum non-destruct<br>input level ±5 V                                                                                                                                                                                                                                                                                                                                                                            |
| Pre-scaled Trigger<br>Input                      | 200 mV <sub>p-p</sub> to 800 mV <sub>p-p</sub> , 2 to 12.5 GHz<br>(guaranteed)                                                                                                                                                                                                                                                                                                                                                                                                |
| Timebase Jitter                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phase<br>Reference*11<br>Timebase                | System jitter of 200 fs <sub>RMS</sub> typical on a<br>10 GHz or faster acquisition module, with<br>f≥ 8 GHz, 0.6 V ≤ VREF ≤ 1.8 V Phase<br>Reference Signal.<br>Jitter: system jitter of 280 fs <sub>RMS</sub> typical<br>on a 10 GHz or faster acquisition module,<br>in DSA8200 mainframe, with 2 GHz ≤ f ≤<br>8 GHz, 0.6 V ≤ VREF ≤ 1.8 V Phase<br>Reference Signal.<br>The Phase Reference timebase remains<br>operational to 100 mV (typical) with<br>increased jitter. |
| Short-term Jitter                                | 800 fs <sub>RMS</sub> +5 ppm of position (typical)                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sequential Mode                                  | 1.2 ps <sub>RMS</sub> +10 ppm of position (max.)                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Locked to 10 MHz<br>Reference<br>Seguential Mode | 1.6 ps <sub>RMS</sub> +0.04 ppm of position<br>(typical)                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                  | 2.5 ps <sub>RMS</sub> +0.01 ppm of position (max.)                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Internal Clock                                   | Adjustable from 25 to 200 kHz (drives<br>TDR, internal clock output and<br>calibrator).                                                                                                                                                                                                                                                                                                                                                                                       |



#### Fast Oscilloscopes: Agilent RT



#### Infinium 9000A: up to 13GHz



| Horizontal                                                                                  |                                                                                                                              |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Main timebase range                                                                         | 5 ps/div to 20 s/div real-time, 5 ps/div to 500 ns/div equivalent-time                                                       |
| Main timebase delay range                                                                   | -200 s to 200 s real-time, -25 µs to 200 s equivalent-time                                                                   |
| Zoom timebase range                                                                         | 1 ps/div to current main time scale setting                                                                                  |
| Channel deskew                                                                              | $\pm25\mu s$ range, 100 fs resolution                                                                                        |
| Time scale accuracy*                                                                        | ± (0.4 + 0.5 * YrsSinceCal) ppm pk                                                                                           |
| Delta-time measurement<br>accuracy <sup>4</sup> e, 6b, 7<br>Absolute,<br>averaging disabled | $\sqrt{\left(\frac{5.0 \cdot Noise}{SlewRate}\right)^2 + 20 \times 10^{-24}} + \frac{TimeScaleAccy \cdot Reading}{2}$ sec pk |
| Absolute.<br>>- 256 averages                                                                | $\sqrt{\left(\frac{0.35 * Noise}{SlewRate}\right)^2 + 0.1x10^{-24} + \frac{TimeScaleAccy * Reading}{2} \sec pk}$             |
| Standard deviation,<br>averaging disabled                                                   | $\sqrt{\left(\frac{1.4 \cdot Noise}{SlewRate}\right)^2 + 0.6x10^{-24} \sec_{ms}}$                                            |
| Standard deviation,<br>>- 256 averages                                                      | $\sqrt{\left(\frac{0.1 \cdot Noise}{SlewRate}\right)^2 + 0.01 \times 10^{-24}} \sec ms$                                      |

| Vertical                                                  |                                                                  |                                  |                          |                          |                          |                                 |
|-----------------------------------------------------------|------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|
| Input channels                                            | Four                                                             |                                  |                          |                          |                          |                                 |
| Analog bandwidth<br>(–3 dB)* <sup>, 10</sup>              | 90254A<br>2.5 GHz                                                | 90404A<br>4 G Hz                 | 90604A<br>6 GHz          | 98804A<br>8 G Hz         | 91204A<br>12 GHz         | 91304A<br>13 GHz                |
| DSP enhanced bandwidth <sup>3</sup>                       | 91304A: 13-GHz real-time, user-selectable DSP enhanced bandwidth |                                  |                          |                          |                          |                                 |
| Rise time/fall time <sup>11</sup><br>10 - 90%<br>20 - 80% | 90254A<br>140 ps<br>105 ps                                       | <b>90404A</b><br>105 ps<br>79 ps | 90604A<br>70 ps<br>53 ps | 90804A<br>54 ps<br>38 ps | 91204A<br>35 ps<br>26 ps | <b>91304A</b><br>32 ps<br>24 ps |
| Input impedance                                           | 50 Ω, ± 3%                                                       |                                  |                          |                          |                          |                                 |
| Sensitivity <sup>1</sup>                                  | 1 mV/div to 1 V/div                                              |                                  |                          |                          |                          |                                 |
| Input coupling                                            | DC                                                               |                                  |                          |                          |                          |                                 |
| Vertical resolution <sup>2</sup>                          | 8 bits, ≥ 12 bits with averaging                                 |                                  |                          |                          |                          |                                 |





#### Fast Oscilloscopes: Agilent sampling



DCA-J: up to 80GHz
Precision Time Base: jitter on trigger <100fs</li>



| ELECTRICAL CHANNEL SPECIFICATI | ONS              |                 |                   |                                |
|--------------------------------|------------------|-----------------|-------------------|--------------------------------|
| Electrical channel bandwidth   | 18 and 40 GHz    | 43 and 63 GHz   | 80, 55 and 30 GHz | 80 <i>(93)</i> , 55 and 30 GHz |
| Transition time (10% to 90%    | 19.5 ps (18 GHz) | 8.1 ps (43 GHz) | 6.4 ps (55 GHz)   | 6.4 ps (55 GHz)                |
| calculated from Tr = 0.35/BW ) | 9 ps (40 GHz)    | 5.6 ps (63 GHz) | 4.4 ps (80 GHz)   | 4.4 ps (80 GHz)                |
| RMS noise                      |                  |                 |                   |                                |

| Characteristic | 0.25 mV (18 GHz)<br>0.5 mV (40 GHz) | 0.6 mV (43 GHz)<br>1.7 mV (63 GHz) | Pr<br>The<br>sect |
|----------------|-------------------------------------|------------------------------------|-------------------|
| Maximum        | 0.5 mV (18 GHz)                     | 0.9 mV (43 GHz)                    | the 8             |
|                | 1.0 mV (40 GHz)                     | 2.5 mV (63 GHz)                    | can               |

#### Precision time base 86108A

86108A can be triggered through clock recovery of the observed signal, through an external reference clock into the precision timebase tion, or with the precision timebase operating on the clock signal recovered from the observed signal. The following specifications indicate 86100 system timebase specifications achieved when using the 86108A plug-in module. (The 86100 mainframe and the 86108A module also be triggered with a signal into the mainframe. In this configuration, the basic mainframe specifications are achieved)

PA

Aselgontal

|                                                                                                  | 86108A         |
|--------------------------------------------------------------------------------------------------|----------------|
| Typical jitter (clock recovery and precision timebase configuration)                             | < 60 ts        |
| Maximum jitter (clock recovery and precision timebase configuration)                             | <100 ls        |
| Typical jitter (clock recovery without precision timebase active)                                | <1 ps          |
| Effective trigger-to-sample delay (clock recovery and precision timebase configuration, typical) | < 200 ps       |
| Typical jitter (trigger signal applied to precision timebase input)                              | < 60 ts        |
| Maximum jitter (trigger signal supplied to precision timebase input)                             | < 100 fs       |
| Precision timebase trigger bandwidth                                                             | 2 to 13.5 GHz  |
| Precision timebase external reference amplitude                                                  | 1.0 to 1.6 Vpp |
| Precision timebase input signal type <sup>1</sup>                                                | Sinusoid       |
| Precision timebase maximum input level                                                           | ±2V (16 dBm)   |
| Precision timebase maximum DC offset level                                                       | ±200 mV        |
| Precision timebase input impedance                                                               | 50 Ω           |
| Precision timebase connector type                                                                | 3.5 mm male    |
| Timebase resolution (with precision timebase active)                                             | 0.5 ps/div     |
| Timebase resolution (precision timebase disabled)                                                | 2 ps/div       |





## References



- [1] H. Wiedemann "Particle Accelerator Physics; basic principles and linear beam dynamics", vol. 1 Springer 1993 [2] J.M. Byrd S. De Santis "Longitudinal injection transients in an electron storage ring" Paper LBNL-47593, 2000 [3] A.Hofmann "Beam Instabilities" in CAS Synchrotron Radiation and Free electron lasers, Brunnen CH, July 2003 [33] A. Hofmann "Beam Diagnostics" at CAS 2008 Dourdan, Paris http://www.bergoz.com/ [4] Bergoz Instrumentation [5] M. Ferianis et al. "Characterization of Fast Faraday Cups at the Elettra Linac" DIPAC 2003 [6] M. Minty "Diagnostics" in CAS Synchrotron Radiation and Free electron lasers, Brunnen CH, July 2003 [7] Ref.: Elettra Technical Note STR NOTE 25, J-C Denard G. Mian 22AUG 1992 http://sales.hamamatsu.com [8] Hamamatsu Photodiodes [9] New Focus http://www.newfocus.com [10] Fraunhofer Institut für Nachrichtentechnik H.-Hertz-Institut, D-10587 Berlin, D http://www.hhi.fraunhofer.de [11] Le Croy sampling + diode WaveExpert100H High BW Optical Apps LeCroy preserntation 2007
- [12] M. Ferianis et al., "Bunch Length Measurements at Elettra" in DIPAC '97 proceedings, Frascati 1997

