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Overview

• First hour: 
– Introduction
– Overview of measurement instruments

• Faraday Cup
• Beam Current Transformer
• Beam Position Monitor
• Profile Detectors

– SEMGrids
– Wire Scanners

• Beam Loss Monitors

• Second hour
– Some depicted examples of beam parameter measurements



U. Raich CAS Divonne 2009 Beam Diagnostics 3

Introduction

An accelerator can never be better than the instruments measuring its 
performance!
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Different uses of beam diagnostics

Regular crude checks of accelerator performance
– Beam Intensity 
– Radiation levels

Standard regular measurements
– Emittance measurement
– Trajectories
– Tune

Sophisticated measurements e.g. during machine 
development sessions
– May require offline evaluation
– May be less comfortable
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Diagnostic devices and quantity 
measured

Instrument Physical Effect Measured Quantity Effect on beam
Faraday Cup Charge collection Intensity Destructive
Current 
Transformer

Magnetic field Intensity Non destructive

Wall current 
monitor

Image Current Intensity
Longitudinal beam shape

Non destructive

Pick-up Electric/magnetic 
field

Position Non destructive

Secondary 
emission monitor

Secondary electron 
emission

Transverse size/shape, 
emittance

Disturbing, can be 
destructive at low 
energies

Wire Scanner Secondary particle 
creation

Transverse size/shape Slightly disturbing

Scintillator screen Atomic excitation 
with light emission

Transverse size/shape 
(position)

Destructive 

Residual Gas 
monitor

Ionization Transverse size/shape Non destructive
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A beam parameter measurement
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Required Competence in a beam 
diagnostics group

• Some beam physics in order to understand the beam 
parameters to be measured and to distinguish beam effects 
from sensor effects

• Detector physics to understand the interaction of the beam 
with the sensor

• Mechanics
• Analogue signal treatment

– Low noise amplifiers
– High frequency analogue electronics

• Digital signal processing
• Digital electronics for data readout
• Front-end and Application Software
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Layout of a Faraday Cup

• Electrode: 1 mm stainless steel
• Only low energy particles can be 

measured
• Very low intensities (down to 1 

pA) can be measured
• Creation of secondary electrons of 

low energy (below 20 eV) 
• Repelling electrode with some 

100 V polarisation voltage pushes 
secondary electrons back onto the 
electrode

Schema: V. Prieto
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Faraday Cup
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Electro-static Field in Faraday Cup

In order to keep secondary 
electrons with the cup a repelling 
voltage is applied to the polarization 
electrode

Since the electrons have energies of 
less than 20 eV some 100V
repelling voltage is sufficient
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Energy of secondary emission electrons

• With increasing repelling voltage 
the electrons do not escape the 
Faraday Cup any more and the 
current measured stays stable.

• At 40V and above no decrease in 
the Cup current is observed any 
more 
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Faraday Cup with water cooling

For higher intensities 
water cooling may be needed
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Current Transformers
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The ideal transformer

Beam signal
Transformer output signal
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Principle of a fast current transformer

Diagram by H. Jakob

Image
Current

BEAM

Calibration winding

• 500MHz Bandwidth
• Low droop (< 0.2%/μs)

Ceramic 
Gap

80nm Ti Coating
⇒20Ω to improve

impedance
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Fast current transformers for the LHC
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Magnetic shielding

Shield should extend along the vacuum chamber 
length > diameter of opening
Shield should be symmetrical to the beam axis
Air gaps must be avoided especially along the 
beam axis
Shield should have highest μ possible but should 
not saturate

monitor

Soft iron (μ1) Transformer steel (μ2)

Permalloy (μ3)
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Calibration of AC current transformers

The transformer is 
calibrated with a very 
precise current source
The calibration signal is 
injected into a separate 
calibration winding
A calibration procedure 
executed before the 
running period
A calibration pulse before 
the beam pulse 
measured with the beam 
signal



Current transformer and electronics
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Display of transformer readings

First result from
LHC FBCT
Measurement of 
bunch intensity
Diminishing intensity
due to debunching
Beam losses will 
trigger machine 
protection system 
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The DC current transformer

AC current transformer can be extended to very long droop 
times but not to DC
Measuring DC currents is needed in storage rings
Must provide a modulation frequency
Takes advantage of non/linear magnetisation curve

B

H
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Principle of DCCT

beam

Compensation
current Ifeedback=-Ibeam

modulator

V=RIbeam

Power supply

R

Synchronous
detector

Va-Vb

Vb

Va
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Modulation of a DCCT  without beam

1 2

B=f(t)
B

H

53 4

Modulation current 
has only odd 
harmonic 
frequencies since 
the signal is 
symmetric

dt
dBNAU =

0B
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Udt
B += ∫
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Modulation of a DCCT with beam

1

B=f(t)

B

H

1 2 53 4

Sum signal becomes non-zero
Even harmonics appear
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Modulation current difference signal with 
beam

• Difference signal has 2ωm

• ωm typically 200 Hz – 10 kHz
• Use low pass filter with

ωc<<ωm

• Provide a 3rd core, normal 
AC transformer to extend to 
higher frequencies
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Photo of DCCT internals



Results from DCCT
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Beam 2
DCCT sees first
circulating beam

Injections into LHC
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Measuring Beam Position – The Principle
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Wall Current Monitor – The Principle
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L

Wall Current Monitor – Beam Response
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Electrostatic Monitor – The Principle
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Electrostatic Monitor – Beam Response
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Position measurements

U

If the beam is much smaller than w, all field lines are captured and
U is a linear function with replacement
else: Linear cut (projection to measurement plane must be linear)

w
U

d

d
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Shoebox pick-up
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• Can measure horizontal and vertical position at once
• Has 4 electrodes

Doubly cut shoebox

a
b

c
d
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Simulatenous horizontal and vertical 
measurement
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Interaction of particles with matter

Coulomb interaction
Average force in s-direction=0
Average force in transverse 
direction <> 0
Mostly large impact parameter 
=> low energy of ejected 
electron
Electron mostly ejection 
transversely to the particle 
motion
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Beam particle
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• with the following constants:
NA: Avogadro’s number
me and re: electron rest mass and classical electron radius
c: speed of light

• the following target material properties:
ρ: material density
AT and ZT: the atomic mass and nuclear charge

• and the particle properties:
Zp: particle charge
β: the particles velocity and 

Dependance on

Bethe Bloch formula
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High energy loss a low energies
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Heavy ions at low energy are stopped within a few micro-meters
All energy is deposited in a very small volume 
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Scintillating Screens

Method already applied in cosmic ray 
experiments

• Very simple
• Very convincing
Needed: 
• Scintillating Material 
• TV camera 
• In/out mechanism
Problems:
• Radiation resistance of TV camera
• Heating of screen (absorption of

beam energy)
• Evacuation of electric charges
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ρ

g/cm3
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W/mK

Tmax

ºC

R at 400 
ºC

Ω.cm

Al2O3 3.9 0.9 30 1600 1012

ZrO2 6 0.4 2 1200 103

BN 2 1.6 35 2400 1014

Better for electrical conductivity (>400ºC)
Better for thermal properties
(higher conductivity, higher heat capacity)
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Degradation of screen

 

Degradation clearly visible
However sensitivity stays essentially 
the same



U. Raich  CAS Divonne 2009 Beam Diagnostics 43

Screen mechanism

• Screen with graticule
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Results from TV Frame grabber

• For further evaluation the video 
signal is digitized, read-out and 
treated by program 

First full turn
as seen by the 

BTV
10/9/2008

Uncaptured 
beam sweeps 

through he 
dump line



U. Raich  CAS Divonne 2009 Beam Diagnostics 45

Profile measurements

• Secondary emission grids (SEMgrids)

When the beam passes
secondary electrons are
ejected from the ribbons

The current flowing back 
onto the ribbons is 
measured

Electrons are taken away
by polarization voltage

One amplifier/ADC chain
channel per ribbon
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SEMgrids with wires
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Profiles from SEMgrids

Projection of charge density
projected to x or y axis is 
Measured

One amplifier/ADC per wire
Large dynamic range

Resolution is given by wire 
distance

Used only in transfer lines
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Wire Scanners

A thin wire is quickly moved across the beam
Secondary particle shower is detected outside the vacuum chamber
on a scintillator/photo-multiplier assembly 
Position and photo-multiplier signal are recorded simultaneously
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Wire scanner profile

High speed needed
because of heating.

Adiabatic damping

Current increase due to
Speed increase

Speeds of up to 20m/s
=> 200g acceleration
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Stored Beam Energies
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Quench Levels Units Tevatron RHIC HERA LHC
Instant loss (0.01 - 10 ms) [J/cm3] 4.5 10-03 1.8 10-02 2.1 10-03 - 6.6 10-03 8.7 10-04

Steady loss (> 100 s) [W/cm3] 7.5 10-02 7.5 10-02 5.3 10-03
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Beam power in the LHC

shotshot

The Linac beam (160 mA, 200μs, 50 MeV, 1Hz) is enough to burn a hole into
the vacuum chamber
What about the LHC beam: 2808 bunches of 15*1011 particles at 7 TeV?
1 bunch corresponds to a 5 kg bullet at 800 km/h
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Beam Dammage

primary collimatorprimary collimator

Fermi Lab‘sTevatron has 200 times less beam power than LHC!
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Beam Loss Monitor Types

• Design criteria: Signal speed and robustness
• Dynamic range (> 109) limited by leakage current through insulator 

ceramics (lower) and saturation due to space charge (upper limit).
Ionization chamber:

– N2 gas filling at 100 mbar 
over-pressure

– Length 50 cm
– Sensitive volume 1.5 l
– Ion collection time 85 μs

• Both monitors:
– Parallel electrodes (Al, SEM: 

Ti) separated by 0.5 cm
– Low pass filter at the HV 

input
– Voltage 1.5 kV

Secondary Emission Monitor
(SEM):
– Length 10 cm
– P < 10-7 bar
– ~ 30000 times smaller 

gain
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Quench levels
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Industrial production of chambers

Beam loss must be
measured all around
the ring
=> 4000 sensors!
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System layout
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Successive running sums
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