RF, part II

Erk Jensen, CERN BE-RF

Characterizing a cavity

24 February, 2009

CERN Accelerator School, Divonne 2009

Cavity resonator – equivalent circuit Simplification: single mode

Resonance

24 February, 2009

CERN Accelerator School, Divonne 2009

Reentrant cavity

Nose cones increase transit time factor, round outer shape minimizes losses.

Nose cone example Freq = 500.003

Example: KEK photon factory 500 MHz - R as good as it gets this cavity optimized pillbox R/Q: 111 Ω 107.5 Ω Q: 44270 41630 R: 4.9 M Ω 4.47 M Ω

Loss factor

Impedance seen by the beam

V (induced) I_B $k_{loss} = \frac{\omega_{o}}{2} \frac{R}{Q} = \frac{\left|V_{gap}\right|^{2}}{4W} = \frac{1}{2C}$ Beam Energy deposited by a RA $L = R/(Q\omega_0)$ single charge q: $k_{loss} q^2$ $C = Q/(R\omega_0)$ Cavity Voltage induced by a $2Q_L$ single charge q: e V gap $2 k_{loss} q$ $t f_0$

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II

Summary: relations V_{gap}, W, P_{loss}

24 February, 2009

Beam loading – RF to beam efficiency

- The beam current "loads" the generator, in the equivalent circuit this appears as a resistance in parallel to the shunt impedance.
- If the generator is matched to the unloaded cavity, beam loading will cause the accelerating voltage to decrease.
- The power absorbed by the beam is -¹/₂ Re{V_{gap} I^{*}_B}, the power loss P = ^{|V_{gap}|²}/_{2 R}.
 For high efficiency, beam loading shall be high.
 The RF to beam efficiency is η = ¹/₁₊ <sup>V_{gap}/_{R|I|} = ^{|I_B|}/<sub>|I_G|}.
 </sup></sub>

Cavity parameters

• Resonance frequency

Transit time factor

field varies while particle is traversing the gap

Shunt impedance

gap voltage - power relation

• Q factor

• *R/Q*

independent of losses - only geometry!

loss factor

CERN Accelerator School, Divonne 2009

Circuit definition

 $\left|V_{gap}\right|^2 = 2 R_{shunt} P_{loss}$

Linac definition

$$\left|V_{gap}\right|^2 = R_{shunt}P_{loss}$$

$$\omega_{0}W = QP_{loss}$$

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{2\omega_0 W} = \sqrt{\frac{L}{C}}$$

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{\omega_0 W}$$

Higher order modes (HOM's)

external dampers

. . .

24 February, 2009

• • •

HOM (measured spectrum)

24 February, 2009

CERN Accelerator School, Divonne 2009

Pillbox: Dipole mode

(only 1/8 shown)

electric field (@ 0°)

magnetic field (@ 90°)

(TM₁₁₀)

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 12

Panofsky-Wenzel theorem

For particles moving virtually at v=c, the integrated transverse force (kick) can be determined from the transverse variation of the integrated longitudinal force!

$$\mathbf{j}\frac{\boldsymbol{\omega}}{c}\vec{F}_{\perp} = \nabla_{\perp}F_{\parallel}$$

Pure TE modes: No net transverse force!

Transverse modes are characterized by

- the transverse impedance in ω -domain
- the transverse loss factor (kick factor) in t-domain !

W.K.H. Panofsky, W.A. Wenzel: "Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields", RSI 27, 1957]

24 February, 2009

CERN/PS 80 MHz cavity (for LHC)

HOM's

Example shown: 80 MHz cavity PS for LHC. Color-coded:

120.5 MHz. m=1

255.4 MHz, 1940

242 Miliz, mm.

337.5 MHz. m=1

344.5 MHz, ##0

357.9 MHz. m+3

III MHA INTO

1763 Mile. av.2

387.8 MHz.m+1

418.5 MHz, 1944

422.9 MHz, m=0

att.s.MHz.m=0

473.5 MHz. med.

476.1 Mills, and

479.2 Mile, 1644

481:0 Mills, see1

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II

More examples of cavities

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 16

PS 19 MHz cavity (prototype, photo: 1966)

24 February, 2009

CERN Accelerator School, Divonne 2009

Examples of cavities

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping,

LEP normal-conducting Cu RF cavities, 350 MHz. 5 cell standing wave + spherical cavity for energy storage, 3 MV

CERN/PS 40 MHz cavity (for LHC)

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 19

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 20

What do you gain with many gaps?

 The R/Q of a single gap cavity is limited to some 100 Ω. Now consider to distribute the available power to n identical cavities: each will receive P/n, thus produce an accelerating voltage of √2RP/n. The total accelerating voltage thus increased, equivalent to a total equivalent shunt impedance of nR.

P/n

P/n

P/n

P/n

 $|V_{acc}| = n_{\sqrt{2R}} \frac{P}{n} = \sqrt{2(nR)P}$

Standing wave multicell cavity

- Instead of distributing the power from the amplifier, one might as well couple the cavities, such that the power automatically distributes, or have a cavity with many gaps (e.g. drift tube linac).
- Coupled cavity accelerating structure (side coupled)

The phase relation between gaps is important!

24 February, 2009

CERN Accelerator School, Divonne 2009

Side Coupled Structure : example LIBO

A 3 GHz Side Coupled Structure to accelerate protons out of cyclotrons from 62 MeV to 200 MeV

Medical application: treatment of tumours.

Prototype of Module 1 built at CERN (2000)

Collaboration CERN/INFN/ Tera Foundation

LIBO prototype

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)

24 February, 2009

Travelling wave structures

24 February, 2009

Iris loaded waveguide

1 cm

11.4 GHz structure (NLC)

30 GHz structure (CLIC)

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 27

Disc loaded structure with strong HOM damping "choke mode cavity"

24 February, 2009

Waveguide coupling

Input coupler

$\frac{1}{4}$ geometry shown

shown: Re {Poynting vector}
(power density)

Output coupler

Travelling wave structure (CTF3 drive beam, 3 GHz)

24 February, 2009

3 GHz Accelerating structure (CTF3)

HOM damping at work

Recent CLIC structures (11.4, 12 and 30 GHz)

"T18" reached 105 MV/m!

24 February, 2009

CERN Accelerator School, Divonne 2009

Superconducting Linacs

24 February, 2009

RF Superconductivity

 Different from DC, at RF the resistance is not exactly zero, but just very small. It is

$$R_{surf} = R_{BCS} + R_{res} \quad R_{BCS} \propto \omega^2 e^{-1.76 T_{c}}$$

 The maximum accelerating gradient is normally limited by the maximum possible surface magnetic field (the "superheating field", 180 mT for Nb, 400 mT for Nb₃Tn).

Maximum acc. gradients are however obtained for Nb (ILC, \approx 40 MV/m).

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 34

LEP Superconducting cavities

SUPERCONDUCTING CAVITY WITH ITS CRYOSTAT

24 February, 2009

CERN Accelerator School, Divonne 2009

TESLA/ILC SC cavities

LHC SC RF, 4 cavity module, 400 MHz

24 February, 2009

24 February, 2009

Old pre-injector 750 kV DC , CERN Linac 2, before 1990

All this was replaced by the RFQ ...

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 39

RFQ of CERN Linac 2

24 February, 2009

The Radio Frequency Quadrupole (RFQ)

Minimum Energy of a DTL: 500 keV (low duty) - 5 MeV (high duty) At low energy / high current we need strong focalisation Magnetic focusing (proportional to β) is inefficient at low energy. Solution (Kapchinski, 70's, first realised at LANL):

<u>Electric quadrupole focusing + bunching + acceleration</u>

24 February, 2009

RFQ electrode modulation

The electrode modulation creates a longitudinal field component that creates the "bunches" and accelerates the beam.

A look inside CERN AD's "RFQD"

RF power sources

24 February, 2009

RF power sources

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 45

LEIR SSPA, 1 kW, 0.2 – 50 MHz

Soleil Booster SSPA, 40 kW, 352 MHz

147 modules

24 http://accelconf.web.cern.ch/AccelConf/equ/PAPERS/THPKF031.PDF II

Tetrode

4CX250B (Eimac/CPI), < 500 MHz, 600 W (Anode removed)

RS 1084 CJ (ex Siemens, now Thales), < 30 MHz, 75 kW

YL1520 (ex Philips, now Richardson), < 260 MHz, 25 kW

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II

High power tetrode amplifier

CHARLY MONDHEIMER

CERN PS: 13-20 MHz, 30 kW Driver: solid state 400 W, Final: RS 1084 CJSC

24 February, 2009

Klystron principle

24 February, 2009

CLININ ACCERCIATION SCHOOL, DIVOINE 2009

Klystrons

CERN CTF3 (LIL): 3 GHz, 45 MW, 4.5 μs, 50 Hz, η 45 %

> CERN LHC: 400 MHz, 300 kW, CW, η 62 %

CERN Accelerator School, Divonne 2009

24 February, 2009

RF pulse compression

24 February, 2009

RF Pulse Compression

24 February, 2009

Flat output pulses

Pulse compressor

BOC "Barrel Open Cavity"

24 February, 2009

CERN Accelerator School, Divonne 2009

BOC

2.99848 GHz, S11: -12.9 dB

Electric field, logarithmic scale

Magnetic field

24 February, 2009

CERN Accelerator School, Divonne 2009

RF II 56