RF, part I

Erk Jensen, CERN BE-RF

Definitions & basic concepts

dB *t*-domain vs. ω-domain phasors

24 February, 2009

CERN Accelerator School, Divonne 2009

Decibel (dB)

Convenient logarithmic measure of a power ratio.
A "Bel" (= 10 dB) is defined as a power ratio of 10¹. Consequently, 1 dB is a power ratio of 10^{0.1}≈1.259
If *rdb* denotes the measure in dB, we have:

 $rdb = 10 \text{ dB} \log\left(\frac{P_2}{P_1}\right) = 10 \text{ dB} \log\left(\frac{A_2^2}{A_1^2}\right) = 20 \text{ dB} \log\left(\frac{A_2}{A_1}\right)$

$\underline{P_2}$	A_2^2	-1	$\Omega^{rdb/(1)}$	0 dB)
$\overline{P_1}$	$\overline{A_1^2}$	-1	0	

 $\frac{A_2}{A_1} = 10^{rdb/(20 \text{ dB})}$

rdb	-30 dB	-20 dB	-10 dB	-6 dB	-3 dB	o dB	3 dB	6 dB	10 dB	20 dB	30 dB
P_{2}/P_{1}	0.001	0.01	0.1	0.25	.50	1	2	3.98	10	100	1000
A_2/A_1	0.0316	0.1	0.316	0.50	.71	1	1.41	2	3.16	10	31.6

• Related: dBm (relative to 1 mW), dBc (relative to carrier)

24 February, 2009

Time domain – frequency domain (1)

- An arbitrary signal g(t) can be expressed in ω-domain using the *Fourier transform* (FT).
 g(t) ⊶ G(ω) = 1/√2π ∫ g(t)e^{jωt}dt
- The inverse transform (IFT) is also referred to as Fourier Integral $G(\omega) \bullet g(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(\omega) e^{-j\omega t} d\omega$
- The advantage of the ω-domain description is that linear time-invariant (LTI) systems are much easier described.
- The mathematics of the FT requires the extension of the definition of a *function* to allow for infinite values and nonconverging integrals.
 - The FT of the signal can be understood at looking at "what frequency components it's composed of".

Time domain – frequency domain (2)

- For *T*-periodic signals, the FT becomes the Fourier-Series, $d\omega$ becomes $2\pi/T$, \int becomes Σ .
- The cousin of the FT is the *Laplace transform*, which uses a complex variable (often s) instead of *j*ω; it has generally a better convergence behaviour.
- Numerical implementations of the FT require discretisation in t (sampling) and in ω. There exist very effective algorithms (FFT).
- In digital signal processing, one often uses the related z-Transform, which uses the variable $z = e^{j\omega\tau}$, where τ is the sampling period. A delay of $k\tau$ becomes z^{-k} .

Fixed frequency oscillation (steady state, CW) Definition of phasors

• General: $A\cos(\omega t - \varphi) = A\cos(\omega t)\cos(\varphi) + A\sin(\omega t)\sin(\varphi)$

• This can be interpreted as the projection on the real axis of a circular motion in the complex plane. Re $\{A(\cos(\varphi) + j\sin(\varphi))e^{j\omega t}\}$

• The complex amplitude \widetilde{A} is called "phasor".

 $\widetilde{A} = A(\cos(\varphi) + j\sin(\varphi))$

24 February, 2009

CERN Accelerator School, Divonne 2009

Calculus with phasors

- Why this seeming "complication"?: Because things become easier!
- Using $\frac{d}{dt} \equiv j\omega$, one may now forget about the rotation with ω and the projection on the real axis, and do the complete analysis making use of complex algebra!

24 February, 2009

Slowly varying amplitudes

- For band-limited signals, one may conveniently use "slowly varying" phasors and a fixed frequency RF oscillation
- So-called in-phase (I) and quadrature (Q) "baseband envelopes" of a modulated RF carrier are the real and imaginary part of a slowly varying phasor

On Modulation

AM PM I-Q

24 February, 2009

CERN Accelerator School, Divonne 2009

Amplitude modulation

$$(1+m\cos(\varphi))\cdot\cos(\omega_c t) = \operatorname{Re}\left\{\left(1+\frac{m}{2}e^{j\varphi}+\frac{m}{2}e^{-j\varphi}\right)e^{j\omega_c t}\right\}$$

m: modulation index or modulation depth example: $\varphi = \omega_m t = 0.05 \omega_c t$ m = 0.5

RF I

24 February, 2009

Phase modulation

$$\operatorname{Re}\left\{e^{j\omega_{c}t+M\sin(\varphi)}\right\} = \operatorname{Re}\left\{\sum_{n=-\infty}^{\infty}J_{n}(M)e^{j(n\varphi+\omega_{c}t)}\right\}$$

M: modulation index (= max. phase deviation)

 $\varphi = \omega_m t = 0.05 \,\omega_c t$ M = 4

 $\dot{M} = 1$

Spectrum of phase modulation

Plotted: spectral lines for sinusoidal PM at f_m Abscissa: $(f-f_c)/f_m$

Phase modulation with $M=\pi$: red: real phase modulation blue: sum of sidebands $n \le 3$

24 February, 2009

Spectrum of a beam with synchrotron oscillation, M = 1 (=57°)

24 February, 2009

Vector (I-Q) modulation

green: *I* component red: *Q* component blue: vector-sum More generally, a modulation can have both amplitude and phase modulating components. They can be described as the in-phase (I) and quadrature (Q) components in a chosen reference, $\cos(\omega_r t)$. In complex notation, the modulated RF is: $\operatorname{Re}\left\{(I(t) + jQ(t))e^{j\omega_r t}\right\} =$ $\operatorname{Re}\left\{(I(t) + jQ(t))(\cos(\omega_r t) + j\sin(\omega_r t))\right\}$ $I(t)\cos(\omega_r t) - Q(t)\sin(\omega_r t)$

So *I* and *Q* are the cartesian coordinates in the complex "Phasor" plane, where amplitude and phase are the corresponding polar coordinates.

 $I(t) = A(t) \cdot \cos(\varphi)$ $Q(t) = A(t) \cdot \sin(\varphi)$

Vector modulator/demodulator

24 February, 2009

CERN Accelerator School, Divonne 2009

Digital Signal Processing

Just some basics

24 February, 2009

Sampling and quantization

- Digital Signal Processing is very powerful note recent progress in digital audio, video and communication!
- Concepts and modules developed for a huge market; highly sophisticated modules available "off the shelf".
- The "slowly varying" phasors are ideal to be sampled and quantized as needed for digital signal processing.
- Sampling (at $1/\tau_s$) and quantization (*n* bit data words here 4 bit):

Digital filters (1)

- Once in the digital realm, signal processing becomes "computing"!
- In a "finite impulse response" (FIR) filter, you directly program the coefficients of the impulse response.

Digital filters (2)

 An "infinite impulse response" (IIR) filter has built-in recursion, e.g. like

Transfer function:

 $\frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$

... is a comb filter

Digital LLRF building blocks – examples

 General D-LLRF board:
 modular!
 FPGA: Field-programmable gate array DSP: Digital Signal Processor

 DDC (Digital Down Converter)
 Digital version of the I-Q demodulator
 CIC: cascaded integrator-comb (a special low-pass filter)

RF I

24 February, 2009

CERN Accelerator School, Divonne 2009

RF system & control loops

e.g.: ... for a synchrotron: Cavity control loops Beam control loops

24 February, 2009

Minimal RF system (of a synchrotron)

Low-level RF

High-Power RF

- The frequency has to be controlled to follow the magnetic field such that the beam remains in the centre of the vacuum chamber.
- The voltage has to be controlled to allow for capture at injection, a correct bucket area during acceleration, matching before ejection; phase may have to be controlled for transition crossing and for synchronisation before ejection.

Fast RF Feed-back loop

- Compares actual RF voltage and phase with desired and corrects.
- Rapidity limited by total group delay (path lengths) (some 100 ns).
- Unstable if loop gain =1 with total phase shift 180 ° design requires to stay away from this point (stability margin)
- The group delay limits the gain bandwidth product.
- Works also to keep voltage at zero for strong beam loading, i.e. it reduces the beam impedance.

Fast feedback loop at work

- Gap voltage is stabilised!
- Impedance seen by the beam is reduced by the loop gain!
- Plot on the right: $\frac{1+\beta}{R} \left| \frac{Z(\omega)}{1+G \cdot Z(\omega)} \right|$ vs. ω

with the loop gain varying from 0 to 50 dB

• Without feedback, $V_{acc} = (I_{G0} + I_B) \cdot Z(\omega)$ where $Z(\omega) = \frac{R/(1+\beta)}{1+jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$

• Detect the gap voltage, feed it back to I_{G0} such that $I_{G0} = I_{drive} - G \cdot V_{acc}$

where *G* is the total loop gain (pick-up, cable, amplifier chain ...) • Result: $V_{acc} = (I_{drive} + I_B) \cdot \frac{Z(\omega)}{1 + G \cdot Z(\omega)}$

24 February, 2009

1-turn delay feed-back loop

- The speed of the "fast RF feedback" is limited by the group delay this is typically a significant fraction of the revolution period.
- How to lower the impedance over many harmonics of the revolution frequency?
- Remember: the beam spectrum is limited to relatively narrow bands around the multiples of the revolution frequency!
- Only in these narrow bands the loop gain must be high!
- Install a comb filter! ... and extend the group delay to exactly 1 turn – in this case the loop will have the desired effect and remain stable!

24 February, 2009

Field amplitude control loop (AVC)

Compares the detected cavity voltage to the voltage program. The error signal serves to correct the amplitude

24 February, 2009

CERN Accelerator School, Divonne 2009

Tuning loop

- Tunes the resonance *f* of the cavity to minimize the mismatch of the PA.
- In the presence of beam loading, this may mean $f_r \neq f$.
- In an ion ring accelerator, the tuning range might be > octave!
- For fixed *f* systems, tuners are needed to compensate for slow drifts.
- Examples for tuners:
 - controlled power supply driving ferrite bias (varying μ),
 - stepping motor driven plunger,
 - motorized variable capacitor, ...

24 February, 2009

CERN Accelerator School, Divonne 2009

Example: how tuning may depend on beam current

- Horizontal axis: the tuning angle
- Vertical axis: the beam current
- Hashed: unstable area (Robinson criterion)
- Line: $\varphi_L = 0$ (matching condition)
- Parameter: φ_B

Phasor diagram for point marked (fixed I_B and φz)

RF I

Beam phase loop

• Longitudinal motion:

$$\frac{d^2(\Delta\phi)}{dt^2} + \Omega_s^2(\Delta\phi)^2 = 0$$

Loop amplifier transfer function designed to damp
synchrotron oscillation. Modified equation:

$$\frac{d^2(\Delta\phi)}{dt^2} + \alpha \frac{d(\Delta\phi)}{dt} + \Omega_s^2(\Delta\phi)^2 = 0$$

24 February, 2009

CERN Accelerator School, Divonne 2009

29

RF 1

Other loops

• Radial loop:

Detect average radial position of the beam,
Compare to a programmed radial position,
Error signal controls the frequency.
Synchronisation loop:

1st step: Synchronize *f* to an external frequency (will also act on radial position!).
2nd step: phase loop

A real implementation: LHC LLRF

24 February, 2009

CERN Accelerator School, Divonne 2009

Fields in a waveguide

24 February, 2009

CERN Accelerator School, Divonne 2009

Homogeneous plane wave

 $\vec{E} \propto \vec{u}_{y} \cos\left(\omega t - \vec{k} \cdot \vec{r}\right)$ $\vec{B} \propto \vec{u}_{x} \cos\left(\omega t - \vec{k} \cdot \vec{r}\right)$

 $\vec{k} \cdot \vec{r} = \frac{\omega}{c} (\cos(\varphi)z + \sin(\varphi)x)$

Wave vector \overline{k} : the direction of \overline{k} is the direction of propagation, the length of \overline{k} is the phase shift per unit length. \overline{k} behaves like a vector.

Ζ.

33

Wave length, phase velocity

• The components of \vec{k} are related to the wavelength in the direction of that component as $\lambda_z = \frac{2\pi}{k}$ etc., to the phase velocity as $v_{\varphi,z} = \frac{\omega}{k} = f \lambda_z$.

 $k_{\perp} = \frac{\omega_{c}}{\omega_{c}}$

 $k_{\perp} = \frac{\omega_c}{c}$ $k = \frac{\omega}{\omega}$

$$\hbar k = \frac{\omega}{c}$$

$$\Rightarrow \quad \boldsymbol{k}_{z} = \frac{\boldsymbol{\omega}}{\boldsymbol{c}} \sqrt{1 - \left(\frac{\boldsymbol{\omega}_{c}}{\boldsymbol{\omega}}\right)^{2}}$$

Superposition of 2 homogeneous plane waves

Metallic walls may be inserted where $E_y \equiv 0$ without perturbing the fields. Note the standing wave in *x*-direction!

This way one gets a hollow rectangular waveguide

24 February, 2009

CERN Accelerator School, Divonne 2009

RF I

Rectangular waveguide

Fundamental (TE $_{10}$ or H $_{10}$) mode in a standard rectangular waveguide. E.g. forward wave

magnetic field

power flow

Waveguide dispersion

In a hollow waveguide: phase velocity > c, group velocity < c

Waveguide dispersion (continued)

$$k_z = \operatorname{Im}\{\gamma\}$$

24 February, 2009

CERN Accelerator School, Divonne 2009

Radial waves

- Also radial waves may be interpreted as superpositions of plane waves.
- The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.

24 February, 2009

Round waveguide modes

parameters used in calculation: $f = 1.43, 1.09, 1.13 f_c, a$: radius

 \vec{E}

 $\frac{f_{c11}: \text{ fundamental mode}}{\text{GHz}} = \frac{87.85}{a/\text{ mm}}$

TM₀₁: axial electric field $\frac{f_c}{\text{GHz}} = \frac{114.74}{a/\text{mm}}$

TE₀₁: lowest losses!

f_c		33 4.74				
GHz	1	a/mm				

RF I

24 February, 2009

From waveguide to cavity

24 February, 2009

CERN Accelerator School, Divonne 2009

Standing wave – resonator

Same as above, but two counter-running waves of identical amplitude.

electric field

no net power flow: $\frac{1}{2} \operatorname{Re} \left\{ \iint \vec{E} \times \vec{H}^* \cdot d\vec{A} \right\} = 0$ section

0.0000e+00

magnetic field (90° out of phase)

24 February, 2009

A piece of round waveguide – pillbox cavity

electric field

magnetic field

24 February, 2009

CERN Accelerator School, Divonne 2009

RF I

Pillbox cavity field (w/o beam tube)

The only non-vanishing field components :

$$E_{z} = \frac{1}{j \omega \varepsilon_{0}} \frac{\chi_{01}}{a} \sqrt{\frac{1}{\pi}} \frac{J_{0} \left(\frac{\chi_{01}\rho}{a}\right)}{a J_{1} \left(\frac{\chi_{01}}{a}\right)}$$
$$B_{\varphi} = \mu_{0} \sqrt{\frac{1}{\pi}} \frac{J_{1} \left(\frac{\chi_{01}\rho}{a}\right)}{a J_{1} \left(\frac{\chi_{01}}{a}\right)}$$

 $\chi_{01} = 2.40483...$

24 February, 2009

CERN Accelerator School, Divonne 2009

Accelerating gap

24 February, 2009

CERN Accelerator School, Divonne 2009

Accelerating gap

It cannot be DC, since we want the beam tube on ground potential.

Use $\oint \vec{E} \cdot d\vec{s} = -\iint \frac{d\vec{B}}{dt} \cdot d\vec{A}$

The "shield" imposes a dI

upper limit of the voltage pulse duration or – equivalently – a lower limit to the usable frequency.

The limit can be extended with a material which acts as "open circuit"!

Materials typically used:

ferrites (depending on *f*-range)

magnetic alloys (MA) like Metglas®, Finemet®, Vitrovac®...

resonantly driven with RF (ferrite loaded cavities) – or with pulses (induction cell)

Linear induction accelerator

Acceleration gap

Induction

accelerating cell

Linear induction accelerator

 $\int \vec{E} \cdot d\vec{s} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$

compare: transformer, secondary = beam Acc. voltage during B

ramp.

Beam current

Ferromagnetic cores (high inductive impedance)

24 February, 2009

CERN Accelerator School, Divonne 2009

Ferrite cavity

PS Booster, '98 0.6 - 1.8 MHz, < 10 kV gap NiZn ferrites

24 February, 2009

CERN Accelerator School, Divonne 2009

RF I

Gap of PS cavity (prototype)

24 February, 2009

Drift Tube Linac (DTL) – how it works

For slow particles – protons @ few MeV e.g. – the drift tube lengths can easily be adapted.

electric field

24 February, 2009

Drift tube linac – practical implementations

24 February, 2009

CERN Accelerator School, Divonne 2009

Transit time factor

If the gap is small, the voltage $\int E_z dz$ is small.

If the gap large, the RF field varies notably while the particle passes.

Define the accelerating voltage $V_{gap} = \int E_z e^{j\frac{\omega}{c}z} dz$ Transit time factor

 $E_z dz$

Example pillbox: transit time factor vs. h

 $\sin\!\left(\frac{\chi_{01}h}{2a}\right) / \left(\frac{\chi_{01}h}{2a}\right)$

 h/λ