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t-domain vs. ω-domain 

phasors
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 Convenient logarithmic measure of a power ratio.

 A “Bel” (= 10 dB) is defined as a power ratio of 101. 
Consequently, 1 dB is a power ratio of 100.1≈1.259

 If rdb denotes the measure in dB, we have:

 Related: dBm (relative to 1 mW), dBc (relative to carrier)

rdb -30 dB -20 dB -10 dB -6 dB -3 dB 0 dB 3 dB 6 dB 10 dB 20 dB 30 dB

P2/P1 0.001 0.01 0.1 0.25 .50 1 2 3.98 10 100 1000

A2/A1 0.0316 0.1 0.316 0.50 .71 1 1.41 2 3.16 10 31.6
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 An arbitrary signal g(t) can be expressed in ω-domain using 
the Fourier transform (FT).

 The inverse transform (IFT)
is also referred to as
Fourier Integral

 The advantage of the ω-domain description is that linear 
time-invariant (LTI) systems are much easier described.

 The mathematics  of the FT requires the extension of the 
definition of a function to allow for infinite values and non-
converging integrals.

 The FT of the signal can be understood at looking at “what 
frequency components it’s composed of”.
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 For T-periodic signals, the FT becomes the Fourier-
Series, dω becomes           , ∫ becomes Σ.

 The cousin of the FT is the Laplace transform, which 
uses a complex variable (often s) instead of jω; it has 
generally a better convergence behaviour. 

 Numerical implementations of the FT require 
discretisation in t (sampling) and in ω. There exist 
very effective algorithms (FFT).

 In digital signal processing, one often uses the related 
z-Transform, which uses the variable              , where τ
is the sampling period. A delay of kτ becomes z-k.
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 General:

 This can be interpreted as the 
projection on the real axis of a 
circular motion in the complex 
plane.

 The complex amplitude
is called “phasor”.
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 Why this seeming “complication”?:
Because things become easier! 

 Using               , one may now forget about the rotation with ω
and the projection on the real axis, and do the complete analysis 
making use of complex algebra!

Example:
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 For band-limited signals, one may conveniently use 
“slowly varying” phasors and a fixed frequency RF 
oscillation

 So-called in-phase (I) and quadrature (Q) “baseband 
envelopes” of a modulated RF carrier are the real and 
imaginary part of a slowly varying phasor
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AM

PM

I-Q
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green: carrier
black: sidebands at ± fm

blue: sum

example:

m: modulation index or modulation depth
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Green: n=0 (carrier) 
black: n=1 sidebands
red: n=2 sidebands
blue: sum

M: modulation index
(= max. phase deviation)

1124 February, 2009



CERN Accelerator School,  Divonne 2009 RF  I

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

Phase modulation with M=π:
red: real phase modulation
blue: sum of sidebands n≤3
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Plotted:  spectral lines for 
sinusoidal PM at fm

Abscissa: (f-fc)/fm

M=0 (no modulation)
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carrier
synchrotron sidelines

f
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More generally, a modulation can have both 
amplitude and phase modulating 
components. They can be described as the 
in-phase (I) and quadrature (Q) components 
in a chosen reference,                 . In complex 
notation, the modulated RF is:

So I and Q are the cartesian coordinates in 
the complex “Phasor” plane, where 
amplitude and phase are the corresponding 
polar coordinates.

I-Q modulation:
green: I component
red: Q component
blue: vector-sum 

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1424 February, 2009



CERN Accelerator School,  Divonne 2009

r r

mixer mixer

mixer mixer

0°

90° combiner splitter

3-dB
hybrid

low-pass

low-pass

tI

tI

tQ
tQ

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

2

1

1

2

3-dB
hybrid 0°

90°

15RF  I24 February, 2009



CERN Accelerator School,  Divonne 2009

Just some basics
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 Digital Signal Processing is very powerful – note recent progress in 
digital audio, video and communication!

 Concepts and modules developed for a huge market; highly 
sophisticated modules available “off the shelf”.

 The “slowly varying” phasors are ideal to be sampled and quantized as 
needed for digital signal processing.

 Sampling (at 1/τs) and quantization (n bit data words – here 4 bit):
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Original signal Sampled/digitized

Anti-aliasing filter
Spectrum

The “baseband” is limited to half the sampling rate!

ADC

DAC
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 Once in the digital realm, signal processing becomes 
“computing”!

 In a “finite impulse response” (FIR) filter, you directly 
program the coefficients of the impulse response.

sf1

Transfer function:
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 An “infinite impulse response” (IIR) filter has built-in 
recursion, e.g. like

Transfer function:

Example: 

0 1 2 3 4 5

2

4

6

8

10

… is a comb filter

s

k2
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 General D-LLRF board:
 modular!
FPGA: Field-programmable gate array

DSP: Digital Signal Processor

 DDC (Digital Down Converter)
 Digital version of the 

I-Q demodulator
CIC: cascaded integrator-comb 

(a special low-pass filter)
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e.g.: … for a synchrotron:

Cavity control loops

Beam control loops
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• The frequency has to be controlled to follow the magnetic field such that 
the beam remains in the centre of the vacuum chamber.

• The voltage has to be controlled to allow for capture at injection, a correct 
bucket area during acceleration, matching before ejection; phase may have 
to be controlled for transition crossing and for synchronisation before 
ejection.

Low-level RF High-Power RF
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• Compares actual RF voltage and phase with desired and corrects. 
• Rapidity  limited by total group delay (path lengths) (some 100 ns).
• Unstable if loop gain =1 with total phase shift 180 ° – design requires to stay 

away from this point (stability margin)
• The group delay limits the gain·bandwidth product.
• Works also to keep voltage at zero for strong beam loading, i.e. it reduces 

the beam impedance.

je
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• Without feedback,

where

• Detect the gap voltage, feed it back to 
IG0 such that 

where G is the total loop gain (pick-up, 
cable, amplifier chain …)

• Result:

• Gap voltage is stabilised!  
• Impedance seen by the beam is reduced by 

the loop gain!

• Plot on the right:                                 vs. ω

with the loop gain varying from 0 to 50 dB
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 The speed of the “fast RF feedback” is limited by the group delay – this 
is typically a significant fraction of the revolution period.

 How to lower the impedance over many harmonics of the revolution 
frequency?

RF  I

 Remember: the beam spectrum 
is limited to relatively narrow 
bands around the multiples of 
the revolution frequency!

 Only in these narrow bands the 
loop gain must be high!

 Install a comb filter!  … and extend the
group delay to exactly 1 turn – in this case
the loop will have the desired effect and
remain stable!
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• Compares the detected cavity voltage to the voltage program. The error 
signal serves to correct the amplitude
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• Tunes the resonance f of the cavity to minimize the mismatch of the PA.
• In the presence of beam loading, this may mean fr ≠f.
• In an ion ring accelerator, the tuning range might be > octave!
• For fixed f systems, tuners are needed to compensate for slow drifts.
• Examples for tuners: 

• controlled power supply driving ferrite bias (varying µ),
• stepping motor driven plunger,
• motorized variable capacitor, …
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 Horizontal axis: the tuning angle

 Vertical axis: the beam current

 Hashed: unstable area (Robinson criterion)

 Line:             (matching condition)

 Parameter: 

RF  I

Phasor diagram for point 
marked (fixed IB and φz)
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• Longitudinal motion:                                         

• Loop amplifier transfer function designed to damp 
• synchrotron oscillation. Modified equation:
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 Radial loop:
 Detect average radial position of the beam,

 Compare to a programmed radial position,

 Error signal controls the frequency.

 Synchronisation loop:
 1st step: Synchronize f to an external frequency (will also 

act on radial position!). 

 2nd step: phase loop

 …
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Wave vector : 
the direction of     is the direction of 
propagation,
the length of     is the phase shift per 
unit length.

behaves like a vector.

RF  I

z

x

Ey

φ

3324 February, 2009



CERN Accelerator School,  Divonne 2009

 The components of     are related to the wavelength in the direction of 

that component as              etc. , to the phase velocity as                        . 

z

x

Ey
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+
=

Metallic walls may be inserted where            
without perturbing the fields. 

Note the standing wave in x-direction!

z

x

Ey

This way one gets a hollow rectangular waveguide
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Fundamental (TE10 or H10) mode
in a standard rectangular waveguide.

E.g. forward wave

electric field

magnetic field

power flow:

z

z

-y

power flow
x

x

power flow
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e.g.: TE10-wave in 
rectangular 
waveguide:

general cylindrical waveguide:

In a hollow waveguide: phase velocity > c, group velocity < c

free space, /c

“slow” wave

“fast” wave
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free space, /c

TE10

TE10

TE20

TE01
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 Also radial waves may be interpreted as superpositions of 
plane waves.

 The superposition of an outward and an inward radial wave 
can result in the field of a round hollow waveguide.
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TE11: fundamental mode TE01: lowest losses!TM01: axial electric field

parameters used in calculation: 
f = 1.43, 1.09, 1.13 fc , a: radius
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Same as above, but two
counter-running waves 
of identical amplitude.

electric field

magnetic field
(90º out of phase)

no net power flow:
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electric field magnetic field

(only 1/8 shown)

TM010-mode
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The only non-vanishing field components :

h

Ø 2a

44RF  I24 February, 2009



CERN Accelerator School,  Divonne 2009 45RF  I24 February, 2009



CERN Accelerator School,  Divonne 2009

gap voltage

• We want a voltage across the gap!

• The limit can be extended with a material 

which acts as “open circuit”!

• Materials typically used:

– ferrites (depending on f-range)

– magnetic alloys (MA) like Metglas®, Finemet®, 

Vitrovac®…

• resonantly driven with RF (ferrite loaded 

cavities)  – or with pulses (induction cell)

• It cannot be DC, since we want the beam 
tube on ground potential.

• Use 

• The “shield” imposes a

– upper limit of the voltage pulse duration or        
– equivalently –

– a lower limit to the usable frequency.
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compare: transformer, 
secondary = beam

Acc. voltage during B

ramp.
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PS Booster, „98
0.6 – 1.8 MHz,
< 10 kV gap
NiZn ferrites
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For slow particles –
protons @ few MeV e.g. 
– the drift tube lengths
can easily be adapted.

electric field
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If the gap is small, the voltage              is small.zEzd

zE

zeE

z

z
c

z

d

d
j

If the gap large, the RF field varies notably while the particle passes.

Define the accelerating voltage zeEV
z

c
zgap d

j

Transit time factor
Example pillbox:
transit time factor vs. h

h/
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h

a

h
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sin 0101
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