

Introduction: Why are we interested in particle accelerators? → CERN's main Mandate / Objective

- Acceleration concepts from a historical CERN view
- CERN's main projects and their goals organized by Particle type and physics program:
- \rightarrow proton, lepton and ion beams
- \rightarrow fixed target program and collider operation
- → antimatter and isotopes

The LHC

Potential future projects for CERN

CERN Accelerator Complex

▶ p (proton) ▶ ion ▶ neutrons ▶ p̄ (antiproton) → + → proton/antiproton conversion ▶ neutrinos ▶ electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

Motivation for Particle Accelerators: Part I

<u>1986:</u> Thomson

experimental evidence for the electron

Nobel Price for Thomson in 1906

Above: One of the tubes with which J. J. Thomson measured the mass-to-charge ratio of the electron. Below: A schematic view of Thomson's apparatus. The cathode is connected by a wire through the glass tube to a generator that supplies it with negative electric charge; the anode and collimator are connected to the generator by another wire so that negative electric charge can flow back to the generator. The deflection plates are connected to the terminals of a powerful electric battery, and are thereby given strong negative and positive charges. The invisible cathode rays are 'tepelled by the cathode; some of them pass through the slits in the anode and collimator, which only admit a narrow beam of rays. The rays are then deflected by electric forces as they pass between the plates; they then travel freely until they finally hit the glass wall of the tube, producing a spot of light. (This figure is based on a drawing of Thomson's cathode-ray tube in Figure 2 of his article "Cathode Rays," *Phil. Mag.* 44(1897), 293. For clarity, the magnets used to deflect the rays by magnetic forces are not shown here.)

<u>1906 – 1911:</u> Rutherford

experimental evidence of atom structure Nobel Prices for -Rutherford in 1908 -N. Bohr in 1922

Rutherford's first laboratory, in the basement of Canterbury College in New Zealand.

Rutherford in his laboratory at McGill University, Montreal, in 1905.

<u>1932:</u> Anderson

© Copyright California Institute of Technology. All rights reserved. Commercial use or modification of this material is prohibited.

experimental evidence for the positron

Nobel Price for Anderson in 1936

Particle Source: e⁻

Electrons: Cathode Ray Tube (Thomson)

Day to day application: Old television sets

CERN Sources for LINAC2 and LINAC3

LINAC2: Duoplasmatron Proton Source

- LINAC3: Microwave Pb ion Source
- → More details in the talk by Detlef Kuchler

Acceleration Concepts

$$\frac{dp}{dt} = q \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right)$$

energy gain only due to electric fields!

Scalar and Vector Potential:

$$\vec{E} = -grad\phi - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}$$

Electrostatic acceleration $\longrightarrow A = 0$

Acceleration with time varying fields $\longrightarrow \phi = 0$

Units

Electrostatic Acceleration

Limited by voltage across high voltage unit

 \longrightarrow V = 200 kV

Electrostatic Acceleration

can generate DC voltage above 200 kV

First construction by Crockkroft and Walton in 1928: design for 800 keV acceleration voltage

Used by Rutherford in 1932 for nuclear disintegration of Li $p + Li \rightarrow 2$ He using 700keV protons Nobel price in 1952

Electrostatic Acceleration

Used at CERN as preaccelerators for LINAC 1 (520 keV) and LINAC 2 (750 keV) until 1984 and 1993 respectively when they were replaced by RFQs

LINAC 2 →

Acceleration with Time Varying Fields

C Linear Acceleration:

Need for shielding when electric field points in the wrong direction:

Beam needs to be organized in packages → bunched beam
Total acceleration voltage 'only' limited by accelerator length

Linear Acceleration and Cavity Resonator

Electromagnetic resonator Resonator:

Resonance structure characterized by: f, Q, R

Linear Acceleration and Cavity Resonator

PS 19 MHz Cavity resonator

O LEP 352 MHz ; 1.5MV / m

Electro-Magnetic Field Modes inside Resonator

Empty cavity; mode TE₁₁

Empty cavity; mode TE21

TE modes have no E field in the direction of wave propagation

- \rightarrow not usable for particle acceleration as such
- → provide transverse focusing
- → can provide longitudinal acceleration via modulation of boundary conditions

Acceleration Using TE Modes: RFQ

- RFQ: longitudinally modulated electrodes:
 - electric field lines must be normal to electrode surface
 - → longitudinal shape modulation of electrodes generates longitudinal electric field component

Empty cavity; mode TE21

 \rightarrow acceleration in direction of particle motion

Acceleration Using TE Modes: RFQ Linac 1:

Replaced the Chrockkroft-Walton generator in 1983 and accelerated protons to an energy of 520 keV when LINAC1 was used as injector for LEIR: 1981-1996

pre-accelerator for Pb ions in LINAC3 at CERN
 becomes less efficient as particle velocity approaches 'c'

TM modes have an E field in the direction of wave propagation

- → directly usable for particle acceleration!
- \rightarrow but field does not always point in the right direction
 - → requires shielding
- → does not provide transverse focusing

Acceleration Using TM Modes

Use higher order mode for low energy particles

Install shielding where the E-field has the wrong sign

If the shielding is passive one can go to high frequencies

- → Alvarez structure: 200 MHz provides good tube sizes
 → more efficient than IH structure for v ≈ c
- → shielding tubes can provide room for focusing elements
- → pre-accelerator for most proton accelerators

Alvarez Tank for CERN LINACs:

Conceptual Layout of Hadron Acceleration

Source: particle production \rightarrow Detlef Kuchler's talk

Low Energy Beam Transport: focusing of source particles

Acceleration with Time Varying Fields: Travelling Waves

Standing waves: fixed nodes of the EM wave inside cavity

Travelling waves: nodes move inside the cavity

Acceleration with Time Varying Fields: Travelling Waves Travelling waves: particles ride on the crest of the EM wave

Problem: phase velocity of the EM wave vs particle velocity

Position

Acceleration with Time Varying Fields: Travelling Waves

LIL injector for LEP

CLIC

 $m = const \rightarrow f_{rev} = const for B = const$

Lawrence 1929

Acceleration with Circular Machines: Cyclotron

1931: Livingston
4.5 inch → H⁻ to 80 keV

1932: Lawrence11 inch → p to 1.2 MeVNobel Price in 1939

1999: T. Koeth 12 inch rebuild

Acceleration with Circular Machines: Cyclotron

Synchro Cyclotron:

 $\gamma >> 1$

- $\bullet \quad f_{rev} \neq constant$
 - \rightarrow vary RF frequency over cycle
 - → short bunch trains and large dipole magnet

CERN 600 MeV Synchro Cyclotron 1954 to 1990

Acceleration with Circular Machines: Synchrotron

Keep $R = constant: \longrightarrow compact magnet design$

$$r = \frac{m_0}{q} \cdot \frac{\gamma}{B} \cdot v$$

ultra relativistic particles: $v \approx c$

 \rightarrow vary B field proportional to $\gamma!$

$$\omega = \frac{q}{m_0} \cdot \frac{B}{\gamma}$$

approximately constant!

Large storage rings

main work horse for high energy particle acceleration
Acceleration with Circular Machines: Synchrotron

high beam energies require strong magnets and Large storage rings

→ main work horse for high energy particle acceleration

Acceleration with Circular Machines: Synchrotron

1959 CERN Proton Synchrotron: first Synchrotron at CERN

First Alternate Gradient Synchrotron in the world!

High Energy Physics Research: Collider Concept
Fixed target physics (up to 1960's): E_{CM} X √E_{beam}
Collider beam physics (after 1960's): E_{CM} = 2 E_{beam}
-not all particles collide in one crossing → long storage times
-implies 2 beams and beam-beam interactions → amplitude growth

Lepton versus Hadron Colliders

Leptons: elementary particles \longrightarrow well defined collision energy (precision experiments) light particles ($\gamma >> 1$) \longrightarrow synchrotron radiation (size, damping, magnet type) Hadrons: multi particle collisions \longrightarrow energy spread (discovery range vs. background) heavy particles ($\gamma < 10^4$) \longrightarrow no synchrotron radiation (no damping, superconducting magnets) In praxis one needs both options: Z_0 1985 discovered in SppS with p⁺ p⁻ collisions

1990 precision measurement in LEP with e⁺ e⁻ collisions

Evolution of Collider Machines

need for 'discovery' and 'high precision' machines

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Proton Program: PS

1959 First Alternate Gradient accelerator

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Proton Program: ISR

1971 First Proton Collider; SC magnets; 50A max beam current (32A in operation); p-p; p-d; p- α ; α - α ; p-p-bar

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Proton Program: PSB

1972: 10 fold increase in proton beam intensity

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Proton Program: SPS

1976:fixed target physicswith 300 GeV to450 GeV protonand Pb ion beams

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Proton Program: ICE

1977: Initial cooling experiment as preparation for SppS

Build from old magnets from g-2 experiment; Stochastic cooling 1978 Electron cooling 1979

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Proton Program: SppS

1981:

Proton anti-proton Collider 315 GeV; beam energies; Nobel Price in 1984

-6 on 6 bunches with pretzel scheme -elaborate powering scheme for adjusting phase advance between experiments and injection and dump regions

CERN's Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1958	SC	0.6 GeV	Synchro Cyclotron	Fixed target; Pion decay; g-2; ISOLDE
1959	LINAC1	50 MeV	Linac	Alvarez tank; Cockcroft Walton → RFQ in 1984
1959	PS	26 GeV	Synchrotron	alternate gradient focusing; rotor compensator; neutral currents
1971	ISR	31 GeV	Synchrotron	300m diameter; first p-p and p-p-bar collisions; sc magnets; stochastic cooling proposal
1972	PSB	0.8-1.4 GeV	Synchrotron	Four ring concept; 10 fold increase in beam intensity; ISOLDE
1976	SPS	450GeV	Synchrotron	7km circum; fixed target; proton & Pb ion beams; CP violation & quark-gluon plasma
1977	ICE	46 MeV	Storage ring	Initial cooling experiment
1978	LINAC2	50 MeV	Linac	Cockcroft Walton → RFQ in 1993
1981	SppS	315GeV	Synchrotron	Collider; discovery of W and Z \rightarrow NP 1984
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T; Higgs?

CERN's Anti-Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1977	ICE	46 MeV	Synchrotron Storage ring	Initial cooling experiment (protons); stochastic cooling in 1978; electron cooling of 46 MeV proton beam in 1979 using 1.3 A electron beams of 26 keV.
1980	AA	3.57 GeV	Synchrotron Storage ring	Anti-proton accumulation and stochastic cooling;
1982	LEAR	609 MeV	Synchrotron Decelerator & Storage Ring	Low Energy Anti-proton Ring \rightarrow electron cooler installed from ICE \rightarrow anti-proton physics program; observation of first anti- Hydrogen
1986	AC	3.57 GeV	Synchrotron Storage Ring	Anti-proton collector; higher acceptance then $AA \rightarrow 10$ fold increase in anti-proton production
1999	AD	100 MeV	Synchrotron Decelerator	Anti-proton deceleration; ATHENA experiment and observation of anti- Hydrogen in 2002; build from AC parts

CERN's Proton Program: AA and AC AA and AC in the AC PS South hall AA Booster Target p p p LEAR Linac chungszentrum Jalich, Germany

CERN's Anti-Proton Program: AA and AC

Proton from PS onto fixed target 26GeV→1 anti-proton at ≈ 3.5 GeV for 10⁶ p p⁻ collected in AC (acceptance) stacked and stochastically cooled at 3.5 GeV in AA (few $10^{11} \text{ p}^{-}/\text{d}$) Anti-protons are accelerated to 26 GeV in PS Anti-protons are accelerated to 270 GeV in SPS NP for Rubbia and Van der Meer in 1984 -AA start in 1980 dismantled in 1997 -AC build in 1986 converted to AD in

CERN's Anti-Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1977	ICE	46 MeV	Synchrotron Storage ring	Initial cooling experiment (protons); stochastic cooling in 1978; electron cooling of 46 MeV proton beam in 1979 using 1.3 A electron beams of 26 keV.
1980	AA	3.57 GeV	Synchrotron Storage ring	Anti-proton accumulation and stochastic cooling;
1982	LEAR	609 MeV	Synchrotron Decelerator & Storage Ring	Low Energy Anti-proton Ring \rightarrow electron cooler installed from ICE \rightarrow anti-proton physics program; observation of first anti- Hydrogen
1986	AC	3.57 GeV	Synchrotron Storage Ring	Anti-proton collector; higher acceptance then $AA \rightarrow 10$ fold increase in anti-proton production
1999	AD	100 MeV	Synchrotron Decelerator	Anti-proton deceleration; ATHENA experiment and observation of anti- Hydrogen in 2002; build from AC parts

CERN's Proton Program: LEAR

LEAR next to the LINAC 2 installation:

converted into LEIR 2005-2006

CERN's Anti-Proton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physcs
1977	ICE	46 MeV	Synchrotron Storage ring	Initial cooling experiment (protons); stochastic cooling in 1978; electron cooling of 46 MeV proton beam in 1979 using 1.3 A electron beams of 26 keV.
1980	AA	3.57 GeV	Synchrotron Storage ring	Anti-proton accumulation and stochastic cooling;
1982	LEAR	609 MeV	Synchrotron Decelerator & Storage Ring	Low Energy Anti-proton Ring \rightarrow electron cooler installed from ICE \rightarrow anti-proton physics program; observation of first anti- Hydrogen
1986	AC	3.57 GeV	Synchrotron Storage Ring	Anti-proton collector; higher acceptance then $AA \rightarrow 10$ fold increase in anti-proton production
1999	AD	100 MeV	Synchrotron Decelerator	Anti-proton deceleration; ATHENA experiment and observation of anti- Hydrogen in 2002; build from AC parts

CERN's Proton Program: AD

CERN's Lepton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physics
1986	LIL	0.5 GeV	LINAC	Low Current Linac; dismantled in 2000;
1986	EPA	0.5 GeV	Storage ring accumulator	Accumulation of 500 MeV Leptons before acceleration to 3.5 GeV in the PS; dismantled in 2000; located in current CTF3 building.
1959	PS	3.5 GeV	Synchrotron	alternate gradient; multi-purpose machine → RF!!!
1976	SPS	20 GeV	Synchrotron	Acceleration from 3.5 GeV to 20 GeV
1989	LEP	45 GeV to 104 GeV	Synchrotron	Ground breaking in 1983; dismantled in 2000; NC RF for LEP I and SC RF for LEP II; 3650 MV total voltage for LEP II; beam separation; polarization; NEG vacuum pump; precision measurement for Z and W; confirmation of Standard Model with 3 lepton-neutrino families; Higgs search in 2000 → 104.5 GeV
1998	CTF		LINAC	NC high frequency structures; 30 GHz
2001	CTF3	100 MeV to 1 GeV	LINAC	Drive beam concept
????	CLIC	0.5 GeV to 3 TeV	2 x LINAC Collider	Wake fields; alignment; spot size at IP

LIL

CERN's Lepton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physics
1986	LIL	0.5 GeV	LINAC	Low Current Linac; dismantled in 2000;
1986	EPA	0.5 GeV	Storage ring accumulator	Accumulation of 500 MeV Leptons before acceleration to 3.5 GeV in the PS; dismantled in 2000; located in current CTF3 building.
1959	PS	3.5 GeV	Synchrotron	alternate gradient; multi-purpose machine → RF!!!
1976	SPS	20 GeV	Synchrotron	Acceleration from 3.5 GeV to 20 GeV
1989	LEP	45 GeV to 104 GeV	Synchrotron	Ground breaking in 1983; dismantled in 2000; NC RF for LEP I and SC RF for LEP II; 3650 MV total voltage for LEP II; beam separation; polarization; NEG vacuum pump; precision measurement for Z and W; confirmation of Standard Model with 3 lepton-neutrino families; Higgs search in 2000 → 104.5 GeV
1998	CTF		LINAC	NC high frequency structures; 30 GHz
2001	CTF3	100 MeV to 1 GeV	LINAC	Drive beam concept
????	CLIC	0.5 GeV to 3 TeV	2 x LINAC Collider	Wake fields; alignment; spot size at IP

CERN's Lepton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physics
1986	LIL	0.5 GeV	LINAC	Low Current Linac; dismantled in 2000;
1986	EPA	0.5 GeV	Storage ring accumulator	Accumulation of 500 MeV Leptons before acceleration to 3.5 GeV in the PS; dismantled in 2000; located in current CTF3 building.
1959	PS	3.5 GeV	Synchrotron	alternate gradient; multi-purpose machine → RF!!!
1976	SPS	20 GeV	Synchrotron	Acceleration from 3.5 GeV to 20 GeV
1989	LEP	45 GeV to 104 GeV	Synchrotron	Ground breaking in 1983; dismantled in 2000; NC RF for LEP I and SC RF for LEP II; 3650 MV total voltage for LEP II; beam separation; polarization; NEG vacuum pump; precision measurement for Z and W; confirmation of Standard Model with 3 lepton-neutrino families; Higgs search in 2000 → 104.5 GeV
1998	CTF		LINAC	NC high frequency structures; 30 GHz
2001	CTF3	100 MeV to 1 GeV	LINAC	Drive beam concept
????	CLIC	0.5 GeV to 3 TeV	2 x LINAC Collider	Wake fields; alignment; spot size at IP

LEP:

-27 km tunnel
-'low tech' magnets
-'high tech' cavities
-precision measurement (moon, seasons, TGV)

LEP I: nc Cu Cavities; 350 MHz; 2.5 MV / cavity LEP 1: 260 MV turn @ 45 GeV

LEP II: sc Nb Cavities; 350 MHz 4 cell structures; 8.5 MV to 10 MV / cavity for Nb sheet and Nb film cavities

LEP II: 2.8 GV @ 100 GeV

SR power LEP 1: 2.1 MW LEP 2: 23 MW

CERN's Lepton Beam Program Chronology

Year	Name	Energy	Туре	Key features and Physics
1986	LIL	0.5 GeV	LINAC	Low Current Linac; dismantled in 2000;
1986	EPA	0.5 GeV	Storage ring accumulator	Accumulation of 500 MeV Leptons before acceleration to 3.5 GeV in the PS; dismantled in 2000; located in current CTF3 building.
1959	PS	3.5 GeV	Synchrotron	alternate gradient; multi-purpose machine \rightarrow RF!!!
1976	SPS	20 GeV	Synchrotron	Acceleration from 3.5 GeV to 20 GeV
1989	LEP	45 GeV to 104 GeV	Synchrotron	Ground breaking in 1983; dismantled in 2000; NC RF for LEP I and SC RF for LEP II; 3650 MV total voltage for LEP II; beam separation; polarization; NEG vacuum pump; precision measurement for Z and W; confirmation of Standard Model with 3 lepton-neutrino families; Higgs search in 2000 → 104.5 GeV
1998	CTF		LINAC	NC high frequency structures; 30 GHz
2001	CTF3	100 MeV to 1 GeV	LINAC	Drive beam concept; 12 GHz
????	CLIC	0.5 GeV	2 x LINAC Collider	Wake fields; alignment; spot size at IP
CERN's Lepton Program: CTF

CLIC Test Facility

CERN's Lepton Program: CLIC

Schematic Layout of the CLIC complex at 1 TeV c.m.

CTF 3

Test of Drive Beam Generation, Acceleration & RF Multiplication

CERN's Lepton Program: CTF3

CTF3 Combiner Ring

CERN's Ion Beam Chronology

Year	Name	Energy	Туре	Key features and Physcs
1959	LINAC1	50 MeV	Linac	Oxygen and Sulphur ions for SPS fixed target physics
1978	LINAC2	50 MeV	Linac	Oxygen and Sulphur ions for SPS fixed target physics
1994	LINAC3	26 GeV	Synchrotron	Preparation of 208Pb53+ beams using a 18 GHz ECR ion source; RFQ and 3 tank IH structure
2005	LEIR	31 GeV	Synchrotron	Converted LEAR ring; stochastic cooling
2008	LHC	7 TeV	Synchrotron	Collider; SC magnets 8.4 T;

Overview of the LHC Ion Injector Chain

LEIR - Overview

Accumulation:

- Elaborate multiturn injection :
 - Stacking in three phase planes,
 - Needs momentum ramping and dispersion at injection,
 - 70 turns with >50% efficiency every 200 ms to 400 ms.
- Fast electron cooling :
 - New cooler constructed (BINP)

CERN's Experimental Accelerator Installations

Year	Name	Energy	Туре	Key features and Physcs
1963	CESAR	1.75 MeV	Storage Ring Accumulator	Study for ISR preparation, 24m circumference; study of stacking procedures; transverse beam stability and vacuum stability (6E-11 Torr); dismantled in 1968
1967	ISOLDE	0.6 GeV	Target and specrtometer	Isotope Separator Online; receiving beam from the SC until 1990
1973	ISOLDE-2	0.6 GeV		SC upgrade to 4 micro ampere
1974	g-2	0.6 GeV	Storage ring	Muon storage ring; burst of Pions are injected and polarized Muon's from their decay are captured on stable orbits; magnetic precession of Muons creates modulation in the decay-electron counting from which the anomalous moment can be derived
1992	ISOLDE	0.8-1.4 GeV		New ISOLDE facility with beam from the PSB
2000	REX-Isolde	450GeV	Trap and Linac	Penning trap for charge breeding; cooling; charge stage multiplication with EBIS; mass separator and accelerator (RFQ, I-H struc)
2008	CNGS	450GeV	Target and SPS	Neutrino beam production

CERN's Proton Program: CESAR

1963:

Experimental storage ring in preparation for the ISR: -test of stacking -vacuum

-beam stability

CERN's Experimental Accelerator Installations

Year	Name	Energy	Туре	Key features and Physcs
1963	CESAR	1.75 MeV	Storage Ring Accumulator	Study for ISR preparation, 24m circumference; study of stacking procedures; transverse beam stability and vacuum stability (6E-11 Torr); dismantled in 1968
1967	ISOLDE	0.6 GeV	Target and specrtometer	Isotope Separator Online; receiving beam from the SC until 1990
1973	ISOLDE-2	0.6 GeV		SC upgrade to 4 micro ampere
1974	g-2	0.6 GeV	Storage ring	Muon storage ring; burst of Pions are injected and polarized Muon's from their decay are captured on stable orbits; magnetic precession of Muons creates modulation in the decay-electron counting from which the anomalous moment can be derived
1992	ISOLDE	0.8-1.4 GeV		New ISOLDE facility with beam from the PSB
2000	REX-Isolde	450GeV	Trap and Linac	Penning trap for charge breeding; cooling; charge stage multiplication with EBIS; mass separator and accelerator (RFQ, I-H struc)
2008	CNGS	450GeV	Target and SPS	Neutrino beam production

CERN's Proton Program: g-2

1974:

Bursts of Pions are created from SC beam on target and injected into the g-2 storage ring.

Counting rate of electrons from Muon decay is modulated by precession of Muons in magnetic field

CERN's Experimental Accelerator Installations

Year	Name	Energy	Туре	Key features and Physcs
1963	CESAR	1.75 MeV	Storage Ring Accumulator	Study for ISR preparation, 24m circumference; study of stacking procedures; transverse beam stability and vacuum stability (6E-11 Torr); dismantled in 1968
1967	ISOLDE	0.6 GeV	Target and specrtometer	Isotope Separator Online; receiving beam from the SC until 1990
1973	ISOLDE-2	0.6 GeV		SC upgrade to 4 micro ampere
1974	g-2	0.6 GeV	Storage ring	Muon storage ring; burst of Pions are injected and polarized Muon's from their decay are captured on stable orbits; magnetic precession of Muons creates modulation in the decay-electron counting from which the anomalous moment can be derived
1992	ISOLDE	0.8-1.4 GeV		New ISOLDE facility with beam from the PSB
2000	REX-Isolde	450GeV	Trap and Linac	Penning trap for charge breeding; cooling; charge stage multiplication with EBIS; mass separator and accelerator (RFQ, I-H struc)
2008	CNGS	450GeV	Target and SPS	Neutrino beam production

CERN's Proton Program: ISOLDE

ISOLDE Installation at CERN

CERN's Proton Program: ISOLDE

1973: Isotope Separation Online

CERN's Proton Program: ISOLDE

CERN's Experimental Accelerator Installations

Year	Name	Energy	Туре	Key features and Physcs
1963	CESAR	1.75 MeV	Storage Ring Accumulator	Study for ISR preparation, 24m circumference; study of stacking procedures; transverse beam stability and vacuum stability (6E-11 Torr); dismantled in 1968
1967	ISOLDE	0.6 GeV	Target and specrtometer	Isotope Separator Online; receiving beam from the SC until 1990
1973	ISOLDE-2	0.6 GeV		SC upgrade to 4 micro ampere
1974	g-2	0.6 GeV	Storage ring	Muon storage ring; burst of Pions are injected and polarized Muon's from their decay are captured on stable orbits; magnetic precession of Muons creates modulation in the decay-electron counting from which the anomalous moment can be derived
1992	ISOLDE	0.8-1.4 GeV		New ISOLDE facility with beam from the PSB
2000	REX-Isolde	450GeV	Trap and Linac	Penning trap for charge breeding; cooling; charge stage multiplication with EBIS; mass separator and accelerator (RFQ, I-H struc)
2008	CNGS	450GeV	Target and SPS	Neutrino beam production

CERN's Proton Program: REX-ISOLDE

2000: Radioactive Beam Experiment at ISOLDE

CERN's Experimental Accelerator Installations

Year	Name	Energy	Туре	Key features and Physcs
1963	CESAR	1.75 MeV	Storage Ring Accumulator	Study for ISR preparation, 24m circumference; study of stacking procedures; transverse beam stability and vacuum stability (6E-11 Torr); dismantled in 1968
1967	ISOLDE	0.6 GeV	Target and specrtometer	Isotope Separator Online; receiving beam from the SC until 1990
1973	ISOLDE-2	0.6 GeV		SC upgrade to 4 micro ampere
1974	g-2	0.6 GeV	Storage ring	Muon storage ring; burst of Pions are injected and polarized Muon's from their decay are captured on stable orbits; magnetic precession of Muons creates modulation in the decay-electron counting from which the anomalous moment can be derived
1992	ISOLDE	0.8-1.4 GeV		New ISOLDE facility with beam from the PSB
2000	REX-Isolde	450GeV	Trap and Linac	Penning trap for charge breeding; cooling; charge stage multiplication with EBIS; mass separator and accelerator (RFQ, I-H struc)
2008	CNGS	450GeV	Target and SPS	Neutrino beam production

CERN's Proton Program: CNGS CERN to Gran Sasso Neutrino Beam

LHC Goals & Performance

Collision energy: Higgs discovery requires $E_{CM} > 1 \text{ TeV}$ p collisions $\rightarrow E_{beam} > 5 \text{ TeV} \rightarrow LHC$: E = 7 TeVInstantaneous luminosity: # events in detector $= L \cdot \sigma_{event}$ rare events $\rightarrow L > 10^{33} \text{ cm}^{-2} \text{sec}^{-1} \rightarrow L = 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$

Integrated luminosity:
$$L = \int L(t)dt$$

depends on the beam lifetime, the LHC cycle and 'turn around' time and overall accelerator efficiency

LHC Layout

built in old LEP tunnel \rightarrow 8.4 T dipole magnets \rightarrow 10 GJ EM energy → powering in 8 sectors 2808 bunches per beam with 1.15 10¹¹ ppb →360 MJ / beam \rightarrow crossing angle & long range beam-beam

Combined experiment/ injection regions

LHC: Magnet Technology

Critical surface of NbTi:

-high ambient magnetic field lowers the capability to sustain large current densities
-low temperatures increase the capability to sustain large current densities
-LHC: B = 8.4 T; T = 1.9 K j = 1 - 2 kA / mm²

existing machines: Tev: B=4.5T;HERA: B=5.5T; RHIC: B=3.5T

He is superfluid below 2K and has a large thermal conductivity!

LHC: Magnet Field Imperfections

dipole magnet designs:

LEP dipole magnet:

conventional magnet design relying on pole face accuracy of a Ferromagnetic Yoke

LHC dipole magnet:

air coil magnet design relying on precise current distribution

Field Imperfections: Super Conducting Magnets time varying field errors in super conducting magnets Luca Bottura CERN, AT-MAS

CERN Accelerator Complex

▶ p (proton) ▶ ion ▶ neutrons ▶ p̄ (antiproton) → + → proton/antiproton conversion ▶ neutrinos ▶ electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

Potential Future Projects for CERN

Proton Accelerators for the Future (PAF) study – identified upgrade scenarios

- Reliable operation for the LHC (allow ultimate LHC beam)
- Options for future programs

References:

- Transparency 2: CERN DDS 0606052-A4-at-144-dpi; http://cdsweb.cern.ch/record/979035
- Transparency 3: CERN DDS
- Transparency 5:
 - -Picture of Thomson → <u>http://nobelprize.org/nobel_prizes</u>
 - -Cathod Ray tube \rightarrow S. Weinberg, 'The Discovery of Subatomic Particles', Scientific American Library, 1983.
- Transparency 6:
 - -Picture of Rutherford and Bohr → <u>http://nobelprize.org/nobel_prizes</u>
 - -Rutherford laboratory \rightarrow S. Weinberg, 'The Discovery of Subatomic Particles', Scientific American Library, 1983.
- Transparency 8:
 - -Pictures of Anderson with cloud chamber and e⁺ e⁻ pair production
 - http://livefromcern.web.cern.ch/livefromcern/antimatter/history/AM-history01-a.html
 - -Picture of Anderson → <u>http://nobelprize.org/nobel_prizes</u>
- Transparency 9:
 - -Cathode ray tube → <u>http://dbhs.wvusd.k12.ca.us/webdocs/AtomicStructure/Disc-of-Electron-Images.html</u>
 - -TV tube Encyclopedia Britannica
- Transparency 10:
 - Penning Source: Talk from Richard Scrivens
- Transparency ?:
- Transparency ?:
- Transparency ?:
- Transparency ?: