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Lecture 1 summary

In Lecture 1, we:

• discussed the effect of synchrotron radiation on the (linear) motion of 

particles in storage rings;

• derived expressions for the damping times of the vertical, horizontal 

and longitudinal emittances;

• discussed the effects of quantum excitation, and derive expressions for 

the equilibrium horizontal and longitudinal beam emittances in an 

electron storage ring.
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Lecture 1 summary: equilibrium beam sizes

The natural emittance is:

The natural energy spread and bunch length are given by:

The momentum compaction factor is:

The synchrotron frequency and synchronous phase are given by:
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Lecture 1 summary: synchrotron radiation integrals

The synchrotron radiation integrals are:
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Lecture 2 objectives: lattices for low-emittance electron storage rings

In this lecture, we shall:

• derive expressions for the natural emittance in four types of lattice:

• FODO

• DBA (double-bend achromat)

• multi-bend achromat, including the triple-bend achromat (TBA)

• TME (theoretical minimum emittance)

• consider how the emittance of an achromat may be reduced by 

"detuning" from the zero-dispersion conditions;

• (in Appendix A) discuss the use of wigglers to reduce the natural 

emittance in a storage ring;

• (in Appendix A) derive an expression for the natural emittance in a 

wiggler-dominated storage ring.
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Calculating the natural emittance in a lattice

In Lecture 1, we showed that the natural emittance is given by:

where Cq is a physical constant,  is the relativistic factor, jx is the horizontal 

damping partition number, and I5 and I2 are synchrotron radiation integrals

jx, I5 and I2 are all functions of the lattice, and independent of the beam 

energy.

In most storage rings, if the bends have no quadrupole component, the 

damping partition number jx  1.  In this case, we just need to evaluate the 

two synchrotron radiation integrals:

If we know the strength and length of all the dipoles in the lattice, it is 

straightforward to evaluate I2.

Evaluating I5 is more complicated: it depends on the lattice functions…
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Case 1: natural emittance in a FODO lattice

Let us consider the case of a simple FODO lattice.  To simplify this case, we 

will use the following approximations:

– the quadrupoles are represented as thin lenses;

– the space between the quadrupoles is completely filled by the dipoles. 



8 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

Case 1: natural emittance in a FODO lattice

With the approximations in the previous slide, the lattice functions (Twiss 

parameters and dispersion) are completely determined by the following 

parameters:

– the focal length f of a quadrupole;

– the bending radius  of a dipole;

– the length L of a dipole.

The bending angle q of a dipole is given by:

In terms of these parameters, the horizontal beta function and dispersion at 

the centre of the horizontally-focusing quadrupole are given by:

By symmetry, at the centre of a quadrupole, x = px = 0.


q

L


 

  
 

22

2

22224 4

tan22

2cos416

sincos2sin4






q

qqq


q











f

ff

ff

ff
xx



9 Lecture 2: Emittance and Lattice DesignLow Emittance Machines

Case 1: natural emittance in a FODO lattice

We also know how to evolve the lattice functions through the lattice, using 

the transfer matrices, M.

For the Twiss parameters, we use:

where:

The dispersion can be evolved using:

For a thin quadrupole, the transfer matrix is given by:

For a dipole, the transfer matrix is given by:

    T0 MAMsA 
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Case 1: natural emittance in a FODO lattice

With the expressions for the Twiss parameters and dispersion from the 

previous two slides, we can evaluate the synchrotron radiation integral I5.

Note: by symmetry, we need to evaluate the integral in only one of the 

two dipoles in the FODO cell.

The algebra is rather formidable.  The result is most easily expressed as a 

power series in the dipole bending angle q.  We find that:
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Case 1: natural emittance in a FODO lattice

For small q, the expression for I5/I2 can be written:

This can be further simplified if  >> 2f (which is often the case):

and still further if 4f >> L (which is less generally the case):

Making the approximation jx  1 (since we have no quadrupole component in 

the dipole), and writing  = L/q, we have:
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Case 1: natural emittance in a FODO lattice

We have derived an approximate expression for the natural emittance of a 

lattice consisting entirely of FODO cells:

Notice how the emittance scales with the beam and lattice parameters:

– The emittance is proportional to the square of the energy.

– The emittance is proportional to the cube of the bending angle.  

Increasing the number of cells in a complete circular lattice reduces 

the bending angle of each dipole, and reduces the emittance.

– The emittance is proportional to the cube of the quadrupole focal 

length.  Stronger quadrupoles have shorter focal lengths, and reduce 

the emittance.

– The emittance is inversely proportional to the cube of the cell (or 

dipole) length.  Shortening the cell reduces the lattice functions, and 

reduces the emittance.
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Case 1: natural emittance in a FODO lattice

Recall that the phase advance in a FODO cell is given by:

This means that a stable lattice must have:

In the limiting case, mx = 180 , and we have the minimum value for f:

Using our approximation:

this would suggest that the minimum emittance in a FODO lattice is given by:

However, as we increase the focusing strength, the approximations we used 

to obtain this simple form for 0 break down...
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Case 1: natural emittance in a FODO lattice

Plotting the exact formula for I5/I2, as a function of the phase advance, we 

find there is a minimum in the natural emittance, for m  137°.

Black line: exact formula

Red line: approximation, 
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It turns out that the minimum value the natural emittance in a FODO cell is 

given by:
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Case 1: natural emittance in a FODO lattice

A phase advance of 137° is quite high for a FODO cell.  More typically, 

beam lines are designed with a phase advance of 90° per cell.

For a 90° FODO cell:

We are just in the regime where our approximation 4f >> L is valid; so in this 

case:

Using the above formulae, we estimate that a storage ring constructed from 

16 FODO cells with 90 phase advance per cell, and storing beam at 2 GeV 

would have a natural emittance of 125 nm.

Many modern applications (including light sources and colliders) demand 

emittances one or two orders of magnitude smaller.

How can we design the lattice to achieve a smaller natural emittance?

A clue is provided if we look at the curly-H function in a FODO lattice…
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Case 1: natural emittance in a FODO lattice

The curly-H function remains at a relatively constant value throughout the 

lattice.  Perhaps we can reduce it in the dipoles…
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Case 2: natural emittance in a DBA lattice

As a first attempt at reducing the natural emittance, let us try designing a 

lattice that has zero dispersion at one end of each dipole.  This can be 

achieved using a double bend achromat (DBA) lattice.
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Case 2: natural emittance in a DBA lattice

First of all, let us consider the constraints needed to achieve zero dispersion 

at either end of the cell.

Assuming that we start at one end of the cell with zero dispersion, then, by 

symmetry, the dispersion at the other end of the cell will also be zero if the 

central quadrupole simply reverses the gradient of the dispersion.

In the thin lens approximation, this condition can be written:

Hence, the central quadrupole must have focal length:

The actual value of the dispersion is determined by the dipole bending angle 

q, the bending radius , and the drift length L:
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Case 2: natural emittance in a DBA lattice

Is this type of lattice likely to have a lower natural emittance than a FODO 

lattice?  We can get an idea by looking at the curly-H function.

Note that we use the same dipoles (bending radius and length) for our 

example in both cases (FODO and DBA).  In the DBA lattice the curly-H 

function is reduced by a significant factor, compared to the FODO lattice.
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Case 2: natural emittance in a DBA lattice

Let us calculate the minimum natural emittance of a DBA lattice, for given 

bending radius  and bending angle q in the dipoles.

To do this, we need to calculate the minimum value of:

in one dipole, subject to the constraints:

where 0 and p0 are the dispersion and the gradient of the dispersion at the 

entrance of a dipole.

We know how the dispersion and the Twiss parameters evolve through the 

dipole, so we can calculate I5 for one dipole, for given initial values of the 

Twiss parameters 0 and 0.

Then, we simply have to minimise the value of I5 with respect to 0 and 0.

Again, the algebra is rather formidable, and the full expression for I5 is not 

especially enlightening…
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Case 2: natural emittance in a DBA lattice

We find that, for given  and q and with the constraints:

the minimum value of I5 is given by:

which occurs for values of the Twiss parameters at the entrance to the 

dipole:

where L = q is the length of a dipole.

Since:

we can immediately write an expression for the minimum emittance in a 

DBA lattice…
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Case 2: natural emittance in a DBA lattice

The approximation is valid for small q.  Note that we have again assumed 

that, since there is no quadrupole component in the dipole, jx  1.

Compare the above expression with that for the minimum emittance in a 

FODO lattice:

The minimum emittance in each case scales with the square of the beam 

energy, and with the cube of the bending angle of a dipole.  However, the 

minimum emittance in a DBA lattice is smaller than that in a FODO lattice 

(for given energy and dipole bending angle) by a factor 415  15.5 .

This is a significant improvement… but can we do even better?
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Case 3: natural emittance in a TME lattice

We used the constraints:

to define a DBA lattice; but to get a lower emittance, we can consider 

relaxing these constraints.

If we relax these constraints, then we may be able to achieve an even lower 

natural emittance.

To derive the “theoretical minimum emittance” (TME), we write down an 

expression for:

with arbitrary initial dispersion 0, p0, and Twiss parameters 0 and 0 in a 

dipole with given bending radius  and angle q.

Then we minimise I5 with respect to variations in 0, p0, 0 and 0…
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Case 3: natural emittance in a TME lattice

The result is:

The minimum emittance is obtained with dispersion at the entrance to a 

dipole:

and with Twiss functions at the entrance:
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Case 3: natural emittance in a TME lattice

Note that with the conditions for minimum emittance:

the dispersion and the beta function reach a minimum in the centre of the 
dipole.  The values at the centre of the dipole are:

What do the lattice functions look like in a single cell of a TME lattice?

Because of symmetry in the dipole, we can consider a TME lattice cell as 
containing a single dipole (as opposed to two dipoles, which we had in the 
cases of the FODO and DBA lattices)…
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Case 3: natural emittance in a TME lattice

Note: the lattice shown in this example does not actually achieve the exact conditions 
needed for absolute minimum emittance.  A more complicated lattice would be 
needed for this…
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Summary: natural emittance in FODO, DBA and TME lattices

Lattice Style Minimum Emittance Conditions

90 FODO

Minimum 

emittance 

FODO

DBA

TME
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Note: the approximations are valid for small dipole bending angle, q.
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Comments on lattice design for low emittance lattices

The results we have derived have been for "ideal" lattices that perfectly achieve the 

stated conditions in each case.

In practice, lattices rarely, if ever, achieve the ideal conditions.  In particular, the beta 

function in an achromat is usually not optimal for low emittance; and the dispersion 

and beta function in a TME lattice are not optimal.

The main reasons for this are:

– It is difficult to control the beta function and dispersion to achieve the ideal low-

emittance conditions with a small number of quadrupoles.

– There are other strong dynamical constraints on the design that we have not 

considered: in particular, the lattice needs a large dynamic aperture to achieve 

a good beam lifetime.

The dynamic aperture issue is particularly difficult for low emittance lattices.  The 

dispersion in low emittance lattices is generally low, while the strong focusing leads to 

high chromaticity.  Therefore, very strong sextupoles are often needed to correct the 

natural chromaticity.  This limits the dynamic aperture.

The consequence of all these issues is that in practice, the natural emittance of a 

lattice of a given type is usually somewhat larger than might be expected using the 

formulae given here.
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Further Options and Issues

We have derived the main results for this lecture.

However, there are (of course) many other options besides FODO, DBA and 

TME for the lattice "style".

In the remainder of this lecture, we will discuss:

– Use of the DBA lattice in third-generation synchrotron light sources.

– Detuning the DBA to reduce the emittance.

– Use of multi-bend achromats to reduce the emittance.

See the Appendix for:

– Effects of insertion devices on the natural emittance in a storage ring.

– Natural emittance in wiggler-dominated storage rings.
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DBA lattices in third generation synchrotron light sources

Lattices composed of DBA cells have been a popular choice for third 
generation synchrotron light sources.

The DBA structure provides a lower natural emittance than a FODO lattice 
with the same number of dipoles

The long, dispersion-free straight sections provide ideal locations for 
insertion devices such as undulators and wigglers.

Lattice functions in 

an early version of 

the ESRF lattice.
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“Detuning” the DBA lattice

If an insertion device, such as an undulator or wiggler, is incorporated in a 

storage ring at a location with large dispersion, then the dipole fields in the 

device can make a significant contribution to the quantum excitation (I5).

As a result, the insertion device can lead to an increase in the natural 

emittance of the storage ring.

By using a DBA lattice, we provide dispersion-free straights in which we can 

locate undulators and wigglers without blowing up the natural emittance.

However, there is some tolerance.  In many cases, it is possible to “detune” 

the lattice from the strict DBA conditions, thereby allowing some reduction in 

natural emittance at the cost of some dispersion in the straights.

The insertion devices will then contribute to the quantum excitation; but 

depending on the lattice and the insertion devices, there may still be a net 

benefit in the reduction of the natural emittance compared to a lattice with 

zero dispersion in the straights.
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“Detuning” the DBA lattice

Some light sources that were originally designed with zero-dispersion 

straights take advantage of tuning flexibility to operate routinely with 

dispersion in the straights, thus achieving lower natural emittance and 

providing better output for users.

For example, the ESRF…
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Multi-bend achromats

In principle, it is possible to combine the DBA and TME lattices by having an 

arc cell consisting of more than two dipoles.

– The dipoles at either end of the cell have zero dispersion (and 

gradient of the dispersion) at their outside faces, thus satisfying the 

“achromat” condition.

– The lattice is tuned so that in the “central” dipoles, the Twiss 

parameters and dispersion satisfy the TME conditions.

Since the lattice functions are different in the central dipoles compared to 

the end dipoles, we have additional degrees of freedom we can use to 

minimise the quantum excitation.

Therefore, it is possible to have cases where the end dipoles and central 

dipoles differ in:

– the bend angle (i.e. length of dipole), and/or

– the bend radius (i.e. strength of dipole).
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Multi-bend achromats

For simplicity, let us consider the case where the dipoles all have the same 

bending radius (i.e. they all have the same field strength), but vary in length.

Assuming each arc cell has a fixed number, M, of dipoles, the bending 

angles must satisfy:

Since the synchrotron radiation integrals are additive, for an M-bend 

achromat we can write:
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Multi-bend achromats

Hence, in an M-bend achromat,

Minimising the ratio I5/I2 with respect to  gives:

Hence, the natural emittance in an M-bend achromat is given by:

Note that q is the average bending angle per dipole: the central bending 

magnets should be longer than the outer bending magnets by a factor 33.

Of course, the emittance can always be reduced by "detuning" the achromat 

to allow dispersion in the straights…
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Example of a Triple-Bend Achromat: the Swiss Light Source

The storage ring in the Swiss Light Source consists of 12 TBA cells, has a 

circumference of 288 m, and beam energy 2.4 GeV.

In the "zero dispersion" mode, the natural emittance is 4.8 nm·rad.
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Example of a Triple-Bend Achromat: the Swiss Light Source

Detuning the achromat to allow dispersion in the straights reduces the 

natural emittance from 4.8 nm·rad to 3.9 nm·rad (a reduction of about 20% 

compared to the zero-dispersion case).
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Summary 1

The natural emittance in a storage ring is determined by the balance between the 

radiation damping (given by I2) and the quantum excitation (given by I5).

The quantum excitation depends on the lattice functions.  Different "styles" of lattice 

can be used, depending on the emittance specification for the storage ring.

In general, for small bending angle q the natural emittance can be written as:

where q is the bending angle of a single dipole, and the numerical factor F is 

determined by the lattice style:
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Summary 2

Achromats have been popular choices for storage ring lattices in third-

generation synchrotron light sources for two reasons:

– they provide lower natural emittance than FODO lattices;

– they provide zero-dispersion locations appropriate for insertion 

devices (wigglers and undulators).

Light sources using double-bend achromats (e.g. ESRF, APS, SPring-8, 

DIAMOND, SOLEIL…) and triple-bend achromats (e.g. ALS, SLS) have 

been built.

Increasing the number of bends in a single cell of an achromat ("multiple-

bend achromats") reduces the emittance, since the lattice functions in the 

"central" bends can be tuned to conditions for minimum emittance.

"Detuning" an achromat to allow some dispersion in the straights provides 

the possibility of further reduction in natural emittance, by moving towards 

the conditions for a theoretical minimum emittance (TME) lattice.



Appendix
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Appendix A: Effect of insertion devices on the natural emittance

Insertion devices such as wigglers and undulators are commonly used in 

third generation light sources to generate radiation with particular properties.

Usually, insertion devices are designed so that the integral of the field along 

the length of the device is zero: therefore, the overall geometry of the 

machine is not changed.  However, since they produce radiation, they will 

contribute to the synchrotron radiation integrals, and hence affect the natural 

emittance of the lattice.

If a wiggler or undulator is inserted at a location with zero dispersion, then in 

the approximation that we neglect the dispersion generated by the device 

itself, there will be no contribution to I5; however, there will be a non-zero 

contribution to I2 (the energy loss of a particle).

Hence, since the natural emittance is given by the ratio I5/I2, wigglers and 

undulators can reduce the natural emittance of the beam.  In effect, they 

enhance the radiation damping while making little contribution to the 

quantum excitation.

However, to obtain a reasonably accurate value for the natural emittance, 

we have to consider the dispersion generated by the insertion device itself.
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Appendix A: A simple model of a wiggler
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Appendix A: Wigglers increase the energy loss from synchrotron radiation

The total energy loss per turn is given in terms of the second synchrotron 

radiation integral:

The integral extends over the entire circumference of the ring.  The 

contribution from the wigglers is:

The approximation comes from the fact that we neglect end effects.

Note that I2w depends only on the peak field and the total length of wiggler 

(and the beam energy), and is independent of the wiggler period.
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Appendix A: Wiggler contribution to the natural emittance

The natural emittance depends on the second and fifth synchrotron radiation 

integrals:

The contribution of the wiggler to I5 depends on the beta function in the 

wiggler.  Let us assume that the beta function is constant (or changing 

slowly), so x  0.

Then, to calculate I5, we just need to know the dispersion…
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Appendix A: Dispersion generated in a wiggler

In a dipole of bending radius  and quadrupole gradient k1, the dispersion 

obeys the equation:

Assuming that k1 = 0 in the wiggler, we can write the equation for x as:

For kww >> 1, we can neglect the second term on the left, and we find:
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Appendix A: Wiggler contribution to the natural emittance

The wiggler contribution to I5 can be written:

Using:

we have:
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Appendix A: Natural emittance in a wiggler-dominated storage ring

Combining expressions for I2w and I5w, then, in the case that the wiggler 

dominates the contributions to I2 and I5, we can write for the natural 

emittance:

Using short period, high field wigglers, we can achieve small emittances, if 

the wigglers are placed at locations with small horizontal beta function.

Note that in the vast majority of electron storage rings, insertion devices only 

account for 10% - 20% of the synchrotron radiation energy loss: so the 

above formula cannot be used to calculate the emittance.

However, in the damping rings of a future linear collider, wigglers would 

account for around 90% of the synchrotron radiation energy loss.  The 

natural emittance will be dominated by the wiggler parameters.
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Appendix A: Wiggler contribution to the natural energy spread

The natural energy spread is given in terms of the second and third 

synchrotron radiation integrals:

Since I3 does not depend on the dispersion, the wiggler potentially makes a 

significant contribution to the energy spread.  Writing for the bending radius 

in the wiggler:

we find:

If the wiggler dominates the synchrotron radiation energy loss, then the 

natural energy spread in the ring will be given by:
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