3D EM Simulations

Overview

- Cavities
 - Eigenmodes
 - Q Factor
 - Time Domain and Resonances
- Cavities and Particles
- Electron Guns
- Collector
- Wakefields

Eigenmode Solver Theoretical Background

In free space *travelling waves* can exist for any frequencies.

If such a plane wave is reflected at a perfect wall (electric or magnetic) there will be a standing wave. This <u>standing wave</u> exists independently from the frequency.

The insertion of a second wall does not affect those standing wave as long as the distance L between the walls fits perfectly to the wave-length. The standing wave of this closed structure is called an <u>eigenmode</u>.

The frequency and the shape of the next eigenmode fitting between those two walls is predictable.

Eigenmode Computation

$$rot \vec{E} = -j\omega\mu \vec{H}$$

$$rot \vec{H} = j\omega\varepsilon \vec{E} + \sigma \vec{E} = j\omega(\varepsilon + \frac{\sigma}{j\omega})\vec{E} = j\omega\underline{\varepsilon}\vec{E}$$

$$rot \frac{1}{\mu} rot \vec{E} = \omega^{2}\underline{\varepsilon}\vec{E}$$

Eigenvalue equation for the resonant structure modes and resonance frequencies.

Eigenvalues ω and eigenvectors \vec{E}

IE Eigenmode Solver

Eigenmode Solver Parameters	
Solver settings	Main user input:
Modes: 10 2 Optimize Modes: 10 2 Par. Sweep Choose number of modes automatically (0 40 GHz) Specials	1 Which eigenmode method should be used? (AKS might be faster for well behaved examples, JD is more robust and might even find good solutions for bad conditioned problems)
Iterations: 2 Simplify Model	2 How many modes are required? The <i>AKS</i> method always calculates internally at least 10 modes. (Therefore nearly no difference in
Calculate external Q-factor Use perturbation method Adaptive mesh refinement Enable Properties Help	cpu time between 1 and 10 modes). The JD method calculates one mode after another, therefore 10 modes need roughly 10times the simulation time of 1 mode. Therefore the number of modes should be decreased when using the JD method.

A simple lossfree Cavity

Eigenmode Solver Parameters
Solver settings
Method: JD (lossfree)
Modes: 3

3 symmetry planes \rightarrow only 1/8 of the volume needs to be calculated

Boundary Co	nditions
Boundaries	Symmetry Planes Boundary Temperature
YZ plane:	magnetic (Ht = 0)
XZ plane:	magnetic (Ht = 0)
XY plane:	electric (Et = 0)

7

cavity_03.zip

Energy Densities

Volume Integration of Energy Density is possible via Result Template 0D / Evaluate Field in arbitrary Coordinates (0D, 1D, 2D, 3D) Note: for a lossfree eigenmode both integrals (el. + mag.energy) will be 1 Joule, since the energy is oscillating between electric and magnetic field.

Plotting Fields and getting Field Values

Template Based Postprocessing	e_Abs (Z)
Evaluate Field along arbitrary Coordinates (1D Plot) ID Field Plot Calculation Range Dim: Coord.System: 1D Cotestian Cartesian WCS: K: global (xyz) Direction: Y: Z 0.0 Sampling: Z-normal The content of the conten	2.5e+009 2e+009 1.5e+009 1e+009 5e+008 0 -6 -4 -2 0 2 4 6 Z / mm
Evaluated Field and Component Result Value Help Modes\Mode 1\e ID Plot of Field Values Help Component: Complex: Abs Real Part OK Cancel Help DrawPoints Datafile	All modes are normed to 1 Joule stored energy. E / H / surface current are stored as peak values.

Benchmark Pillbox

The Quality Factor Q

 $\frac{2\pi \bullet StoredEnergy}{Energy_consumed_per_period} = \frac{2\pi \cdot f \cdot W}{P_{rms}}$ O =

the higher Q, the longer the energy is kept

$$\frac{1}{Q_{tot}} = \frac{1}{Q_{wall}} + \frac{1}{Q_{diel}} + \frac{1}{Q_{ext}} + \frac{1}{Q_{beam}}$$

As a circuit model, all losses can be seen as a parallel circuit, acting on the same mode.

Calculation of Q_{wall} and Q_{diel}

Results -> Loss and Q-Calculation performs a loss calculation in the postprocessing based on perturbation theory. It handles metallic losses due to finite conductivity (skin effect) as well as dielectric losses.

Q-Factor Calculation					
H-Field data: Mode 1	Calculate				
Material/Solid Conductivity Mue Loss/W(peak) Q	Specials				
Cond. Enclosure 5.8000e+007 1.0000e+000 9.1550e+007 4.06	69e+003				
Sum 9.1550e+007 4.06	69e+003				
	Close				
Q=2*Pi*frq * Energy / Loss_rms					
frq = 2.96289815e+010 Hz					
Loss_rms = 0.5 Loss_peak					
Energy = 1 Joule					
	V				
Modify Modify All Hide / Unhide Hide/Unh. All					

www.cst.com

Integration of Voltage, Calculation of Shunt Impedance & R/Q

Template Based Postprocessing			
1D Results OD Results			
3D Eigenmode Result			
🗟 3D Eigenmode Result 🛛 🛛 🔀			
Result value: Mode Number: Shunt Impedance V 1			
Frequency Q-Factor (Perturbation) Total Loss (Perturbation) Total Energy R over Q Xmax:			
Shunt Impedance 0.0 Voltage Q.Factor (lossy Eigenmode) Q.Factor (external) 0.0 Q.Factor (loaded) 0.0			
Z: ♥ max. range 0.0 Transit Time Factor Consider part. velocity beta = not used			
OK Cancel Help DrawPoints Logfile			

Shunt Impedance Rs=Vo²/(2W) with Vo : voltage "seen" by a charged interacting particle.

For voltage integration also the *Transit Time Factor* can be specified, which defines the speed of the particle (beta=v/c) and guarantees a phase-correct integration of electr. field.

R/Q (R over Q) only depends on the geometry (not on the loss mechanism) and is therefore often used to compare different cavity structures.

Example Superconducting Cavity

easy construction via Macros -> Construct -> Superconducting Cavity

www.cst.com

Eigenmode Solver Calculation of Q_{ext}

Eigenmode Solver Parameters
Solver settings Start
Method: JD (lossfree) Optimize
Modes: 10 Par. Sweep
Iterations: 2
Store all result data in cache
Q-factor calculation Simplify Model
Calculate external Q-factor
Apply
Adaptive mesh refinement Close
L Enable Properties Help

Results of the Q-Factor calculation: Log File

 External Q-factors:			
 Mode	Frequency		
1	0	 I	
2	0	1	
3	3.2586148445	1	2.83e+000
4	3.2586148445	1	2.83e+000
5	4.54620112319	1	3.32e+002
6	4.57202070385	1	3.05e+002
7	6.85412046144	1	3.95e+002
8	6.96493323077	1	5.62e+002
9	7.08016640849	1	2.62e+004
10	7.18545391085	1	9.07e+003
11	7.73471051767	1	2.91e+002
12	7.90217291982	1	2.01e+002
13	8.03194365865	1	2 97++004

E.g. external Q-factor comparison for the Langer filter

f [GHz]	CST Q_ext	Steiglitz-McBride
4.546	332	332
4.572	305	305
7.080	26200	24132
7.185	9070	8472
		CS

!Е

Other methods for loaded Q calculation

- Using the transient analysis
- Amplitude E-field inside a resonator is given:

$$E(t) = E_0 \cdot e^{-\frac{\omega_0 \cdot t}{2 \cdot Q_{\text{load}}}} \quad \text{or} \quad \frac{E(t)}{E_0} = e^{-\frac{\omega_0 \cdot t}{2 \cdot Q_{\text{load}}}}$$

• Monitored using an E-field probe

• Measure the time difference Δt in which the E-field is damped by a factor of 1/e then Q load is given by

$$Q_{\text{load}} = \pi \cdot \Delta t \cdot f_0$$

Other methods for loaded Q calculation

 $Q_{\text{load}} = \pi \cdot \Delta t \cdot f_0$

Signal: 503.7 at t1=200 ns Signal: 503.7/e = at t2= 423.6ns $\Delta t = t2 - t1 = 223.6ns$ $f_0 = 2.4615$ GHz $Q_{load} = 1729$

Time Domain Simulation and Resonant Structures

Slow energy decay since energy is kept in the resonance

- Long Simulation Time
- Prediction of signal by Autoregressive Filter
- Usage of Frequency Domain Solver

Time / ns

Time Domain Simulation AR Filter

Frequency Domain Solver

- Simulation performed at single frequencies
- Simulation of Steady State
- Broadband Frequency Sweep

Thermal Calculation

Surface and volume losses from previous eigenmode simulation can be used to perform a thermal analysis

Source:	ОК
Eigenmodes [Mode 1]	Cancel
Source parameters: Frequency: 1.27021	Specials Delete Source
Scaling factor (RMS power): 1.0 Consider volume losses	Help

Overview

- Cavities
 - Eigenmodes
 - Q Factor
 - Time Domain and Resonances
- Cavities and Particles
- Electron Guns
- Collector
- Wakefields

Tracking Algorithm

Workflow:

- 1. Calculate electro- and magnetostatic fields
- 2. Calculate force on charged particles
- Move particles according to the previously calculated force → Trajectory

$$\frac{d}{dt}(m\vec{v}) = q(\vec{E} + \vec{v} \times \vec{B}) \quad \text{Velocity} \text{ update } m^{n+1}v^{n+1} = m^nv^n + q\Delta t \left(\vec{E}^{n+1/2} + \vec{v}^{n+1} \times \vec{B}^{n+1/2}\right)$$

$$\frac{dr}{dt} = v \quad \text{Position update } \vec{r}^{n+3/2} = \vec{r}^{n+1/2} + \Delta t \vec{v}^{n+1}$$

Tesla-Type 9-Cell Cavity

Tesla-Type 9-Cell Cavity

TESLA – Two-Point-Multipacting

- Eigenmode at 1.3 GHz
- E_{max} = 45 MV/m

Type = E-Field (peak) Monitor = Mode 1 Maximum-3d = 1.49001e+007 V/m at -41.5037 / 6.5 / 223.901 Frequency = 1.31305 Phase = 0 degrees

TESLA – Two-Point-Multipacting

CST

Overview

- Cavities
 - Eigenmodes
 - Q Factor
 - Time Domain and Resonances
- Cavities and Particles
- Electron Guns
- Collector
- Wakfields

Emission Models

Space Charge Limited Emission:

Emission Models

Thermionic Emission:

Assumption:

•Limited number of particles

•Particle extraction depends on field close to emitting surface until all particles are emitted

Richardson-Dushman Equation:

$$J_s = AT^2 e^{\frac{-e\Phi}{kT}}$$

Gridded Gun

Gridded Gun - Mesh

S-DALINAC Electron Source

³³ See also Bastian Steiner, PhD Thesis, TEMF, TU Darmstadt

S-DALINAC Electron Source

³⁴ See also Bastian Steiner, PhD Thesis, TEMF, TU Darmstadt

S-DALINAC Electron Source

³⁵ See also Bastian Steiner, PhD Thesis, TEMF, TU Darmstadt

Overview

- Cavities
 - Eigenmodes
 - Q Factor
 - Time Domain and Resonances
- Cavities and Particles
- Electron Guns
- Collector
- Wakefields

Collector

Collector, including secondary electron emission

Overview

- Cavities
 - Eigenmodes
 - Q Factor
 - Time Domain and Resonances
- Cavities and Particles
- Electron Guns
- Collector
- Wakefields

What does the Wakefield Solver do?

> simple explanation: Special current excitation of CST MWS T-Solver.

- > more complex explanation:
 - Moving charged particles are represented as Gaussian current density

- At structure discontinuities the intrinsic electromagnetic fields of the moving charged particles causes the appearance of "Wakefields"

- These Wakefields can act back on the particles which is expressed in terms of a Wakepotential

Beam Position Monitor

Beam Position Monitor

Pillbox Cavity

Beam definition

Sigma	=	10 cm
Max. beam frequency	=	1.77347 GHz
Beta	=	1
Charge	=	1e-009 C

45

Frequency / GHz

Clamp to range: (Min: 0/ Max: 5000) V/m 5000 4219 3594 2969 2344 1719 1094 469 0 Туре = E-Field (peak) Monitor = e-field (t=0..3e-8(1e-11);x=0) [pb] Component = Abs = 0 Plane at x Sample = 1 / 1130T, Time = 0 Maximum-2d = 7554.84 V/m at 0 / -1.5 / 0

SUMMARY

- Cavities
 - Eigenmodes
 - Q Factor
 - Time Domain and Resonances
- Cavities and Particles
- Electron Guns
- Collector
- Wakefields

