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Instrumentation---Diagnostics
• Instrumentation: summary word for all the 

technologies needed to produce primary 
measurements of direct beam observables.

• Diagnostics: making use of these instruments in 
order to 
- operate the accelerators   ex: orbit control 
- improve the performance of the accelerators 

ex: tune feedback, emittance preservation 
- deduce further beam parameters or performance 
indicators of the machine by further data 
processing 

ex: chromaticty measurements, betatron 
matching, bunch arrival time 

• - detect equipment faults
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Example: Instrumentation <-> Diagnostics

a BPM (yesterdays talk) delivers two values: 
X,Y…the transverse position of the beam. 
It delivers these values per machine turn/beam passage or 
per bunch passage in the BPM. 
- Diagnostics usage: 
Closed Orbit (=: CO) 
- inspection/Correction 
- automated real time feedback 
- dispersion (CO for different momentum) 
Turn by Turn data: 
- machine optics (values of beta function, phase advances) 
- tune, chromaticty 

!!! The details of the diagnostics usage determine the 
specifications of the instruments. !!!
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• Optimization of Machine Performance 
(“the good days”)

 Orbit correction, Beam threading
 Luminosity: basics + LEP luminosity tuning

• Various Diagnostics  (“the fun days”)
 Tune & chromaticity measurements
 Dynamic effects: tune and chromaticity control
 Bunch arrival time in FEL

• Trying to make the machine work 
(2 examples of “the bad days”)

 The beam does not circulate!
 The beam gets lost, when changing the beta*

That is what
gets reported

on in
conferences

Outline
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Orbit Acquisition

Horizontal

Vertical

•This orbit excursion 
is too large!
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Orbit Correction (Operator Panel)
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Orbit Correction (Detail)
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Beam ThreadingBeam Threading
• Threading the beam round the LHC ring (very first commissioning)

One beam at a time, one hour per beam.
Collimators were used to intercept the beam (1 bunch, 2×109 protons)
Beam through 1 sector (1/8 ring)

• correct trajectory, open collimator and move on.
Beam 2 threading BPM availability ~ 99%

Courtesy of CMS

Courtesy of ATLAS
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Luminosity & Beam-Beam Tune Shift

• Luminosity

• Normalized emittance

• Beam-beam tune shift

• To maximize L and minimize the stored energy, 
increase N to the tune shift limit, choose a large 
number of bunches (M) and a small *
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Luminosity Measurements

• The TAN absorbs forward neutral collision products (mostly neutrons and 
photons) and is placed in front of the outer beam separation dipole D2
•Ideal location to measure the forward flux of collision products
•The count rate is proportional to luminosity

In general: Measure flux of secondary particles produced in 
the collisions, for which the cross section of production is 
known. The fluxrate is a direct measure of Luminosity.



OPERATOR

Orbit 
(mainly vertical)

Coupling, tunes, 
chromaticity, …

Vertical beam
size

2D beam image,
beam lifetime

Fast luminosity
signals

Absolute lumi
in experiments

How do we optimize luminosity for LEP?

Dispersion,
chromaticity,
optics, orbit, 

tunes, …

Reduce vertical 
emittance...

Fast detection of
resonances, problems

Increase luminosity Absolute (slow) pro-
duction reference

Div. measurements

Concept of golden orbit

Correction algo-
rithms (MICADO,
DFS, beta match)

Knobs

F a s t   t u n i n g   s i g n a l s



Why does it work?

Experience:

Reduce vertical
beam size meas.

(local)

Reduction in
vertical RMS

emittance

Increase in
luminosity
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• RMS vertical emittance mainly due to 
vertical dispersion.

• Vertical IP spot size mainly due to 
RMS emittance.

Typical LEP 99 performance

Simulation



Main usage of beam size signals:

BEUV Continuous 2D image of beam
Fast detection of beam resonances, problems, …

BEXE Sensitive, continuous display of vertical spot sizes.
Use for precision tuning of vertical emittance and
luminosity.
Used heavily for beam optimization!



Direct measurement of beam sizes in LEP:

Via synchrotron radiation emitted by beam …
1) BEUV

Near ultra-violet 
range

Real time 2D 
image of beam

Integrate 224 turns, all bunches. Absolute precision limited by diffraction, mirror 
deformation, …
“Determination of emittance below 0.25 nm difficult.”

R.Jung. “Precision emittance measurements in LEP with imaging telescopes, comparison with wire scanner 
and x-ray detector measurements.” CERN-SL-95-63 BI.
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2) BEXE X-ray range
Accurate measure of vertical beam size

Vertical beam size down to 300 m with 1% precision… (“TURN AVERAGE DISPLAY” for fast 
tuning)

R.Jones et al. “Real time 
display of the vertical 
beam sizes in LEP using 
the BEXE X-ray detector 
and fast VME based 
computers”. 
CERN-SL-99-056-BI.



Luminosity monitoring:

1) Luminosity monitors of the experiments

Absolute reference
Slow time response (~ minutes)
Large fluctuations

2) LEP luminosity monitors (16 Tungsten-Silicon calorimeters in IP
E. Bravin et al. “Luminosity measurements at LEP”. CERN-SL-97-072-BI.

Luminosity per IP
Problems at high energy of LEP II: 

Double background rate
Four times smaller Bhabba cross section

Not very much used

3) Luminosity estimate from beam lifetime 

Fastest response. First year of operational use…



LEP lifetime well understood:
(E.g. H. Burckhardt, R.Kleiss. Beam Lifetimes in LEP. 
EPAC94)

Different regimes:

1) Without collision:
Compton scattering on 

thermal 
photons, beam-gas 

scattering.
0 = 32 h.

2) In collision:
Radiative Bhabha scattering 

or 
beam-beam bremsstrahlung.
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Formula for luminosity:
(in convenient units for LEP2 parameters)

Performance improved by increasing signal to noise 
ratio!
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Luminosity from BCT / experiments:
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Very good agreement… BCT signal less noisy and much faster!
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autopilot



Compare LEPLUMI and BCT data:

Reasonable agreement, but LEPLUMI is less accurate. Not much used…
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• Optimization of Machine Performance 
(“the good days”)

 Orbit measurement & correction
 Luminosity: basics + luminosity tuning

• Diagnostics of transverse beam motion: 
Important tools to stabilize performance at high levels
 Tune & chromaticity measurements
 Dynamic effects: tune and chromaticity control

• Trying to make the machine work 
(2 examples from “the bad days”)

 The beam does not circulate!
 The beam gets lost, when changing the beta*

Outline
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Measurement of Q (betatron tune)

• Q – the eigenfrequency of betatron oscillations in a 
circular machine
 One of the key parameters of machine operation

• Many measurement methods available:
 different beam excitations
 different observations of resulting beam oscillation
 different data treatment

QF
QF QF

QDQD

SF
SF

SF SD SD

Characteristic Frequency
of the Magnet Lattice

Produced by the strength of the
Quadrupole magnets
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Principle of any Q-measurement

Beam

Excitation Source for
Transverse beam

Oscillations 
- stripline kickers 
- pulsed magnets

Excitation Source for
Transverse beam

Oscillations 
- stripline kickers
- pulsed magnets

Observation of
Transverse beam

Oscillations
- E.M. pickup

- resonant BPM
- others

Observation of
Transverse beam

Oscillations
- E.M. pickup

- resonant BPM
- others

G() H()
BTF:= H()/G()

Measurement of 
betatron tune Q: 
Maximum of BTF
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Simple example: FFT analysis

G() == flat
(i.e. excite all frequencies)

Made with random noise kicks

Measure beam position over 
many consecutives turns

apply FFT  H()

BTF = H()
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Network Analysis
1. Excite beams with a 

sinusoidal carrier

2. Measure beam 
response

3. Sweep excitation 
frequency slowly 
through beam 
response
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Time Resolved Measurements
• To follow betatron tunes during machine transitions we 

need time resolved measurements. Simplest example:
 repeated FFT spectra as before (spectrograms)
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Principle of PLL tune measurements

Beam

VCO
Voltage controlled 

oscillator

A sin(t)

BPM

B sin(t+)

Phase detector
AB sin(2 t +)cos()

Lowpass
Frequency control:

ABcos()

Read VCO
Frequency=

tune!
At regular

Time intervals

This PLL system 
looks to the 90 deg. 
point of the BTF
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Illustration of  PLL tune tracking

A

q


q

Single carrier PLL locks 
on 900 point of BTF;
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Example of PLL tune measurement

In this case continuous tune 
tracking was used whilst 
crossing the horizontal and 
vertical tunes with a power 
converter ramp.

Closest tune approach is 
a measure of coupling

qh

qv

qh -qv



Getting BPM resolutions below the nm 
for diagnostics on hadron beams without 

emittance diluation

• Aperture of BPM approx. 50 mm or more
• Wide band electronics thermal noise limit: 10^-5 of aperture
• Narrow band front-end gains factor 10…100
• State of the art commercial BPM system reaches 5nm/sqrt(Hz), 

i.e. LHC turn by turn measurement (11 kHz) about 
sqrt(11000)* 5 nm = 0,5 um rms noise.

• Different approach: 
BBQ electronics: “Zoom in” getting high sensitivity for beam 
oscillations, but loosing absolute information of DC = closed orbit 
information.



Base-Band Tune (Q) MeasurementM.Gasior, BE-BI

Direct Diode Detection (3D) – the principle



 

Peak detection of position pick-up electrode signals (“collecting just the cream”)


 

fr content converted to the DC and removed by series capacitors


 

beam modulation moved to a low frequency range (as after the diodes modulation is on much longer pulses)


 

A GHz range before the diodes, after the diodes processing in the kHz range


 

Works with any position pick-up


 

Large sensitivity


 

Impossible to saturate (large fr suppression already at the detectors + large dynamic range)


 

Low frequency operation after the diodes
• High resolution ADCs available
• Signal conditioning / processing is easy (powerful components for low frequencies)
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Results from the PS (AD cycle)
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Measurement of Coupling using a PLL 
Tune Tracker

Frequency

A
m

pl
itu

de

FFT of Horizontal Acquisition Plane

Start with decoupled machine

Fully coupled machine: 
 

= |C-|

Only horizontal tune shows up in horizontal FFT
Gradually increase coupling Vertical mode shows up & frequencies shift        

Hor

Ver


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Measurement of Coupling using a PLL 
Tune Tracker

x

y

Q1

Q2

A1,xA2,x

A1,y

A2,y

x

y

Q1

Q2

A1,xA2,x

A1,y

A2,y

x

y

Q1

Q2

1,x

1,y

2,x

2,y

Tracking the vertical mode in the horizontal plane &
vice-versa allows the coupling parameters to be calculated
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Measurement of Coupling using a PLL 
Tune Tracker (RHIC Example)

Eigenmode 2
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Chromaticity (Q’ or ) 

Achromatic incident light
[Spread in particle energy]

Lens
[Quadrupole]

Focal length is
energy dependent

Optics Analogy:

Spread in the Machine Tune 
due to Particle Energy Spread
Controlled by Sextupole magnets
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Chromaticity – Its Importance for the LHC?

• Change in b3 during snap-back
Change in Q’ of ~150 units

• Nominal operation requires 
Q’ < 3

• Correction by:
Feed-forward tables from 

magnet/chromaticity 
measurements

On-line feedback from b3 
measurements on reference 
magnets

Possible on-line feedback directly 
from chromaticity measurements
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Chromaticity - What observable to choose?

Tune Difference for different 
beam momenta  used at HERA, RHIC and Tevatron in 

combination with PLL tune tracking

Width of tune peak or 
damping time  model dependent, non-linear effects, 

Used extensively at DESY

Amplitude ratio of synchrotron 
sidebands 

Difficult of exploit in hadron 
machines with low synchrotron tune, 
influence of  lattice resonances?

Excitation of energy oscillations 
and PLL tune tracking  Operationally used at RHIC and 

Tevatron; prepared for LHC

Bunch spectrum variations 
during betatron oscillations  difficult to measure

Head-tail phase advance 
(same as above, but in time 
domain)

 very good results but requires kick 
stimulus  emittance growth!
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Applied Frequency Shift 


 
F (RF)


 

Qh


 

Qv

Q’ Measurement via RF-frequency 
modulation (momentum modulation)

Amplitude & sign of chromaticity
calculated from continuous tune plot
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qh

qv

Measurement Example during LEP -squeeze
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Head-Tail motion with/without Q’
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The Head-Tail Measurement Principle
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Head-Tail System Set-up (SPS)

Straight
Stripline
Coupler

Beam PipeBeam

Hybrid

VME
Acquisition
via GPIB

Sum

Difference

Bunch Synchronous
Trigger

GPIB link
UNIX

User Interface

Fast (2GS/s per channel)
Digital Oscilloscope

SPS Tunnel



CAS 2009 H.Schmickler (CERN-DG-PRJ)

Measuring Q’ (Example 1: low Qs)

Qs
-1 = 310 turns
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Qs
-1 = 97 turns

Measuring Q’ (Example 2: high Qs)
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Online measurement and feedback of Q & Q’

• The aim for the LHC:


 
Permanent Q & Q’ measurements with hard constraints on:

• emittance preservation
• insensitivity to machine-parameter changes

(orbit, coupling…)


 
Online feedback to power supplies of quadrupole and 
sextupole magnets (bandwidth < 10 Hz)

• What has been done so far:


 
System used at HERA until last days following movie


 

RHIC, Tevatron and LHC perspectives
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HERA-p solution:
• “Chirp” tune 

measurements

• Online display

• Operator “joystick” 
feedback to 
quadrupole and 
sextupole power- 
supplies 
(BLL = brain 
locked loop)

Ti
m

e

Tune
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Online Q-display at HERA-p with 
“BLL” as control (brain locked loop)



Synchronization of (distant) accelerator 
components down to the femtosecond

Speed of light:

= 3*10^8 m/s 

= 0.3 um/ fs

1) Clock stability

2) Distribution 
over length



Nobel Lecture
Passion for Precision
Theodor W. Hänsch 

December 8, 2005, at 
Aula Magna, Stockholm 
University. 
http://nobelprize.org/nob 
el_prizes/physics/laureat 
es/2005/hansch- 
lecture.html

http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html
http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html
http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html
http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html


All based on stable synch. signal and stabilized links



First prototype of an optical cross-correlation based fiber-link 
stabilization for the FLASH synchronization system; Florian Loehl, 
Holger Schlarb (DESY, Hamburg), Jeff Chen, Franz Xaver Kaertner, 
Jung-Won Kim (MIT, Cambridge, Massachusetts), DIPAC07
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Measure slow drift (<1 Hz) of fiber under laboratory 
conditions

Compensation for several environmental effects results 
in a linear drift of 0.13 fsec/hour and a residual 
temperature drift of 1 fsec/deg C.

Environmental factors 
• Temperature: 0.5-1 fsec/deg C 
• Atmospheric pressure: none found
• Humidity: significant correlation
• Laser Wavelength Stabilizer: none
• Human activity: femtosecond noise in the data

Compare phase at the end of fiber with reference to establish stability.

J. Byrd, Progress in femtosecond timing distribution and synchronization for 
ultrafast light sources BIW06



Measurement: Bunch arrival monitor ()

A Sub-50 Femtosecond bunch arrival time monitor system for 
FLASH; F. Loehl, Kirsten E. Hacker, H. Schlarb (DESY, 
Hamburg) DIPAC07
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••• OptimisationOptimisationOptimisation of Machine Performanceof Machine Performanceof Machine Performance 
(((“““the good daysthe good daysthe good days”””)))

 Orbit measurement & correctionOrbit measurement & correctionOrbit measurement & correction
 Luminosity: basics, LEP luminosity tuningLuminosity: basics, LEP luminosity tuningLuminosity: basics, LEP luminosity tuning

••• Various Diagnostics : the fun daysVarious Diagnostics : the fun daysVarious Diagnostics : the fun days
 Tune & chromaticity measurementsTune & chromaticity measurementsTune & chromaticity measurements
 Dynamic effects: tune and chromaticity controlDynamic effects: tune and chromaticity controlDynamic effects: tune and chromaticity control
 Bunch arrival timeBunch arrival timeBunch arrival time

• Trying to make the machine work 
(2 examples from “the bad days”)

 The beam does not circulate!
 The beam gets lost, when changing the beta*

Outline 
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LEP – No Circulating Beam

QL10.L1Positrons



CAS 2009 H.Schmickler (CERN-DG-PRJ)

Zoom on QL1

QL10.L1
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& 10 metres to the right …

Unsociable sabotage: both bottles were empty!!
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LEP Beams Lost During Beta Squeeze
From 
LEP 

logbook
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…and the corresponding diagnostics
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Explanation

Master converter

Slave converter

Master-Slave Configuration for power converter; each 
converter can deliver full current, slave only needed to 

give double voltage for fast current changes.

controls

U magnet = R* I magnet + L 
* d I magnet/dt
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In these two lectures we have seen how to 
build and use beam instrumentation to 

run and optimise accelerators

Hopefully it has given you an insight into 
the field of accelerator instrumentation 

and the diverse nature of the 
measurements and technologies involved

http://sl-div.web.cern.ch/sl-div-bi/CAS%20/lecture/

http://sl-div.web.cern.ch/sl-div-bi/CAS /lecture/
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