

High Field Magnets

Lucio Rossi CERN

CAS – Intermediate level Course 2 October 2009

Content

- Definition and historic
- Basic of Sc magnets for accelerator
- Superconductivity and Nb-Ti review
- Reasons to pursue HFM
 - LHC lum up (high grad quads)
 - LHC energy upgrade; upgrade of any
- Current Densities progress
- Issues: brittleness, insulation, radiation
- Structural design
- Fabrication technologies
- The perspectives and the roadmap
- Acknowledgements:
 - A. Devred & E. Todesco CERN, G. Ambrosio FNAL, G.L. Sabbi LBNL and many others colleague of US-LARP

When a magnetic field is high ? - 1

- Iron dominated magnets^{CERN LHC MQW} Twin resistive !
 2 T
- The coils are giving a minor contribution, field quality is iron dominated
- PM configuration may reach 4-6 T peak (small bore)
- Stored energy in iron is very small

$$E = \int_{V} \frac{B^2}{2\mu_0} d\tau = \int_{V} H \cdot dB d\tau$$

2nd Oct 2009

- Superconductor may reach more
- The field that can be reached depends on the temperature
- Sc not only reach high field but also they do not dissipate!

- However simple copper coil cryogenically cooled (typically Liquid Nigtrogen @ 77 K) can give more...
- Resistive coils: 40 T in LN, Ø
 20 mm 77 K bore. It relies on heat capacity of the conductor –reinforced copper reaching 300 K each shot.
- 4 milliseconds of field duration.
- A little longer (40-100 ms ms), 10 mm bore the 60 T long pulse of NHMFL in Florida

- And, surprisingly as it may be, the highest d.c. field are also obtained by copper coils !
- Field in excess of 30 T in steady state! However an enormous cooling power of 10-40 MW is needed for 50-70 mm bore
- Hybrid system (SC outsert with a resistive insert) provide the record 45 T field.

• In practice : High Field Magnet (HFM) is what is beyond LHC, 10 T !

Bore: 56 mm

High field: accelerator vs. detector magnets

Magnetic fields needed for - electric charge identification - momentum spectrometry - $p = mv = q \rho B; \phi = q/p B L$ \Rightarrow BL is often the comparison parameter

If momentum analysis is done by tracking inside the field volume:
 - Δp/p ∝ 1/BL² ⇒ large volume better than high field
 Field homogeneity appreciated but NOT critical (field knowledge of 0.1% usually suffices)

- Field shape DIPOLE
 - Half the field of a solenoid for same J and coil thickness
 - $-J = J_0 \cos \vartheta$
- Field shape QUADRUPOLES
 - $-J = J_0 \cos 2\vartheta$

L. Rossi - HFM @ CAS Darmstadt

In practice the above current distributions are approximate, so the field contains also higher order harmonics (see later). It can be shown that if the $cos(n\theta)$ is approximate by step function, there is a "magic" angle that makes nil the first higher order harmonics.

Approximation of $\cos\theta$ with coil blocks (left) and multiple shells (centre) and of intersecting ellipses (from Wilson book).

- The basic shape : mix between cos ϑ and shell
- Shells with const J is a very good approximation
- Field expansion

$$B_{y} + iB_{x} = 10^{-4} B_{1} \sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

L. Rossi - HFM @ CAS Darmstadt

- Transverse field: no self supporting w.r.t. stress
- J_{overall} ≈ 500 A/mm² ! e.m. forces are not kept by conductors but tend to torn apart the winding.

2nd Oct 2009

- All in series
 - The worst performing determines the accelerator energy
 - They must be all equal (within few units , $1 u=10^{-4}$)
- Stand-alone magnets (DS, MS, low beta triplets) they also must ha
- The field quality is typically controlled at a fraction of unit over a wide range.
 - Coil positioning and e.m. forces

L. Rossi - HFM @ CAS Darmstadt

SC and critical parameters: Critical Temperature

SC and critical parameters: Critical Field

SC and critical parameters: Critical Current Densities

2nd Oct 2009

(Overall) Engineering J_e @ 4.2 K

Nb-Ti the almost invariable choice

- Used in 95% of the Sc magnets
- Ductile, robust, relatively easy to manufacture, 30 years of large projects
- 300-500 tonnes the yearly production (70%)

L. Rossi - HFM @ CAS Darmstadt

... and boosted by use of HEII

- 1985-1990: LHC conceptual design two routes, one in Nb₃Sn alternative to Nb-Ti. 1 model magnet successful at about 10 T @ 4.2 K but ...
- Extra cost of HEII vs. LHe: 15% of the cryomagnet system
- Extra cost of the Nb₃Sn vs. NbTi : at least 50%...

Critical current density (non-Cu)

Good reasons to pursue HFM : 1 LHC HigherG-LargerA low- β triplet

 $L = \frac{f_{rev}\gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*}$

Q1-Q2a-Q2b-Q3 low-β triplet D2 Sc magnet in LHC

What we can get

- Order zero: $G\phi/2 \sim$ critical field
 - ~13T for Nb-Ti, ~25T for Nb₃Sn
 - This is a bad approximation !
- Results relative to a sector coil for $\phi \sim 100 \text{ mm}$
 - Nb-Ti: Gφ/2 ~ 10 T
 - Nb₃Sn: $G\phi/2 \sim 15$ T
 - $Nb_{3}^{2}Sn: 50^{\circ}\%$ more than Nb-Ti
- Some dependence on aperture
 - Better for large apertures
- A safety margin of 20% is then subtracted on both cases

Scaling laws for LHC triplets

- Solutions can be found ۲ for both materials. What we need is a given focusing strength: G×It
- Large apertures: is this possible?
- Increase of *It*, triplet length < 50 m (today) 20, phase 1 *lt=*40 m)
- Stresses, difficult • beyond ϕ =120 mm. We need 150-160 mm, R&D needed.
- aberrations?

Luminosity up: more than low-beta quads...

- Separation dipoles
 - Today 1.5 and 3 T
 - In 2014 upgrade 3.5 and 4.5 T
 - In final lum up: may be 7-10 T needed at 4.2 K
 - → Nb3Sn or HTS (here high temperature may be an invaluable asset
- Matching section: large quads with samse G*L are really an asset (for LHC)
- Dispersion suppression zone to make room for collimators: LHC 8.3 T x 14.2 m. ⇒ 12 T x 10 m !!! Possible

Good reasons to pursue HFM : 2 Energy upgrade with <u>same size</u>

Evolution of the gluon spectrum Assumptions:

- •Luminosity grows x3 with adiabatic damping
- •Luminosity needed to produce a given number of particles of mass m (assuming gauge couplings constant) scales with m²
- •So twice the mass scale requires 4/3 the luminosity.

Triple the energy – double the m reach

P. McIntyre – Texas A&M Acc. center

Dutta 2004 24

Extend to 24 Tesla: Bi-2212 in inner (high field) windings, Nb₃Sn in outer (low field) windings

More modestly: 20 T....

- 50 mm aperture
- 20 Tesla operational field
 - Inner layers: High Tc superconductor
 - Outer layers: Nb₃Sn

- Operational current: 18 KA
- Operational current density: 400 A/mm²
- 20% operational margin: Max B = 24 T

Good reasons to pursue HFM : 3 Medical accelerators : hadron teraphy

Protons- Current Beam Delivery System

Problem

Proton Beam Radiation Therapy costs prohibitively are too high

•

•

Solution

High Field Weak Focusing Cyclotron

- High Field (8-12 T)
 Superconducting magnets reduce size of accelerator
- Accelerator on conventional X-ray gantry
- Allows retrofit into existing space

Price: less than \$15 million

Good reasons to pursue HFM : 4 Undulators and Wigglers

SC undulator in LHC

- NbTi Undulator for the LHC beam monitor
 - Period = 280 mm
 - 8 NbTi coils placed horizontally
 - Operating at 4.4 K with Current=450 A
 - Design magnetic flux density = 5 T (gap)

" Manufacture and Test of the Prototype 5 T Superconducting Undulator for the LHC Synchrotron Radiation Profile Monitor"

Maccaferri, R ; Bettoni, S ; Tommasini, D ; Venturini-Delsolaro, W

4.0

2.0

4.0

Upgrade of existing LHC undulators for LHC ion beam

- Flexible operation: undulator period 280 mm/140 mm with 60 mm gap
- $B_{GAP} = 5 \text{ T}$ for 280 mm period which mean B_{COIL} : 8 T(590 A/mm²) @ 4.2 K $B_{GAP} = >3 \text{ T}$ for 140 mm period which mean $B_{COIL} = 9 \text{ T} (550 \text{ A/mm}^2)$ @ 4.2 K

Courtesy R. Maccaferri, N. Duarte - CERN

What about CLIC (and ILC) ?

Test at CERN from Nb-Ti to Nb₃Sn

Nb-Ti winding trial NbSn single coil manufactured and tested: **B > 10 T**

Courtesy R. Maccaferri, D. Schoerling - CERN

Is Nb3Sn used in large scale ? Yes... about 100 HF NMR solenoids per year HF: the next large project ITER

900 MHz (21 T, @ 1.9 K)

ITER: 13 T coils, 400 tons of Nb3Sn

Nb3Sn magnets : a long history

W. Sampson Nb₃Sn 76 mm quad BNL, 1976

11 T @ 4.4 K in a 50-mm-bore, 1 m long (Twente University, - CERN, 1995)

Attained field follow progress in J_c

Progress on non-Cu JC (at 4.2 K and 12 T) of multifilament composite wires Progress on maximum quench field of dipole magnet models

Where is the issue? brittleness Degradation of critical magnetic field

as a function of strain (J.W. Ekin, 1984)

Of course $F \propto B^2$

Nb3Sn wires

- Nb3Sn is a compound.
- Formed in solid state reaction in inert atm. at 650-700 °C x 5-20 days
- Internal Tin diffusion is best for J_c but gives large effective filaments size
- This materila has 110 μ m eff. Fil. Dia.

After reaction

L. Rossi - HFM @ CAS Darmstadt

2nd Oct 2009

After reaction Nb3Sn is very brittle

Decrease in Ic upon longitudinal stress in PIT conductor

Behaviour of Ic on Rutherford cable vs. transverse stress

And we need to use 10-20 kA CABLE

2nd issue

A conductor made of superconducting material only, is NOT stable against small perturbations. ΔE of μJ or even nJ are enough to drive superconductor normal.

Heat capacity drops at low temperature: $C \propto T^3 \Rightarrow \Delta T = \Delta E/\gamma C$. So even small ΔE generates sensible ΔT \Rightarrow operating point of the magnet beyond critical surface \Rightarrow **QUENCH**

 ΔE is given by :

□ Movements of the order of 1 µm ! $\Delta E/Vol = J B \delta \approx 10^9 10 10^{-6}$ = 10 kJ/m³ γ C ≈ 1-5 kJ/m³ for NbTi and NbSn ⇒ $\Delta T \approx 2-10$ K !

Cracking of the resins (used to impregnate coils)

□Flux Jumping : sudden rearrangement of the magnetic flux inside the material, due to temperature dependence of the J_c on the temperature.

Flux jump: sudden movement of fluxoids

- Fluxoid array interact with current.
 When f = J x B > f_{pinning} the flux moves and generates heat
- Criteria to avoid this avalanche effect:

$$\frac{\mu_0 J_c^2 a^2}{\gamma C (T_c - T_{op})} < 3$$

First photo of the fluxoid array

In practice this means filament diameter of less than 100 μm

Embedding fine filaments inside a good conductor (copper for LTS) to achieve both goals

MAGNETO-THERMAL INSTABILITIES AND MAGNET PERFORMANCE

- Magnetization instability has been the primary cause of the limited quench performance (40-70 % of the short sample limit) at 4.4 K of some Nb₃Sn high field magnets built at FNAL [1] and LBNL [2] in the early 2000s
- At present the problem of magnetization instability at 4.4 K is contained through optimized heat treatments and cabling processes that guarantee a high RRR

04/November/2008

Bernardo Bordini

EFFECTS OF LOCAL STRAND'S DAMAGES

Sample holder diameter ~ 32 mm

04/November/2008

Bernardo Bordini

More conductor development

Wire with only 50 μm filam. Dia. And with more Cu (58%), 1 mm Powder-intube (Europe under developemnt

Building comprhensive 3-D model to understand deeformation and its dynamics

6 °C h⁻¹ to 580 °C

>100 °C h⁻¹ to 580 °C

Influence of temperature ramp rate on void formations in internal tin wire

Intrinsic diamagnetism of Sc and magnegtization loop

Techniques to compensate/correct this problem

 Iron strips (cos θ coils)
 Iron plate (block type coils)
 Iron plate (block type coils)

- E. Barzi, et al., "Passive Correction of the Persistent Current Effect in Nb3Sn Accelerator Magnets", IEEE Trans. on Appl. Superc., Vol. 13, No. 2, June 2003, pp.1270-1273.

- P McIntyre, A. Sattarov, *"HYBRID DIPOLES FOR FUTURE HADRON COLLIDERS"* available at care-hhh.web.cern.ch

G. Ambrosio, FNAL, CERN Ac. Training 2008

Correction works

G. Ambrosio, FNAL, CERN Ac. Training 2008

Coil technology issues: W&R vs. R&W

(Nb + Sn) in Cu matrix → Nb₃Sn during heat treatment at 630-700 °C

Despite few attempt R&W has to be abandoned (good for large radius - jacketed- coils like ITER

L. Rossi - HFM @ CAS Darmstadt

Insulation: a further issue...

Insulation

glass or ceramic with non-organic

binder

- Requirements:
 - No organic materials
 - Strong enough to withstand mechanical stresses
 - Should withstand heat-treatment temperature up to 700° C under pressure (Wind-and-React only)
 - Should be compatible with vacuum impregnation
- Options:

Heat treatment (steps 1-3) Vacuum impegnation (step 4)

2

- This is a very critical step!
 - Temperature control and uniformity
 - Steps at ~210° C, 400-450° C, and 630-670° C
 - No oxygen (argon or vacuum)
- Reaction fixture should accommodate:
 - Coil volume increase
 - Due to Nb₃Sn formation
 - Different thermal expansions
- Reaction fixt. should provide ³/₂
 - Nominal coil geometry
 - Easy extraction of reacted coil
 - Most critical handling
 - Coil azimuthal size:
 - Size of curing mold is slightly smaller than nominal dimension
 - Size of reaction fixture is equal to nominal dimensions
 - → coil growths during HT, and fills the reaction cavity with small pressure
 - · Coil longitudinal behavior:
 - The coil CTE changes during the HT
 - Al-bronze pole matches the coil CTE after HT but leaves gaps at pole tips
 - → gaps between pole parts -
 - Ti (Ti-Al-V) has smaller CTE and doesn't leave gaps at pole tips

- Segmented tooling with base and top plates
 - Very high accuracy of coil cavity size for any length
 - The fixture can be assembled / disassembled around the coil
 - Minimize coil handling

- · Goals:
- Fill all voids inside the coil in order to avoid stress concentration on the conductor
- The coil becomes a solid object for easy and well controlled magnet assembly

• LARP Solution: CTD-101 K:

- long pot life
- very good penetration inside the coil
- Compatible with ceramic binder with good mechanical properties
- The reaction fixture can be sealed by using a shell and O-rings → Impregnation fixture

L. Rossi - HFM @ CAS Darmstadt

Mechanical structure: the classical route

The long tradition from BNL and Fermilab: collaring concept

Pros and cons

- The coils is well contained in a fixed cavity
- Field quality is in good part determined by collar shape
- If the coils size is not so well controlled, the stress can be too high or too low
- A prestress 2-3 times what is need is applied because of stress losses during cooldown: for very high field tends to be too high
- Since NbSn is stress sensitive...

Mechanical structure The new route (from LBNL)

- Suppose the inner blue ring (iron pads) just in contact wit key with yoke. No prestress.
- Then you insert the bladders in the interstice. Then you pump in the bladders.
- Alu shell expands and goes in tension. The keys become loose.
- Remove the keys and put new keys as thick as the new interstice.
- Then depressurize the bladders and remove.
- The Al shell, not anymore pushed by the bladders exerts all its pressure on the coils through yoke-keys-iron pads.

A lof of 3-D FEM

The last "product" HD2 –a real magnet with bore (LBNL)

- Target dipole field: 15 T
- Target aperture: 40-43 mm
- · Coil design: block-dipole with flared ends
- Designed for accelerator field quality
- Suitable for 2-in-1 layout
- Can be used for high field cable testing

L. Rossi - HFM @ CAS Darms

And it works ... as first model

Roadmap for HG quadrupole

Fist long (4 m) HF magnet test Nov 09: 200 T/m in 90 mm bore

Present focus: Long Quadrupole (LQ)

Scale up of TQ design from 1 m to 3.6 m

- Coil design and fabrication: FNAL & BNL
- Structure design and fabrication: LBNL
- Magnet assembly: LBNL
- Magnet test: FNAL

Two LQS tests are planned for 2009

Next step: near our needs: G> 200 T/m in 120 mm aperture

Next Step: 120 mm Quadrupoles

Completed:

LARP

- Cable optimization & test winding (LBNL)
- Coil cross-section and end design (FNAL)
- Winding/curing tooling design (LBNL)

In progress:

- Reaction/potting tooling design (BNL)
- Coil parts procurements (FNAL)
- Support structure design (LBNL)

Plans:

- Test 1 m models (HQ) in 2009-10, 4 m models (QA) in 2011-12
- Aiming at full qualification based on Phase 1 upgrade requirements
- Conductor-limited gradient is about twice the Phase 1 requirement
- Will provide performance reference for Phase 2 upgrade design

And for dipole ? NbSn cannot go beyond 15-16 T...

Can HTS made to work for us?

Part of R&D in Magnet Labs

Cable fabrication

Bi-2212 Coil Winding 2nd Oct 2009

YBCO SUPERPOWER Record field (25 T), adding 3 T NHMFL - Florida

Their technology is more difficult than Nb₃Sn

Nb3Sn

- Limit of 16-18 T (acc. mag.)
- Very high Jc
- Low Tc (average stability, "easy" to protect)
- Available in long wire
- Developed 10-20 kA cables
- Brittle but we can work out
- Th. Treatment: difficult

HTS

- Can go to 25 T and beyond
- Realtively low Jc
- High Tc (better stability , more difficult to protect)
- Wire uniformity is an issue
- Cabling possible for Biscco, not yet for Ybco
- Very brittle, still to learn
- Th. Treatment: much more difficult, with "leakage"

Where can go with HF dipoles?

High Field Dipoles

Where we can go? Design to fit HTS? To the farthest energy frontier!

Courtesy R. Gupta BNL