Concept of Luminosity

(in particle colliders)

Werner Herr, CERN Bruno Muratori, Daresbury Laboratory

http://cern.ch/Werner.Herr/CAS2009/lectures/Darmstadt_luminosity.pdf http://cern.ch/Werner.Herr/CAS2009/proceedings/lum_proc.pdf

Werner Herr, concept of luminosity, CAS 2009, Darmstadt

Why colliding beams?

Two beams: $E_1, \vec{p_1}, E_2, \vec{p_2}, m_1 = m_2 = m$

$$E_{cm} = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

Collider versus fixed target:

Fixed target: $\vec{p_2} = \mathbf{0} \rightarrow E_{cm} = \sqrt{2m^2 + 2E_1m}$

Collider: $\vec{p_1} = -\vec{p_2} \longrightarrow E_{cm} = E_1 + E_2$

- LHC (pp): $14000 \text{ GeV versus} \approx 115 \text{ GeV}$
- \blacksquare LEP (e⁺e⁻): 210 GeV versus?

Collider performance issues

- Available energy
- Number of interactions per second (useful collisions)
- Total number of interactions
- Secondary issues:
 - Time structure of interactions (how often and how many at the same time)
 - > Space structure of interactions (size of interaction region)
 - > Quality of interactions (background, dead time etc.)

Luminosity:

- We want:
 - Proportionality factor between cross section σ_p and number of interactions per second $\frac{dR}{dt}$

$$\frac{dR}{dt} = \mathcal{L} \times \sigma_p \qquad (\to \text{ units: cm}^{-2}\text{s}^{-1})$$

- → Relativistic invariant
- → Independent of the physical reaction
- → Reliable procedures to compute and measure

Fixed target luminosity

$$\frac{dR}{dt} = \Phi \rho_T l \sigma_p$$

$$\rho_T = const.$$

$$\Phi = N/s$$

Collider luminosity (per bunch crossing)

$$\frac{dR}{dt} = L \sigma_{p}$$

$$N_{1} \rho_{1}(x,y,s,-s_{0})$$

$$N_{2} \rho_{2}(x,y,s,s_{0})$$

$$N_{3} \rho_{4}(x,y,s,s_{0})$$

$$N_{4} \rho_{5}(x,y,s,s_{0})$$

$$N_{5} \rho_{6}(x,y,s,s_{0})$$

$$N_{6} \rho_{6}(x,y,s,s_{0})$$

$$\mathcal{L} \propto KN_1N_2 \int \int \int \int_{-\infty}^{+\infty} \rho_1(x, y, s, -s_0) \rho_2(x, y, s, s_0) dx dy ds ds_0$$

 \mathbf{s}_0 is "time"-variable: $\mathbf{s}_0 = c \cdot \mathbf{t}$

Kinematic factor: $K = \sqrt{(\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2/c^2}$

Collider luminosity (per beam)

- Assume uncorrelated densities in all planes
- \rightarrow factorize: $\rho(x, y, s, s_0) = \rho_x(x) \cdot \rho_y(y) \cdot \rho_s(s \pm s_0)$
 - \blacksquare For head-on collisions $(\vec{v_1} = -\vec{v_2})$ we get:

$$\mathcal{L} = 2 \cdot N_1 N_2 \cdot f \cdot n_b \cdot \int \int \int \int_{-\infty}^{+\infty} dx dy ds ds_0$$

$$\rho_{1x}(x)\rho_{1y}(y)\rho_{1s}(s-s_0) \cdot \rho_{2x}(x)\rho_{2y}(y)\rho_{2s}(s+s_0)$$

- In principle: should know all distributions
- Mostly use Gaussian ρ for analytic calculation (in general: it is a good approximation)

Gaussian distribution functions

$$\rho_{iz}(z) = \frac{1}{\sigma_z \sqrt{2\pi}} \exp\left(-\frac{z^2}{2\sigma_z^2}\right) \quad i = 1, 2, \quad z = x, y$$

$$\rho_{is}(s \pm s_0) = \frac{1}{\sigma_s \sqrt{2\pi}} \exp\left(-\frac{(s \pm s_0)^2}{2\sigma_s^2}\right)$$

For non-Gaussian profiles not always possible to find analytic form, need a numerical integration

Luminosity for two beams (1 and 2)

- Simplest case : equal beams
 - $\rightarrow \sigma_{1x} = \sigma_{2x}, \quad \sigma_{1y} = \sigma_{2y}, \quad \sigma_{1s} = \sigma_{2s}$
 - \rightarrow but: $\sigma_{1x} \neq \sigma_{1y}, \quad \sigma_{2x} \neq \sigma_{2y}$ is allowed
- Further: no dispersion at collision point

Integration (head-on)

for
$$\sigma_1 = \sigma_2 \longrightarrow \rho_1 \rho_2 = \rho^2$$
:

$$\mathcal{L} = \frac{2 \cdot N_1 N_2 f n_b}{(\sqrt{2\pi})^6 \sigma_s^2 \sigma_x^2 \sigma_y^2} \int \int e^{-\frac{x^2}{\sigma_x^2}} e^{-\frac{y^2}{\sigma_y^2}} e^{-\frac{s^2}{\sigma_s^2}} e^{-\frac{s_0^2}{\sigma_s^2}} dx dy ds ds_0$$

integrating over s and s_0 , using:

$$\int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\pi/a}$$

$$\mathcal{L} = \frac{2 \cdot N_1 N_2 f n_b}{8(\sqrt{\pi})^4 \sigma_x^2 \sigma_y^2} \int \int e^{-\frac{x^2}{\sigma_x^2}} e^{-\frac{y^2}{\sigma_y^2}} dx dy$$

finally after integration over x and y: \Longrightarrow $\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y}$

Luminosity for two (equal) beams (1 and 2)

Simplest case: $\sigma_{1x} = \sigma_{2x}, \sigma_{1y} = \sigma_{2y}, \sigma_{1s} = \sigma_{2s}$ or: $\sigma_{1x} \neq \sigma_{2x} \neq \sigma_{1y} \neq \sigma_{2y}, \quad but: \sigma_{1s} \approx \sigma_{2s}$

$$\Longrightarrow \mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \left(\mathcal{L} = \frac{N_1 N_2 f n_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} \right)$$

Examples

	Energy	\mathcal{L}_{max}	rate	σ_x/σ_y	Particles
	(GeV)	$\mathbf{cm}^{-2}\mathbf{s}^{-1}$	\mathbf{s}^{-1}	$\mu \mathbf{m}/\mu \mathbf{m}$	per bunch
${f SPS} \; ({f p}ar p)$	315x 315	6 10 ³⁰	$4 10^5$	60/30	$pprox$ 10 10 10
Tevatron $(p\bar{p})$	1000x1000	100 10 ³⁰	7 10 ⁶	30/30	$pprox 30/8 \ 10^{10}$
\parallel HERA ($\mathrm{e^{+}p}$)	$30 \mathrm{x} 920$	40 10 ³⁰	40	250/50	$pprox 3/7 \ 10^{10}$
				,	,
LHC (pp)	7000x7000	10000 10 ³⁰	10^{9}	17/17	$pprox$ 11 10 10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$105\mathrm{x}105$	100 10 ³⁰	≤ 1	200/2	$pprox$ 50 10 10
$ ho$ PEP ($ m e^+e^-$)	9x3	8000 10 ³⁰	NA	150/5	$pprox \mathbf{2/6} \ 10^{10}$

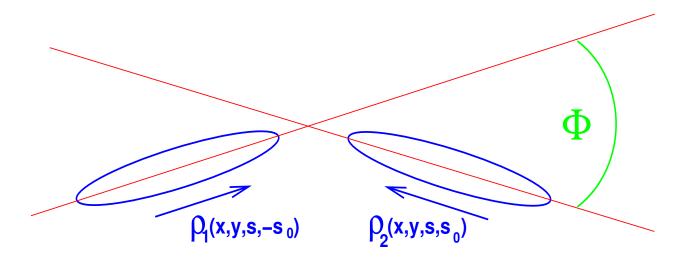
What else?

- What about linear colliders?
- → See later ...

Complications

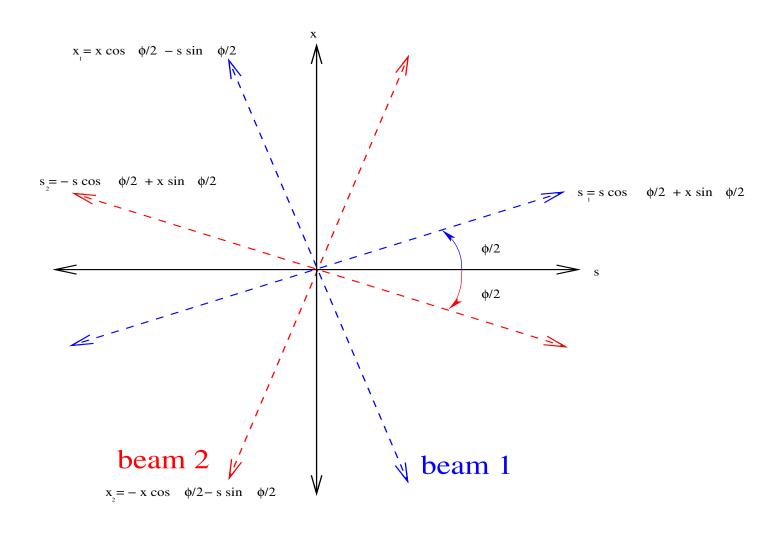
- Crossing angle
- Hour glass effect
- Collision offset (wanted or unwanted)
- Non-Gaussian profiles
- Dispersion at collision point
- Strong coupling
- etc.

Collisions at crossing angle



- Needed to avoid unwanted collisions
 - → For colliders with many bunches: LHC, CESR, KEKB
 - → For colliders with coasting beams

Collisions angle geometry (horizontal plane)



Crossing angle

Assume crossing in horizontal (x, s)- plane. Transform to new coordinates:

$$\begin{cases} x_1 = x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{cases}$$

$$\mathcal{L} = 2\cos^2\frac{\phi}{2}N_1N_2fn_b \int \int \int_{-\infty}^{+\infty} dx dy ds ds_0$$

$$\rho_{1x}(x_1)\rho_{1y}(y_1)\rho_{1s}(s_1 - s_0)\rho_{2x}(x_2)\rho_{2y}(y_2)\rho_{2s}(s_2 + s_0)$$

Integration (crossing angle)

use as before:

$$\int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\pi/a}$$

and:

$$\int_{-\infty}^{+\infty} e^{-(at^2+bt+c)} dt = \sqrt{\pi/a} \cdot e^{\frac{b^2-ac}{a}}$$

Further:

- Since σ_x , x and $\sin(\phi/2)$ are small:
 - ightharpoonup drop all terms $\sigma^{k}_{x}sin^{l}(\phi/2)$ or $x^{k}sin^{l}(\phi/2)$ for all: $\mathbf{k+l} > 4$
 - > approximate: $\sin(\phi/2) \approx \tan(\phi/2) \approx \phi/2$

Crossing angle

$$lacksquare$$
 Crossing Angle \Rightarrow

Crossing Angle
$$\Rightarrow$$
 $\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot S$

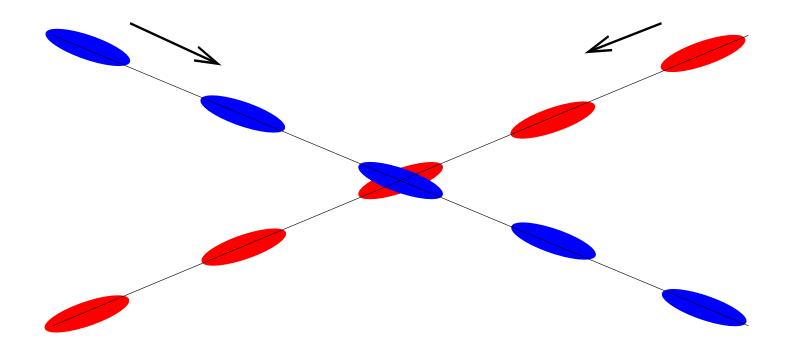
- S is the reduction factor
- For small crossing angles and $\sigma_s \gg \sigma_{x,y}$

$$\Rightarrow S = \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2})^2}} \approx \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \frac{\phi}{2})^2}}$$

Example LHC:

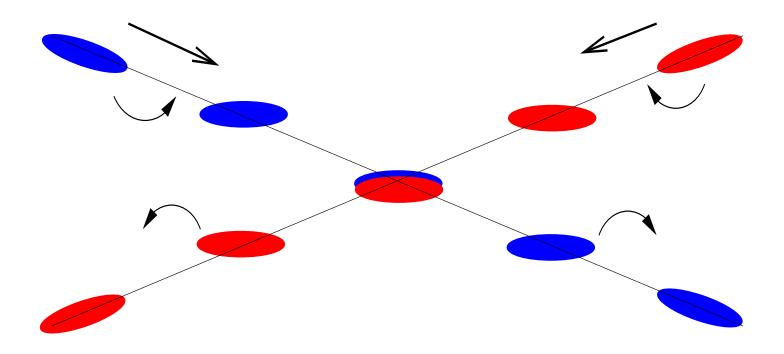
$$\Phi = 285 \ \mu \text{rad}, \ \sigma_s = 7.5 \ \text{cm}, \ S = 0.84$$

Large crossing angle



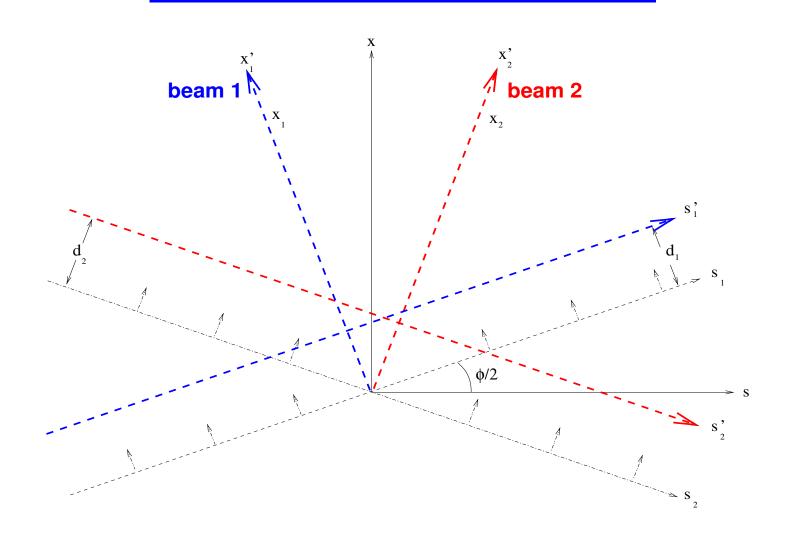
→ Large crossing angle: large loss of luminosity

"crab" crossing scheme



- → "crab" crossing recovers geometric loss factor
- → feasibility needs to be demonstrated

Offset and crossing angle



Offset and crossing angle

Transformations with offsets in crossing plane:

$$\begin{cases} x_1 = d_1 + x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = d_2 + x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{cases}$$

 \blacksquare Gives after integration over y and s_0 :

$$\mathcal{L} = \frac{\mathcal{L}_0}{2\pi\sigma_s\sigma_x} 2\cos^2\frac{\phi}{2} \int \int e^{-\frac{x^2\cos^2(\phi/2) + s^2\sin^2(\phi/2)}{\sigma_x^2}} e^{-\frac{x^2\sin^2(\phi/2) + s^2\cos^2(\phi/2)}{\sigma_s^2}}$$

$$\times e^{-\frac{d_1^2 + d_2^2 + 2(d_1 + d_2)x\cos(\phi/2) - 2(d_2 - d_1)s\sin(\phi/2)}{2\sigma_x^2}} dx ds.$$

Offset and crossing angle

After integration over x:

$$\mathcal{L} = \frac{N_1 N_2 f n_b}{8\pi^{\frac{3}{2}} \sigma_s} \quad 2\cos\frac{\phi}{2} \quad \int_{-\infty}^{+\infty} W \cdot \frac{e^{-(As^2 + 2Bs)}}{\sigma_x \sigma_y} ds$$

with:

$$A = \frac{\sin^2 \frac{\phi}{2}}{\sigma_x^2} + \frac{\cos^2 \frac{\phi}{2}}{\sigma_s^2}$$
 $B = \frac{(d_2 - d_1)\sin(\phi/2)}{2\sigma_x^2}$

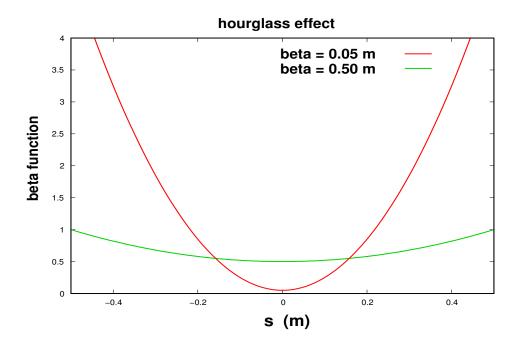
and
$$W = e^{-\frac{1}{4\sigma_x^2}(d_2 - d_1)^2}$$

⇒ Luminosity with correction factors

Luminosity with correction factors

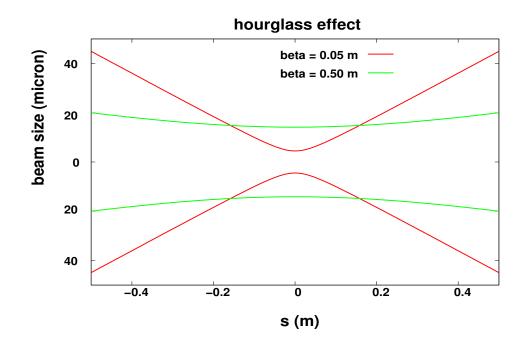
$$\mathcal{L} = rac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{rac{B^2}{A}} \cdot S$$

- \longrightarrow W: correction for beam offset
- \rightarrow S: correction for crossing angle
- \rightarrow $e^{\frac{B^2}{A}}$: correction for crossing angle and offset



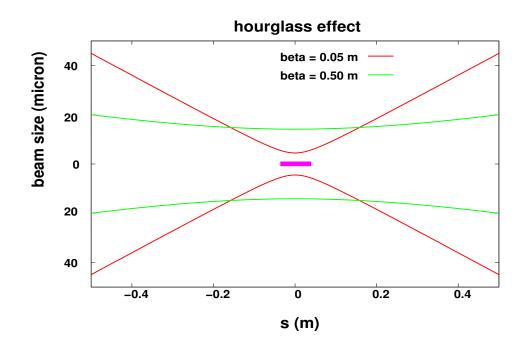
- \square β -functions depends on position s
- $\beta(s) \approx \beta^* (1 + \left(\frac{s}{\beta^*}\right)^2)$

 \blacksquare β -functions depends on position s



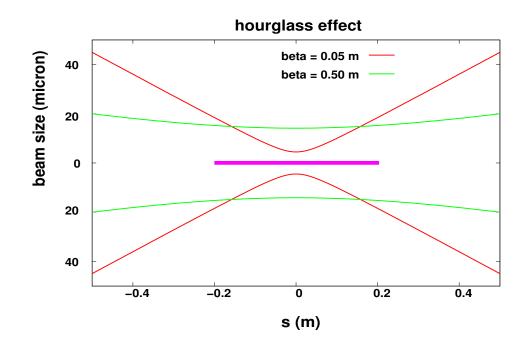
lacksquare Beam size σ $(\propto \sqrt{\beta^*(s)})$ depends on position s

Hour glass effect - short bunches



Small variation of beam size along bunch

Hour glass effect - long bunches



 \blacksquare Significant effect for long bunches and small β^*

- \square β -functions depends on position s
- **Usually:** $\beta(s) = \beta^* (1 + \left(\frac{s}{\beta^*}\right)^2)$
 - \rightarrow i.e. $\sigma \implies \sigma(s) \neq \text{const.}$
- Important when β^* comparable to the r.m.s. bunch length σ_s (or smaller !)

- Take it easy: $\beta_x^* = \beta_y^*$, crossing angle, but no offset
- \rightarrow Replace σ by $\sigma(s)$ in standard formulae

$$\mathcal{L} = \left(\frac{N_1 N_2 f n_b}{8\pi}\right) \frac{2\cos\frac{\phi}{2}}{\sqrt{\pi}\sigma_s} \int_{-\infty}^{+\infty} \frac{e^{-s^2 A}}{\sigma_x^* \sigma_y^* [1 + (\frac{s}{\beta^*})^2]} ds$$

$$A = \frac{\sin^2\frac{\phi}{2}}{(\sigma_x^*)^2[1+(\frac{s}{\beta^*})^2]} + \frac{\cos^2\frac{\phi}{2}}{\sigma_s^2}$$

 $lue{f J}
ightarrow {f Numerical~Integration}$

Calculations for the LHC

$$N_1 = N_2 = 1.15 \times 10^{11} \text{ particles/bunch}$$

$$n_b = 2808$$
 bunches/beam

$$f = 11.2455 \text{ kHz}, \quad \phi = 285 \text{ } \mu \text{rad}$$

$$\beta_x^* = \beta_y^* = 0.55 \text{ m}$$

$$\sigma_x^* = \sigma_y^* = 16.6 \ \mu \text{m}, \quad \sigma_s = 7.7 \ \text{cm}$$

Simplest case (Head on collision):

$$\mathcal{L} = 1.200 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

Effect of crossing angle:

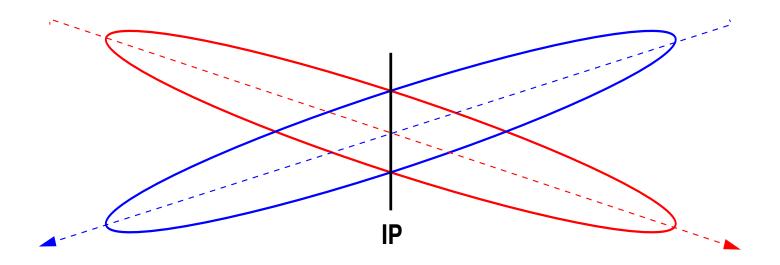
$$\mathcal{L} = 0.973 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

Effect of crossing angle & Hourglass:

$$\mathcal{L} = 0.969 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

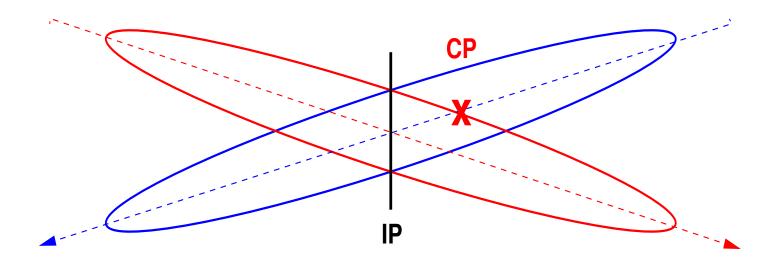
What about large crossing angle and long bunches???

Large crossing angle - long bunches



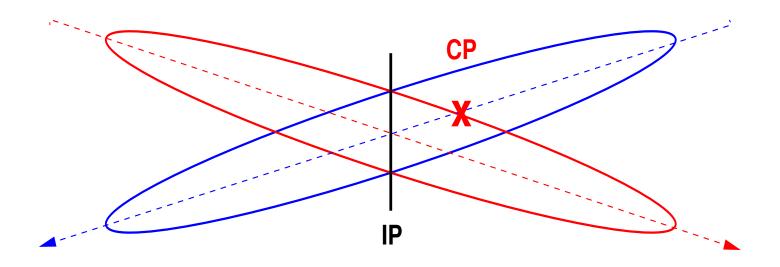
- → Assume crossing angle in horizontal plane
- → Large crossing angle: large loss of luminosity

Large crossing angle



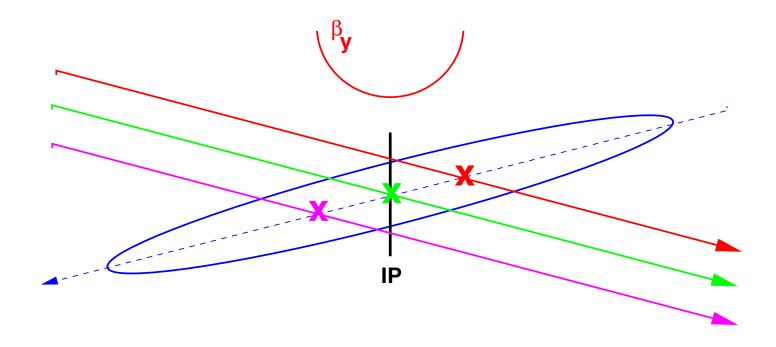
For large amplitude particles: collision point longitudinally displaced

Large crossing angle



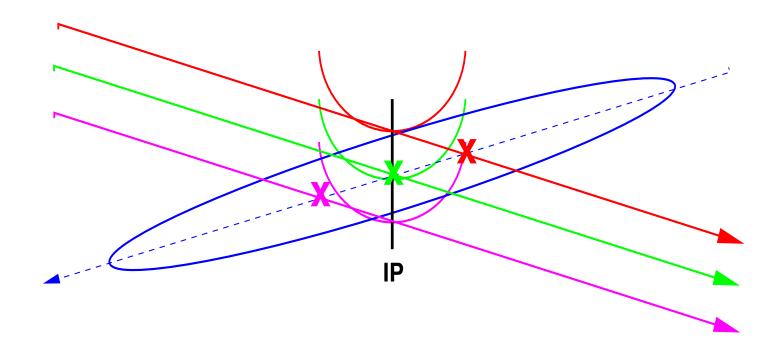
- For large amplitude particles: collision point longitudinally displaced
- Can introduce coupling (transverse and synchro betatron, bad for flat beams)

Large crossing angle



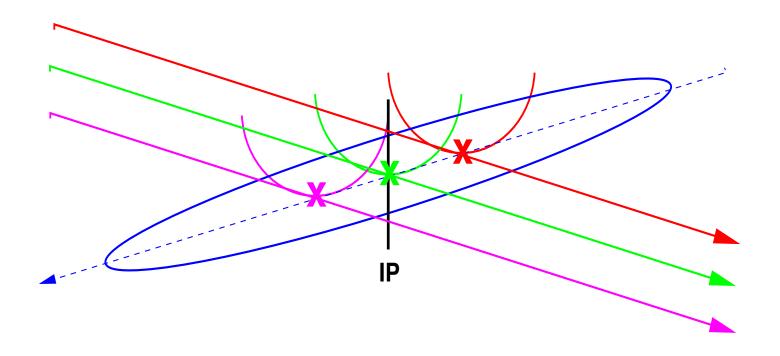
- → A particle's collision point amplitude dependent
- \longrightarrow Different (vertical) β functions at collision points

Large crossing angle



- → A particle's collision point amplitude dependent
- \rightarrow Different β functions at collision points (hour glass!)

"crab waist" scheme



- Make vertical waist (β_y^{min}) amplitude (x) dependent
- All particles in both beams collide in minimum β_y region

"crab waist" scheme

- Make vertical waist (minimum of β) amplitude (x) dependent
- Without details: can be done with two sextupoles
- First tried at DAPHNE (Frascati) in 2008
- Geometrical gain small
- Smaller vertical tune shift as function of horizontal coordinate
 - Less betatron and synchrotron coupling
 - Good remedy for flat (i.e. lepton) beams with large crossing angle

If the beams are not Gaussian??

Exercise:

Assume flat distributions (normalized to 1)

$$\rho_1 = \rho_2 = \frac{1}{2a}, \quad \text{for } [-a \le z \le a], \ z = x, y$$

Calculate r.m.s. in x and y:

$$\langle (x,y)^2 \rangle = \int_{-\infty}^{+\infty} (x,y)^2 \cdot \rho(x,y) dx dy$$

and

$$\mathcal{L} = \int_{-\infty}^{+\infty} \rho_1(x, y) \rho_2(x, y) \ dxdy$$

- Compute: $\mathcal{L} \cdot \sqrt{\langle x^2 \rangle \cdot \langle y^2 \rangle}$
- Repeat for various distributions and compare

Integrated luminosity

$$\mathcal{L}_{\text{int}} = \int_0^T \mathcal{L}(t) dt$$

The figure of merit:

$$\mathcal{L}_{\text{int}} \cdot \sigma_p = \text{number of events}$$

- \blacksquare Experiments: continuous recording of $\mathcal L$
- For studies: assume some life time behaviour. E.g. $\mathcal{L}(t) \longrightarrow \mathcal{L}_0 \exp\left(-\frac{t}{\tau}\right)$
- Contributions to life time from: intensity decay, emittance growth etc.

Integrated luminosity

lacksquare Knowledge of preparation time allows optimization of \mathcal{L}_{int}

Integrated luminosity

- In Typical run times LEP: $t_r \approx 8$ 10 hours
- \blacksquare For LHC long preparation time t_p expected
- ightharpoonup Optimum combination of t_r and t_p gives maximum luminosity
- \rightarrow t_r is usually a "free" parameter, i.e. can be chosen

Maximising Integrated Luminosity

- Assume exponential decay of luminosity $\mathcal{L}(t) = \mathcal{L}_0 \cdot e^{t/\tau}$
- Average luminosity $<\mathcal{L}>$ $<\mathcal{L}>=rac{\int_0^{t_r}dt\mathcal{L}(t)}{t_r+t_p}=\mathcal{L}_0\cdot au\cdot rac{1-e^{-t_r/ au}}{t_r+t_p}$
- (Theoretical) maximum for: $t_r \approx \tau \cdot \ln(1 + \sqrt{2t_p/\tau} + t_p/\tau)$
- **Example LHC:** $t_p \approx 10 \text{h}, \ \tau \approx 15 \text{h}, \Rightarrow t_r \approx 15 \text{h}$
- **Exercise:** Would you improve τ (long t_r) or t_p ?

Interactions per crossing

- \blacksquare Luminosity/ $fn_b \propto N_1N_2$
- In LHC: crossing every 25 ns
- Per crossing approximately 20 interactions
- May be undesirable (pile up in detector)
- $\blacksquare \longrightarrow \text{more bunches } n_b, \text{ or smaller N ??}$

Beware: maximum (peak) luminosity \mathcal{L}_{max}

is not the whole story ...!

Luminosity measurement

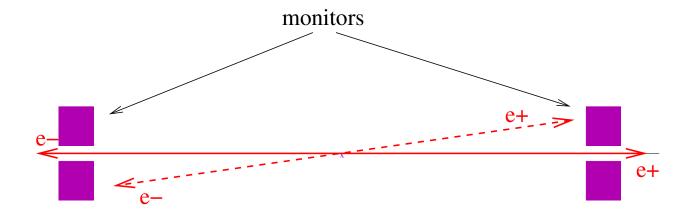
- One needs to get a signal proportional to interaction rate → Beam diagnostics
- Large dynamic range: 10^{27} cm⁻²s⁻¹ to 10^{34} cm⁻²s⁻¹
- Very fast, if possible for individual bunches
- Used for optimization
- For absolute luminosity need calibration

Luminosity calibration

$$(e^{+}e^{-})$$

- Use well known and calculable process
- $e^+e^- \rightarrow e^+e^-$ elastic scattering (Bhabha scattering)
- \blacksquare Have to go to small angles $(\sigma_{el} \propto \Theta^{-3})$
- lacksquare Small rates at high energy $(\sigma_{el} \propto rac{1}{E^2})$

Luminosity calibration



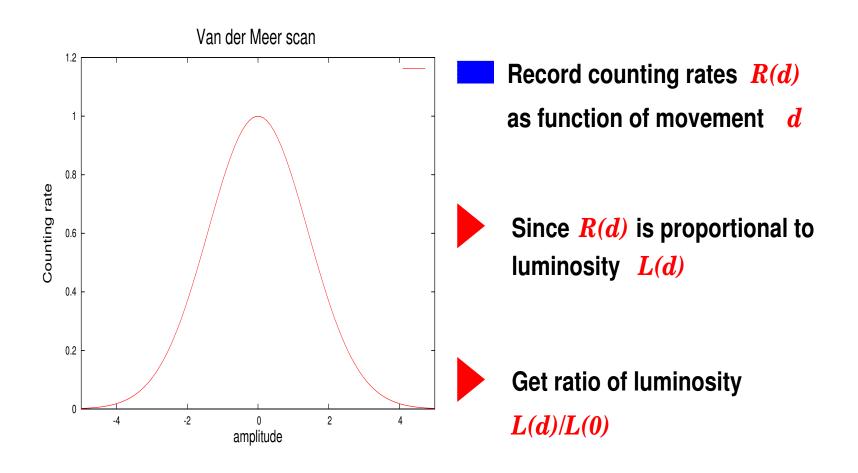
- Measure coincidence at small angles
- Low counting rates, in particular for high energy!
- Background may be problematic

Luminosity calibration

(hadrons, e.g. pp or $p\bar{p}$)

- Must measure beam current and beam sizes
- Beam size measurement:
 - > Wire scanner or synchrotron light monitors
 - ightharpoonup Measurement with beam ... ightharpoonup remember luminosity with offset
 - > Move the two beams against each other in transverse planes (van der Meer scan)

Luminosity optimization



Luminosity optimization

- \blacksquare From ratio of luminosity $\mathcal{L}(\mathbf{d})/\mathcal{L}_0$
- **Remember:** $W = e^{-\frac{1}{4\sigma^2}(d_2 d_1)^2}$
- \blacksquare Determines σ
- ... and centres the beams!
- Others:
 - > Beam-beam deflection scans LEP
 - > Beam-beam excitation

Absolute value of \mathcal{L} (pp or $p\bar{p}$)

- By total rate and optical theorem (also: luminosity independent determination of σ_{tot}):
 - $\sigma_{tot} \cdot \mathcal{L} = N_{inel} + N_{el}$ (Total counting rate)

$$\lim_{t \to 0} \frac{d\sigma_{el}}{dt} = (1 + \rho^2) \frac{\sigma_{tot}^2}{16\pi} = \frac{1}{\mathcal{L}} \frac{dN_{el}}{dt}|_{t=0}$$

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{inel} + N_{el})^2}{(dN_{el}/dt)_{t=0}}$$

Luminosity determined from experimental rates

Absolute value of \mathcal{L} (pp or $p\bar{p}$)

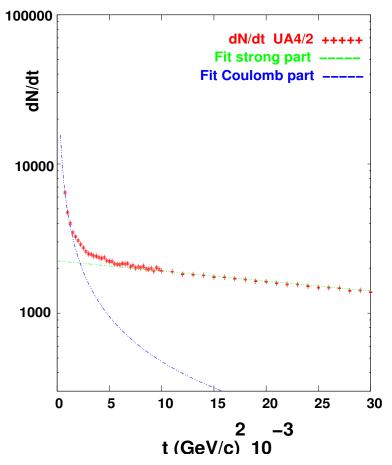
- By Coulomb normalization:
 - > Coulomb amplitude exactly calculable:

$$\lim_{t \to 0} \frac{d\sigma_{el}}{dt} = \frac{1}{\mathcal{L}} \frac{dN_{el}}{dt}|_{t=0} = \pi |f_C + f_N|^2$$

$$\simeq \pi |\frac{2\alpha_{em}}{-t} + \frac{\sigma_{tot}}{4\pi} (\rho + i) e^{b\frac{t}{2}}|^2 \simeq \frac{4\pi\alpha_{em}^2}{t^2}|_{|t| \to 0}$$

- \triangleright Fit gives: σ_{tot}, ρ, b and \mathcal{L}
- Can be done measuring only elastic scattering (No N_{inel} needed !)
- $\blacksquare \Longrightarrow \text{Roman pots}$

Differential elastic cross section



- Measure dN/dt at small t (0.01 < (GeV/c)**2) and extrapolate to t = 0.0
- Needs special optics to allow measurement at very small t
- Measure total counting rate
 N_{el} + N_{inel}
 Needs good detector coverage
- Often use slightly modified method, precision 1 – 2 %

- Mainly (only) e + e colliders
- Past collider: SLC (SLAC)
- Under consideration: CLIC, ILC
- Special issues:
 - > Particles collide only once (dynamics) !
 - > Particles collide only once (beam power) !
- Must be taken into account

Basic formula:

From:
$$\mathcal{L} = \frac{N^2 f n_b}{4\pi\sigma_x\sigma_y}$$
 to: $\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi\sigma_x\sigma_y}$

- **Replace** frequency f by repetition rate f_{rep} .
- \blacksquare And introduce effective beam sizes $\overline{\sigma_x}, \overline{\sigma_y}$:

$$\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi \overline{\sigma_x} \overline{\sigma_y}}$$

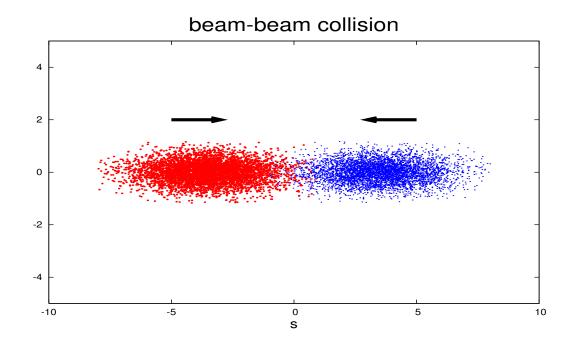
 \blacksquare Using the enhancement factor H_D :

$$\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi \overline{\sigma_x} \overline{\sigma_y}} \longrightarrow \mathcal{L} = \frac{H_D \cdot N^2 f_{rep} n_b}{4\pi \sigma_x \sigma_y}$$

- Enhancement factor H_D takes into account reduction of nominal beam size by the disruptive field (pinch effect)
- \blacksquare Related to disruption parameter \mathcal{D} :

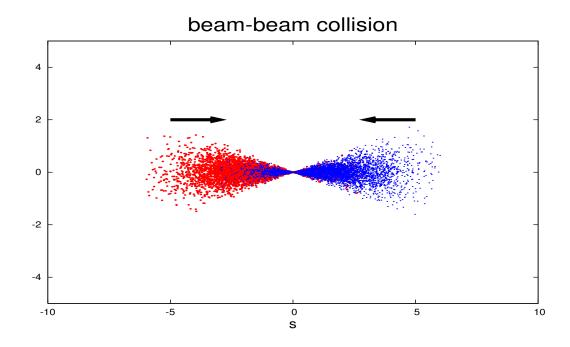
$$\mathcal{D}_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$

Pinch effect - disruption



Additional focusing by opposing beams

Pinch effect - disruption



Additional focusing by opposing beams

I For weak disruption $\mathcal{D} \ll 1$ and round beams:

$$H_D = 1 + \frac{2}{3\sqrt{\pi}}\mathcal{D} + \mathcal{O}(\mathcal{D}^2)$$

For strong disruption and flat beams: computer simulation necessary, maybe can get some scaling

Beamstrahlung

- Disruption at interaction point is basically a strong "bending"
- Results in strong synchrotron radiation: beamstrahlung
- This causes (unwanted):
 - > Spread of centre-of-mass energy
 - > Pair creation and detector background
- Again: luminosity is not the only important parameter

Beamstrahlung Parameter Y

Measure of the mean field strength in the rest frame normalized to critical field B_c :

$$Y = \frac{\langle E + B \rangle}{B_c} \approx \frac{5}{6} \frac{r_e^2 \gamma N}{\alpha \sigma_z (\sigma_x + \sigma_y)}$$

with:

$$B_c = \frac{m^2 c^3}{e\hbar} \approx 4.4 \times 10^{13} G$$

Energy loss and power consumption

 \blacksquare Average fractional energy loss δ_E :

$$\delta_E = 1.24 \frac{\alpha \sigma_z m_e}{\lambda_C E} \frac{Y}{(1 + (1.5Y)^{2/3})^{1/2}}$$

where E is beam energy at interaction point and λ_C the Compton wavelength.

Using the beam power P_b and beam energy E in the luminosity:

$$\mathcal{L} = \frac{H_D \cdot N^2 \ f_{rep} \ n_b}{4\pi\sigma_x \ \sigma_y} \longrightarrow \mathcal{L} = \frac{H_D \cdot N \cdot P_b}{eE \cdot 4\pi\sigma_x \ \sigma_y}$$

Beam power P_b related to AC power consumption P_{AC} via efficiency η_b^{AC}

$$P_b = \eta_b^{AC} \cdot P_{AC}$$

Figure of merit in linear colliders

Luminosity at given energy normalized to power consumption and momentum spread due to beamstrahlung:

$$M = \frac{\mathcal{L}E}{\sqrt{\delta_b} P_{AC}}$$

With previous definition (and reasonably small beamstrahlung) this becomes:

$$M = \frac{\mathcal{L}E}{\sqrt{\delta_b} P_{AC}} \propto \frac{\eta_b^{AC}}{\sqrt{\epsilon_y^*}}$$

These are optimized in the linear collider design

Not treated:

- Coasting beams (e.g. ISR)
- Asymmetric colliders (e.g. PEP, HERA, LHeC)

How to cook high Luminosity?

- Get high intensity
- \blacksquare Get small beam sizes (small ϵ and β^*)
- Get many bunches
- Get small crossing angle (if any)
- Get exact head-on collisions
- Get short bunches