K. Long, 13 October, 2009

Neutrino Factory and Muon Collider

Standard Model is

Powerful and robust!

Yet known to be incomplete ...

Muon accelerators for particle physics

Neutrino Factory and Muon Collider

Motivation

- The accelerator facilities
 and highlights of the R&D programme
- Opportunities & timescales

Conclusions

Muon accelerators for particle physics

Motivation

Standard Model issues: Theoretical:

- Fits to precision measurements require the Higgs
 - But it has not been seen ... YET ...
 - ... that is the exciting task of the LHC collaborations!
- Standard Model Higgs mechanism:
 - a description, not an explanation!
 - ... an explanation requires a deeper theory!

- Higgs mass in SM 'troublesome'
 - Unless 130 < M_H < 170 GeV

expect 'new physics' at low energy

I⁺*I*⁻ at high energy: the surgeon's knive!

/+/־ colliders: options:

Muon Collider: basis of advantages:

• Muon mass: 106 Mev/c²

Electron mass: 0.511 MeV/c²

- Consequences:
 - Negligible synchrotron radiation at Muon Collider:
 - Rate ∞ m⁴: ⇒ Muon Collider reduction factor: 5 × 10⁻¹⁰
 - Compact, circular, accelerator
 - Small energy spread
 - Possible to preserve polarisation at ~30% level
 - Yields possibility to determine beam energy precisely (0.003%) using (g – 2) precession
 - Strong coupling to Higgs:
 - Production rate ∞ m²:
 ⇒ Muon Collider enhancement factor: 5 × 10⁴
 - Large data set allows branching ratios to be measured

Higgs:

Opportunities specific to the Muon Collider:

 s-channel Higgs production:
 Can be considered because of enhanced coupling
 Good energy resolution could be exploited to resolve states with closely similar mass

I⁺*I*⁻ annihilation at the energy frontier:

- Physics case for lepton-antilepton collider likely to be compelling;
 - Direction of *I*+*I*programme will be decided based on results from LHC

- If *I*⁺*I*⁻ collider is required for full exploration of 'terascale physics', options are:
 - CLIC
 - Muon Collider
- Issues to evaluate:
 - Does the muon mass give the Muon Collider:
 - Superior physics performance;
 - Advantages in 'upgradability'?
 - What are the costs and timescales for each of the alternatives?

Standard Model issues: experimental:

The Standard Model neutrino is:

Massless
Chargeless
Helicity eigenstate

Extend SM to include neutrino mass:
Massive neutrino NOT helicity eigenstate, and ...
– since neutrino has no conserved quantum numbers

(except, perhaps, a global lepton number)
quantum mechanics implies neutrinos will mix

 γ_e created

Leptons and the weak force:

Reactor neutrinos: Kamland:

Oscillating electron (anti-)neutrinos

The neutrino revolution:

- Consequences of neutrino mass:
 - If the neutrino is a 'Dirac' fermion:
 - Require a new physical law to distinguish neutrino from anti-neutrino
 - If the neutrino is its own anti-particle (a 'Majorana' fermion):
 - The neutrino is a NEW STATE of MATTER
 - Higgs mechanism can not explain Majorana mass
 - Tiny neutrino mass appears to be related to physics at very high energy scales
- Producing the matter-dominated universe:
 - CP violation in the quark sector not sufficient
 - CP violation in the neutrino sector may make a decisive contribution; mechanism 'Leptogensis':
 - 'Dirac' phase, δ, not directly responsible;
 - Relationship of relevant (Majorana) phases to δ is model dependent
- Explanation of (absence of) large-scale structure
 - Neutrino interacts only weakly possible means of communication across large distances?
 - In some models, super-symmetric partner to neutrino may be responsible for inflation

Standard Neutrino Model:

Precision-era facility must address: Mass hierarchy CP violation θ₁₃ $\theta_{12}, \theta_{23}, \Delta m_{31}^2, \Delta m_{21}^2$ More over: • Is θ_{23} maximal? Is θ₁₃ zero? Beyond the SvM: NSIs MVNs Sterile neutrinos

Facilities for the precision era:

- Second generation (i.e. post T2K/NOvA) superboom
 - beam
 - CERN, FNAL, BNL, J-PARC II
 - MTon H₂O Cherenkov or LAr
- Neutrino Factory
 - Magnetised detector
- Beta-beam
 - MTon H₂O Cherenkov, liquid argon

ISS 2006

SPL super beam

Neutrino Factory Beta beam

T2HK super beam Wide band super beam

The ISS comparison:

The Neutrino Factrory offers:

- Best discovery reach
- Best precision
- The facility of choice!

Muon accelerators for particle physics

The accelerator facilities Muon Collider and Neutrino Factory

Muon storage rings:

Muon Collider accelerator parameters:

		Muon (Collider	Neutrino Factory
		1.5 TeV	4 TeV	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	1	4	
Muons/bunch	10 ¹²	2	2	10
Ring circumference	km	2	2	1.6
Beta at IP	mm	10	3	
dp/p (RMS)	%	0.1	0.12	0.17
Ring depth	m	13	135	155 and 440
Transverse emittance	mm mrad	25	25	4800
Lonitudinal emittance	mm mrad	72000	72000	
Proton driver rep. rate	Hz	12	6	50
Bunch length	ns	~1	~1	2
Bunches per pulse		(4)	4	3
Proton driver power	MW	4	2	4

• Muon Collider:

- Depth of 4 TeV Muon Collider storage ring required to reduce neutrino-induced radiation dose off (FNAL) site to below 1 mrem/yr ?
- Low emittance Muon Collider option actively being developed
 - Benefits include:
 - Reduced proton beam power
 - Reduced neutrino radiation
- Neutrino Factory:
 - Significant synergy in accelerator R&D requirements
 - Difference is that Muon Collider requires '6D cooling' to obtain required luminosity

Muon Collider: schematic:

More R&D needed to confirm viability and narrow the options

Neutrino Factory: accelerator facility:

Baseline

Neutrino

Fctory accelerator

facility

IDS-NF-002: https://www.ids-nf.org/wiki/FrontPage/Documentation?action=AttachFile&do=view&target=IDS-NF-002-v1.1.pdf

Parameter	Value	Comment	Proton driver
Beam power	4 MW	Production rate	Proton unver.
Beam energy	5-15 GeV	Optimum pion production	
Bunch length	1-2 ns	Pion/muon capture	

- Proton driver is the accelerator system most likely to be constrained by requirements of hostsite
- IDS-NF approach:
 - Consider two 'generic' options:
 - LINAC:
 - Possible development option for SPL (CERN) or Project-X (FNAL)
 - Requires accumulator/compressor rings
 - Rings:
 - Development option for J-PARC or RAL or possible 'green-field' option
 - Requires bunch compression

CERN SPL as proton driver:

Accumulator and compressor ring scheme:
 – Two options: 6 bunches or 3 bunches

• SPL:

- Staged scenario under consideration (Myers):

- Low power SPL to serve LHC
- High power SPL to serve applications such as Neutrino Factory

SPL accumulator/compressor ring design:

Accumulator ring:

- Isochronous:
 - Reduce bunch length for given [*dp/p*]_{rms}
 - No RF

Instabilities considered

 Instabilities are small or can be managed

Compressor ring:

– Two options studied:

 Superconducting or normal

Phase rotation studied

Including space charge

E.Benedetto, M.Aiba

Ring-based proton driver:

- Greenfield options:
 - H⁻ linac to 180 MeV;
 - Achromat for phase rotation
 - RCS and/or FFAG to reach final energy and for bunch compression
- ISIS upgrade options:
 - ISIS upgrade:
 - MW class, short pulse neutron spallation source
 - J-PARC upgrade:
 - Upgrade to 1.66 MW planned
 - Ultimate power?

eve photo in January of 2008

Example: ISIS upgrade as proton driver:

- 3.2 GeV RCS feeds booster/compressor ring:
 - Two options considered: 6.4 & 10.3 GeV
 - 3.2 GeV RCS circulates 4 [5] bunches at 50 Hz delivering 4–5 MW
 - Extract to neutron target and Neutrino Factory target

Neutrino Factory	RCS parameters
Number of superperiods	6
Circumference	708.788 m
Harmonic number	6
RF frequency	2.4717-2.5289 MHz
Betatron tunes (Q_H, Q_V)	(7.81, 7.78)
Gamma transition	7.9056
Beam power at 6.4 GeV	4 MW for 2 bunches
Bunch area	1.8 eVs
$\Delta p/p$ at 3.2 GeV	5.3 10-3
Injection / extraction energy	3.2 / 6.4 [10.3] GeV
Repetition rate	50 Hz
Max B field in dipoles	1.2 T (at 10.3 GeV)
Length of long drift	14 m

J.Pasternak

Parameter	Value	Comment
Jet velocity	20 m/s	Reformation of jet
Field at i/p	20 T	Pion collection
Field at exit of capture	1.75 T	Pion focusing

Target/capture:

Baseline: mercury jet, tapered solenoid for pion capture:
 20 T tapering to 1.75 T in ~13 m

Target: proof of principal: MERIT:

- 20 m/s liquid Hg jet in 15 T B field
- Exposed to CERN PS proton beam:
 - Beam pulse energy = 115 kJ
 - Reached 30 tera protons at 24 GeV

MERIT:

- 'Refill' time: 14 ms
 Corresponds to 70 Hz
- Hence:

Demonstrated operation at:
115 kJ × 70 Hz = 8 MW

Target station engineering:

Target engineering:

- Splash mitigation:
 Study 2: Tn balls
- Issues:
 - Effective circulation of liquid mercury
 - Best drain topology
- Need for prototype!

Davenne

Damage from high-velocity droplets:

Davenne

Damage from high-velocity droplets:

Parameter	Value	Comment
E-spread after P.R.	10%	Subsequent accel.
Freq. after P.R.	201.25 MHz	
Emittance at exit	7.4 mm rad	Subsequent accel.

Muon front-end:

Alternative front-end schemes:

- Shorter phase rotation and bunching sections:
 Improved yield, but higher gradients required
- Re-visit 44/88 MHz scheme:

– Outline:

- Bunching , phase rotation, initial cooling, and acceleration to 280 MeV at 44 MHz, ~ 2 MV/m
- Cooling and acceleration to 1 GeV at 88 MHz, ~10 MV/m
- Issues:
 - Longer channel, larger cavities
 - Gradients high for low frequency cavities
 - Effect of magnetic fields?

Ionisation cooling:

- Muon beam after phase rotation and bunching:
 Wide σ_x ~ 10(+) cm
 Divergent σ_θ ~ 150(+) mr
 - i.e. large normalised emittance:

$$\ln 2\mathsf{D} \qquad \varepsilon_n = \frac{1}{m_{\mu}c} (\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2)^{\frac{1}{2}} \rightarrow \beta \gamma \sigma_x \sigma_g$$

at a focus

• Cooling required:

- To increase by a factor of 2—10 the number of muons in acceptance of subsequent accelerator
- Ionisation cooling is the only practical solution:
 Muon lifetime is short (2 μs at rest)

Ionisation cooling: principal: Exponential decrease in normalised emittance:

$$\frac{d\varepsilon_n}{dX} = \frac{-\varepsilon_n}{\beta^2 E} \left\langle \frac{dE}{dX} \right\rangle + \frac{\beta_t \left(0.014 \text{ GeV} \right)}{2\beta^3 E m_\mu X_0}$$

- Competition between: -dE/dx [cooling] and MCS [heating]
- Optimum:
 - -Low Z, large X_0
 - -Tight focus
 - H₂ gives best performance

	Z	FoM	Rel. 4D cooling
Н	1	252.6	1.000
Не	2	182.9	0.524
Li	3	130.8	0.268
С	6	76.0	0.091
ΑΙ	13	38.8	0.024

Muon ionisation cooling experiment

<u>MICE:</u>

- Design, build, commission and operate a realistic section of cooling channel
- Measure its performance in a variety of modes of operation and beam conditions ...

... i.e. results will allow Neutrino Factory complex

to be optimised

Cooling performance:

• 15% cooling in MICE channel from 5% *E* loss per absorber

Status of MICE:

Upstream beam line

Downstream beam line

Instrumentation in place: Beam profile monitors Trigger/rate scintillators CKovA&B, TOF0&1, KL

Brunel, FNAL, IIT, Imperial, LBNL, Riverside, UCLA, NWU

Spectrometers:

• Tracker:

- Extended cosmic test of trackers #1 and #2
- Spectrometer solenoids:
 - Issues related to cool down of solenoid #1 imply mechanical modifications
 - Modifications are being implemented on solenoid #2
 - Plan:
 - Complete solenoid #2 at vendor (Nov/Dec09)
 - Magnetic mapping at FNAL (Dec09/Jan10)
 - Magnet sipped to RAL (Mar10)

Magnet 1

Magnet 2

Cooling channel:

Oxford, KEK, Mississippi

Absorber/focus-coil module:

- Focus coil module:
 - Contract awarded to TESLA
 - Presently in 'detailed design' phase:
 - Production readiness review (MICE/TESLA) last week
 - First module, summer 2010
- Absorber:
 - Prototype tested at KEK
 - Production has started:
 - Will match focus-coil schedule

LBNL, ICST

RF/coupling-coil module:

- Coupling coil manufacturing has started at ICST, Harbin, China
 - First coil for MuCool programme
 - Second coil for MICE
- **RF cavity production:**
 - Design for cavities complete
 - Production readiness review Oct08
- Ship first RFCC module to RAL 2011

Prototype coil being prepared for cold test at Harbin

Design for RF cavity module MuCool: RF breakdown in magnetic field:
Principal issue for cooling channel:

- Gradient required in baseline cooling channel:

17 MV/m from 201MHz cavities

- MuCool: study breakdown in presence of magnetic field
 - 805 MHz:
 - Reduction of factor of ~2 in max. gradient

- 201 MHz:

- In absence of *B* have achieved 19MV/m
 - Test in magnetic field planned

Mitigation of RF gradient risk:

- Various options being considered:
 - Modified lattices, magnetic return, bucking coils, gas filled cavities...
 - -Studies emphasise:
 - Priority: expedite MICE and MuCool programmes!

Ionisation cooling

MICE (under construction at RAL)

RF cavity development

C.Rogers

MuCool (part of US NFMCC)

Ionistion cooling and the Muon Collider:

- Muon Collider requires much more aggressive cooling:
 - Must reduce emittance in all 6 phase-space dimensions
 - Requires 'emittance' exchange

 The most challenging R&D programme for the Muon Collider **Initial cooling identical to Neutrino Factory**

6D cooling scheme:

6D cooling scheme components:

Final cooling

- Critical issue: high-gradient RF in magnetic field

	E _{fin} (GeV)	Comment
Pre-accel. Linac	0.9	Change in γ
RLAI	3.6	Switch-yard congestion
RLA II	12.6	Switch-yard congestion
FFAG	25.0	Large acceptance, use of RF

Muon acceleration:

• Linac/RLAs:

- Development of optics
 - Graded focussing
- Tracking with OPTIM and MAD-X
- Error-tolerance analysis for droplet arcs
- Ready for end-to-end

tracking

FFAG:

- Lattice specification update
- Analysis of distortions & chromaticity
- Evaluation of injection and extraction systems

Pre-accelerator, RLA I & II:

- Solenoid focusing lattice for 0.9 GeV linac
 Optics and first tracking complete
- Transfer section for injection into RLA I: — Optics and first tracking complete
- Lattice for linacs I and II complete:
 Quadrupole focusing
- Droplet return arcs
 - Optics, first tracking, and match linacs performed

Arcs RLA II

Arcs	R	LA	

A.Bogacz

i = 14	E _i [GeV]	p _i /p ₁	cell_out	cell_in	length [m]
Arc1	1.2	1	22	10	130
Arc2	1.8	3/2	23	15	172
Arc3	2.4	2	24	20	214
Arc4	3.0	5/2	25	25	256

Arc1 4.6 1 2 2 10 260 Arc2 6.6 3/2 2 3 15 344 Arc3 8.6 2 2 4 20 428 Arc4 10.6 5/2 2 5 25 512	i = 14	E _i [GeV]	p _i /p ₁	cell_out	cell_in	length [m]
Arc2 6.6 3/2 2 3 15 344 Arc3 8.6 2 2 4 20 428 Arc4 10.6 5/2 2 5 25 512	Arc1	4.6	1	22	10	260
Arc3 8.6 2 2 4 20 428 Arc4 10.6 5/2 2 5 25 512	Arc2	6.6	3/2	23	15	344
Arc4 10.6 5/2 2 5 25 512	Arc3	8.6	2	24	20	428
	Arc4	10.6	5/2	25	25	512

Muon nsFFAG: EMMA:

- EMMA (at DL):
 - Electron 'model' of muon non-scaling FFAG
 - Demonstrate feasibility of concept
 - Studies:
 - Longitudinal dynamics;
 - Transmission;
 - Emittance growth
 - Influence of resonances

Status of EMMA:

- Component fabrication close to completion
- Commissioning starts early 2010

S.Berg, J.Pasternak, D.Kelliher

Muon FFAG:

- Lattice revision required to:
 - Provide drift spaces for installation of kickers
- Various options:
 - Doublet, triplet, FODO, single and 'doublet' of cavities
 - Some indicative estimate of cost
 - How to converge on a single, optimised design?
- Kicker schemes under development:

FODO case	Inject 6	Inject 10	Extract
Kickers	6	10	6
Kicker field (T)	0.12	0.08	0.10
Septum field (T)	2.5	2.5	4.0

- Orbit distortions related to magnet apertures in injection and extraction sections under study
- Chromaticity (sextupole) corrections required to mitigate time-of-flight differences

- Early Acceleration (to 25 GeV ?) could be the same as NF. Needs study.
- Main Acceleration Attractive Candidates
 - RLAs (extension of NF accel. scheme?)
 - Rapid cycling synchrotron needs magnet R&D
 - Fast ramping RLA
- Options need further study \rightarrow particle tracking, collective effects, cavity loading, ...

61

Parameter	E _{fin} (GeV	Comment	Storage ring
Туре	Race track	Triangle as backup	
N _{decays} /b.l. /yr	5 × 10 ²⁰	Baseline flux (10 ²¹ / yr total)	C.Pr
Min, bunch spacin	100 ns	Event separation	

or

- Three muon bunches per pulse:
 - Either (both?) μ^+ and μ^- in each storage ring
 - If counter-rotating, opposite sign bunch trains are interleaved:
 - 80 201-MHz bunches per bunch train (total length 397.5 ns)
 - At injection 'gap' between μ^+ and μ^- bunch trains is 497 ns
 - Issues:
 - Require RF to maintain inter-bunch-train separation during store
 - Shielding against decay electrons
 - Chromaticity corrections and dynamic aperture

- Muons circulate for ~1000 turns in the ring
- Need high field dipoles operating in decay back-grounds \rightarrow R&D

First lattice designs exist

- Comparison of different schemes, choice of the baseline
- Detailed lattice design with tuning and correction "knobs"
- Dynamic aperture studies with magnet nonlinearities, misalignments and their correction
 - Transient beam-beam effect compensation
 - Coherent instabilities analysis

DESIGN PROCESS

WE ARE HERE

Muon accelerators for particle physics

Opportunities and timescales

Neutrino Factory: footprint:

Physics

Muon Collider roadmap:

US Superbeam Strategy: Young-Kee Kim, Oct. 1-3, 2009

Fermilab

Aspirational Bigger Picture

Muon accelerators for particle physics

Conclusions

Conclusions:

- Muon accelerators have the potential to serve:
 - Charged lepton flavour violation search
 - Precision measurements of neutrino oscillations
 - $-I^+I^-$ collisions at the energy frontier
 - A fantastic physics potential!
- Accelerator systems and technologies highly challenging:
 - 4 MW, pulsed, proton driver with ns-scale bunches
 - High-power target
 - Ionisation cooling
 - High-gradient normal- and super-conducting RF
 - High-field, high-T_c superconducting magnets
- Scientific imperative: make muon accelerators an option for the field:
 - Impact potentially as significant as that of the synchrotron
 - Huge potential for knowledge exchange medicine, energy ...