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Main Characteristics of an Accelerator

ACCELERATION is the main job of an accelerator.
•The accelerator provides kinetic energy

 

to charged

 

particles, hence increasing their 
momentum.
•In order to do so, it is necessary to have an electric field , preferably along the 
direction of the initial momentum.

eEdt
dp

BENDING is generated by a magnetic field perpendicular

 

to the plane of the 
particle trajectory. The bending radius  obeys to the relation

 

: 

B
e
p


FOCUSING is a second way of using a magnetic field, in which the

 

bending 
effect is used to bring the particles trajectory closer to the axis, hence 
to increase the beam density.

E

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Radio-Frequency Acceleration

Cylindrical electrodes separated by gaps and 
fed by a RF generator, as shown on the Figure, 
lead to an alternating electric field polarity

Synchronism condition             L = v T/2 
(v = particle

 

velocity)
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Radio-Frequency Acceleration (2)

L = vT/2  (π

 

mode)                         L = vT

 

(2π

 

mode)

Single Gap                                 Multi-Gap
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Energy Gain

RF Acceleration

(neglecting

 

transit time factor)

Newton-Lorentz

 

Force Ee
dt
pd 



Relativistics

 

Dynamics

cpEE 222
0

2  dpvdE 

Eedt
dp

dz
dpvdz

dE
z

dzEedWdE z  dzEeW z

 tEtEE zRFzz  sinˆsinˆ 

 VdzEz
ˆˆ

sinV̂eW 
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Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase s .

For a 2π

 

mode, 
the electric field 
is the same in all 
gaps at any given 
time.

sVeseV  sinˆ is the energy gain in one gap for the particle to reach the next

 
gap with the same RF phase: P1 ,P2

 

, ……

 

are fixed points.

Principle of Phase Stability

If an increase in energy is transferred into an increase in velocity, M1 & N1 
will move towards P1

 

(stable), while M2

 

& N2

 

will go away from P2

 

(unstable).
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Transverse

 

Instability
00 










z

zE

t

V
Longitudinal phase stability means

 

: 

The divergence of the field is

 
zero according to Maxwell : 000. 













x

E
z

E
x

EE xzx

defocusing 
RF force

External focusing (solenoid,

 

quadrupole) is then necessary

A Consequence of Phase Stability
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The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions:

Be
PB

cteRcte

h

cte

Ve

rRF

s

















sin
^

Energy gain per turn

Synchronous

 

particle

RF synchronism

Constant orbit

Variable magnetic field

If

 

v =

 

c,

 

r

 

hence

 

RF

 

remain constant (ultra-relativistic e-

 

)
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Energy ramping is simply obtained by varying the B field:

v

BRe
rTBeturnpBe

dt
dp

eBp






2

)(

Since: pvEcpEE 
222

0
2

•The number of stable synchronous particles is equal to the harmonic 
number h.  They are equally spaced along the circumference.
•Each synchronous particle satifies

 

the relation p=eB. They have the 
nominal energy and follow the nominal trajectory.

The Synchrotron (2)

     ssturn VeRBeWE sinˆ'2 
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Dispersion Effects in a Synchrotron

E+E

E

If a particle is slightly shifted in 
momentum it will have a different 
orbit:

dp
dR

R
p

This is the “momentum compaction”

 
generated by the bending field.

If the particle is shifted in momentum it will 
have also a different velocity. As a result of 
both effects the revolution frequency changes:

dp
df

f
p r

r
p=particle momentum

R=synchrotron physical radius

fr

 

=revolution frequency

cavity

Circumference

2R
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Dispersion Effects in a Synchrotron (2)

dp
dR

R
p



x

0s
s

p
dpp 

d
x  


dxds

dds


0

The elementary path difference 
from the two orbits is:


x

ds
dl

ds
dsds 

00

0

leading to the total change in the circumference:

m
m

xdRxdsdsxdRdl   00
12 

Since:
p

dpDx x we get: R
D

mx

< >m

 

means that 
the average is 
considered over 
the bending 
magnet only
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Dispersion Effects in a Synchrotron (3)

dp
df

f
p r

r
 R

dRd
f

df
R
cf

r

r
r  





2

 
 

  






 ddd

p
dp

c
Emvp 12

2
1

2

2
1

2
0 1

1
1 










p
dp

f
df

r

r 





   2

1   2
1

=0 at the transition energy 


 1tr
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Phase Stability in a Synchrotron 

From

 

the definition

 

of 

 

it

 

is

 

clear

 

that

 

below

 

transition an increase

 

in 
energy

 

is

 

followed

 

by a higher

 

revolution

 

frequency

 

(increase

 

in velocity

 
dominates) while

 

the reverse occurs

 

above

 

transition (v 

 

c and longer path) 
where

 

the momentum

 

compaction (generally

 

> 0) dominates.

Stable synchr. Particle 
for <0



 

> 0
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Longitudinal Dynamics

It is also often called “

 

synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF 
phase experienced by the same particle. Since there is a 
well defined synchronous particle which has always the same 
phase s

 

, and the nominal energy Es

 

, it is sufficient to follow

 other particles with respect to that particle. So let’s 
introduce the following reduced variables:

revolution frequency :             fr

 

= fr

 

– frs

particle RF phase     :              

 

= 

 

-

 

s

particle momentum   :              p = p -

 

ps

particle energy         :              E = E –

 

Es

azimuth angle            :              

 

= 

 

-

 

s
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First Energy-Phase Equation


R

 dtwithhhff rrRF 

For a given particle with respect to the reference one:

    dt
d

hdt
d

hdt
d

r
 11 

Since:
s

r

rs

s

dp
dp







 



one gets:
  





rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE 

and
cpEE 222

0
2 

pRpvE srss  
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Second Energy-Phase Equation

The rate of energy gained by a particle is: 
 2sinˆ rVedt

dE

The rate of relative energy gain with respect to the reference 
particle is then:

)sin(sinˆ2 s
r

VeE  




 

leads to the second energy-phase equation:

 s
rs

VeE
dt
d  sinsinˆ2 






 

   ETdt
dETTEETTETE rsrsrrsrr  

Expanding

 

the left

 

hand side

 

to first order:
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Equations of Longitudinal Motion

 s
rs

VeE
dt
d  sinsinˆ2 






   





rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE 

deriving
 

and combining

  0sinsin2
ˆ 





s
rs

ss Ve
dt
d

h
pR

dt
d 




This second order

 

equation

 

is

 

non linear. Moreover

 

the parameters

 
within

 

the bracket

 

are in general

 

slowly

 

varying

 

with

 

time…………………
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Hamiltonian of Longitudinal Motion

 sVedt
dW  sinsinˆ 

WRp
h

dt
d

ss

rs



2
1

Introducing

 

a new convenient

 

variable, W, leads

 

to the 1th

 

order

 equations:

pREW s
rs






   22

These

 

equations

 

of motion derive

 

from

 

a hamiltonian

 

H(,W,t):

W
H

dt
d


 

 H
dt

dW

     WpR
hVetWH

ss

rs
sss

2

4
1sincoscosˆ,, 
 
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Small Amplitude Oscillations

  0sinsincos
2

 s
s

s 

(for small )

02   s


ss

srs
s pR

Veh



2

cosˆ
2



 

< tr

 



 

> 0             0 < s

 

< /2               sins

 

> 0



 

> tr

 



 

< 0           /2 < s

 

< 

 

sins

 

> 0

with

Let’s assume constant parameters

 

Rs, ps

 

,

 

s

 

and :

    ssss cossinsinsinsin
Consider

 

now

 

small

 

phase deviations

 

from

 

the reference

 

particle:

and the corresponding

 

linearized

 

motion reduces

 

to a harmonic

 

oscillation:

stable for              and  s

 

real02s
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Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear:

  0sinsincos
2

 s
s

s  (s

 

as previously defined)

Multiplying by   and integrating gives an invariant of the motion:

  Is
s

s  
 sincoscos2

22

which for small amplitudes reduces to:

  Is  22
2

2
2  (the variable is 

 

and s

 

is constant)

Similar equations exist for the second variable : Ed/dt
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Large Amplitude Oscillations (2)

      sss
s

s
s

s

s 
 sincoscossincoscos2

222




    ssssmm  sincossincos 

Second value m

 

where the separatrix

 

crosses the horizontal axis:

Equation of the separatrix:

When 

 

reaches -s

 

the force goes 
to zero and beyond it becomes non 
restoring. Hence -s is an extreme 
amplitude for a stable motion which 

in the phase space(            ) is shown 

as closed trajectories. 

  ,
s


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Energy Acceptance

From the equation of motion it is seen that    reaches an extremum

 
when        , hence corresponding to        .

Introducing this value into the equation of the separatrix

 

gives:   


0 s 

  sss  tan222 22
max 

That translates into an acceptance in energy:

This “RF acceptance”

 

depends strongly on s

 

and plays an important role 
for the electron capture at injection, and the stored beam lifetime.

 












   s

ss
G

Eh
Ve

E
E ˆ 2

1

max


     ssssG sin2cos2 
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RF Acceptance versus Synchronous Phase 

As the synchronous phase 
gets closer to 90º

 

the 
area of stable motion 
(closed trajectories) gets 
smaller. These areas are 
often called “BUCKET”.

The number of circulating 
buckets is equal to “h”.

The phase extension of 
the bucket is maximum 
for s =180º

 

(or 0°) which 
correspond to no 
acceleration . The RF 
acceptance increases with 
the RF voltage.



CAS Darmstadt 28 September – 8 October 2009 27

Potential Energy Function 

  F
dt
d 2

2

   
 UF

    FdFU s
s

s
00

2
sincoscos    

The longitudinal motion is produced by a force that can be derived from 
a scalar potential:

The sum of the potential 
energy and kinetic energy is 
constant and by analogy 
represents the total energy 
of a non-dissipative system.
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From Synchrotron to Linac

In the linac

 

there is no bending magnets, hence there is no 
dispersion effects on the orbit and =0 and =1/2.

sRC 2

sRC 2

cavity

Ez

s
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From Synchrotron to Linac
 

(2)

In the linac

 

there is no bending magnets, hence there is no 
dispersion effects on the orbit and =0 and =1/2.

sRC 2

sRC 2

 RFhC

 RF

cavity

S or z

Ez
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From Synchrotron to Linac
 

(3)

Moreover

 

one has: 

Since in the linac

 

=0 and =1/2, the longitudinal frequency becomes: 

pR
Veh

ss

srs
s 


2

cosˆ2
2





vmpERVh sssRFs 002ˆ  

leading

 

to:

vm
Ee

s

sRF
s 


3

0

02 cos

Since

 

in a linac

 

the independant

 

variable is

 

z rather

 

than

 

t one gets:

vm
Ee

s s

sRF
33

0

0
2 cos2





 







0 s
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Adiabatic Damping

Though there are many physical processes that can damp the 
longitudinal oscillation amplitudes, one is directly generated by the 
acceleration process itself. It will happen in the synchrotron, even 
ultra-relativistic, when ramping the energy but not in the ultra-

 
relativistic electron linac

 

which does not show any oscillation. 

As a matter of fact, when Es varies with time, one needs to be more 
careful in combining the two first order energy-phase equations in 
one second order equation:

 

  0

0

2

2

2













ss
s

s

ssss

sss

EE
E

EEE

EEdt
d





The damping coefficient is 
proportional to the rate of 
energy variation and from the 
definition of s

 

one has:

s

s

s

s
E
E





2
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Adiabatic Damping (2)

  .constdWI 

  WpR
hVetWH

ss

rs
s

22

4
1cos2

ˆ),,( 
 

tWW s cosˆ

  ts sin̂

So far it

 

was

 

assumed

 

that

 

parameters

 

related

 

to the acceleration

 
process

 

were

 

constant. Let’s consider

 

now

 

that

 

they

 

vary

 

slowly

 

with

 
respect to the period

 

of longitudinal oscillation (adiabaticity). 

For small

 

amplitude oscillations the hamiltonian

 

reduces

 

to:

with

Under adiabatic

 

conditions the Boltzman-Ehrenfest

 

theorem

 

states 
that

 

the action integral

 

remains

 

constant:

(W, 

 

are canonical variables)

WpR
h

W
H

dt
d

ss

rs



2
1



  dtWpR
hdtdt

dWI
ss

rs 2

2
1 




Since:

the action integral

 

becomes:
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Adiabatic Damping (3)

leads

 

to:

 


s

WdtW
ˆ 2

2 Previous

 

integral

 

over one period:

.ˆ
2

2

constW
pR

hI
sss

rs 


 

From

 

the quadratic

 

form

 

of the hamiltonian

 

one gets

 

the relation:




 ˆ2ˆ 
rs

sss
h

RpW

Finally

 

under

 

adiabatic

 

conditions the long term

 

evolution

 

of the 
oscillation amplitudes is

 

shown

 

to be:

EVRE
s

sss

4/1
2

4/1

cosˆ
ˆ 











 EEorW s

4/1ˆˆ 

iantinW varˆ.ˆ 
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Dynamics in the Vicinity of Transition Energy

one gets:




 22
2

1   tIntroducing

 

in the previous

 

expressions:











 










22 4/1

cosˆ
1ˆ t

sV











 











22 4/1

cosˆ
1ˆ t

sV
E











 








22 2/1

cosˆ t
ss V
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Dynamics in the Vicinity of Transition Energy (2)

In fact

 

close to transition, 
adiabatic

 

solution are not 
valid

 

since

 

parameters

 

change 
too

 

fast. A proper

 

treatment

 
would

 

show that:



 

will

 

not go to zero

E will

 

not go to infinityt

t t

s ̂

E
E
s

ˆ

 


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Stationnary
 

Bucket

This is

 

the case sins

 

=0 (no acceleration) which

 

means

 

s

 

=0 or

 



 

. The 
equation

 

of the separatrix

 

for s

 

= 

 

(above

 

transition) becomes:

 22
2

cos2 ss 
2sin22

22
2


 s



Replacing

 

the phase derivative

 

by the canonical variable W:







 
rs

ss

rs h
RpEW 22 

and introducing

 

the expression 
for s

 

leads

 

to the following

 
equation

 

for the separatrix:

2sin2
ˆ

2 
 h
EVe

c
CW s

with

 

C=2Rs

W

0  2

Wbk
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Stationnary
 

Bucket (2)

Setting =

 

in the previous

 

equation

 

gives

 

the height

 

of the bucket:

The area of the bucket

 

is:

 h
EVe

c
CA s

bk 2
ˆ

16 

  2
02 dWAbk

Since:   2
0 42sin d

one gets:

 h
EVe

c
CW s

bk 2
ˆ

2 

8
AW bk

bk 
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Bunch Matching into a Stationnary
 

Bucket 

A particle

 

trajectory

 

inside

 

the separatrix

 

is

 

described

 

by the equation:

W

0  2

Wbk

Wb



m 2-m

  Is
s

s  
 sincoscos2

22 s

 

= Is   cos2
2

2


mss coscos2

22
2




  coscos2  ms


2cos2cos8
22   mbkAW

The points where

 

the trajectory

 
crosses the axis are symmetric

 

with

 
respect to s

 

=
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Bunch Matching into a Stationnary
 

Bucket (2)

Setting    in the previous

 

formula

 

allows

 

to calculate

 

the bunch

 

height:

2cos8
mbk

b
AW 

2cosm
bkb WW 

or:

2cosm

s RFs b E
E

E
E 





 





 

This formula shows that

 

for a given

 

bunch

 

energy

 

spread

 

the proper

 
matching

 

of a shorter

 

bunch

 

will

 

require

 

a bigger

 

RF acceptance, hence

 

a 
higher

 

voltage ( short bunch

 

means

 

m

 

close to 

 

).
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Effect of a Mismatch

Starting

 

with

 

an injected

 

bunch

 

with

 

short lenght

 

and large energy

 

spread, 
after

 

a quarter of synchrotron period

 

the bunch

 

rotation shows a longer 
bunch

 

with

 

a smaller

 

energy

 

spread.
W W

 

     22

16 m
bkAW     116

22


















 


 mmbkA
W

   2

16 mbkb AA

For small

 

oscillation amplitudes the equation

 

of the ellipse reduces

 

to:

Ellipse area is

 

called

 

longitudinal emittance
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Capture of a Debunched
 

Beam with Adiabatic Turn-On



CAS Darmstadt 28 September – 8 October 2009 42

Capture of a Debunched
 

Beam with Fast Turn-On
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