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Overview
DC versus RF

— Basic equations: Lorentz & Maxwell, RF breakdown

Some theory: from waveguide to pillbox

— rectangular waveguide, waveguide dispersion, standing waves ... waveguide resonators, round
waveguides, Pillbox cavity

Accelerating gap

— Induction cell, ferrite cavity, drift tube linac, transit time factor
Characterizing a cavity

— resonance frequency, shunt impedance,

— beam loading, loss factor, RF to beam efficiency,

— transverse effects, Panofsky-Wenzel, higher order modes, PS 80 MHz cavity (magnetic coupling)
More examples of cavities

— PEP I, LEP cavities, PS 40 MHz cavity (electric coupling),
RF Power sources
Many gaps

—  Why?

— Example: side coupled linac, LIBO
Travelling wave structures

— Brillouin diagram, iris loaded structure, waveguide coupling
Superconducting Accelerating Structures

RFQ’s



DC VERSUS RF



DC versus RF

DC accelerator

% RF accelerator
$

Mikey
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Lorentz force

A charged particle moving with velocity through an electro-
magnetic field experiences a force

2
The energy of the particle is W = \/(mcz) + (pc)2 = 7/ch
Wkin = mc 2(7/ - 1)

Change of W due to the this force (work done) ; differentiate:
WdW =c’p-dp=qc’p- (E+\7><1§) dt=qc’p- E dt

dW =qv-Edt

Note: no work is done by the magnetic field.



VxB iz E=puyJ V-B=0
9,
C
VxE+—B=0 V-E=uycp

ot

why not DC?
O = - =
1) DC (8_ =0): VxE =0 whichis solved by E=
[

Limit: If you want to gain 1 MeV, you need a potential of 1 MV!
2)  Circular machine: DC acceleration impossible since §
With time-varying fields:

.0 4 . OB
VxE=——B §E-dS:—”—-

ot
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Maxwell’s equation in vacuum (contd.)
10 - a

VxB-—_E=0 V-B=0
cc Ot
VxE+gB=o V.-E=0
ot
0 .
curl of 3" and > of 1stequation:
. 1 8% .
VXVXE+—2—2E:O
c® ot
vector identity: VxVxE=VV-E—AE
e - .1 0% .
with 4" equation: AE__z—E:O
c” Ot

i.e. Laplace in 4 dimensions
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Another reason for RF: breakdown limit

surface field, in vacuum,Cu surface, room temperature

1aon X . -
Approximate limit
for CLIC parameters
500 | (12 GHz, 140 ns,
=17 I breakdown rate: 107 m):
Wang & Loew, 260 M\V//m
SLAC-PUB-7684, -- T
& 1997 e ]
' 1" /#f
ﬁ v
& 100 e //
= =
= 4" -
% -
= o1 -
,.--—"‘"f Kilpatrick 1957, 425
20 | E
7 2467.[f=E e “
’ e 7 in GHz, E, in MV/m
"
—____——"'
l___.-v"'
/
0.01 0.1 1 1a 100
£ [ GHz]

CAS Darmstadt '09 — RF Cavity Design 8



FROM WAVEGUIDE TO PILLBOX



Homogeneous plane wave

COS(a)t A ,7) Wave vector £
B the direction of £kis the direction of
COS(a)t—k 77) propagation,
the length of kis the phase shift per
unit length.

k behaves like a vector.
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Wave length, phase velocity

e The components of k are related to the wavelength in the direction of

2 . ()
that component as 4. :k_ﬂ etc. , to the phase velocity as v,. = =f 4.

z z

S
o |

Lz

o |
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Superposition of 2 homogeneous plane waves

Metallic walls may be inserted where Ey =0

without perturbing the fields.

Note the standing wave in x-direction!

This way one gets a hollow rectangular waveguide
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\>

power flow

Rectangular waveguide

Fundamental (TE,, or H,,) mode
in a standard rectangular waveguide.

E.g. forward wave

electric field

1 ok -
ower flow: =~ Re ExH -dA4
poverfow: Rl ]

Cross
section

colour coding

1. 0000e+00

magnetic field

CAS Darmstadt '09 — RF Cavity Design 13



Waveguide dispersion

e.g.: TE;,-wave in
rectangular
waveguide:

2 2
free space, w/c y = J\/(wj _(”j
c a

“slow” wave jou
ZO =
4
Acutott =24

general cylindrical waveguide:

“fast” wave

In a hollow waveguide: phase velocity > ¢, group velocity < €




WavegUide d|SperS|On (continued: Higher Order Modes)
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General waveguide equations:

2
Transverse wave equation (membrane equation): AT + (wcj =0
C
TE (or H) modes TM (or E) modes
boundary condition: n-VI =0 T=0
dU(z)
longitudinal wave equations Z +7Zpl(z) =0
(transmission line equations): dl(z) ¥ U( )_ 0
d Z ZO
» 2
propagation constant: y = jg 1_(Cj
c @

),
characteristic impedance: ZO = J—'u Zo = L

4 Joe
ortho-normal eigenvectors: e=u,xVT e =-VT

E=U(z)e
transverse fields: 7 -
5 =1(z)ii_xé 5
o[ @ TU(z) w,\ TI(z)
longitudinal field: z = - EZ = :
c Jou c Joe
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Rectangular waveguide: transverse eigenfunctions

TE (H) modes: THS’;’ )1 al;g’”g” 5 cos(@x)cos(ﬂ y)
7\ (mb)” +(na) a b
(E) _ 2 ab . (WUZ' ) : (nﬂ j
TM (E) modes: Loy’ =— sinf —x |sinj —y
(E) modes ﬂ\/(mb)z +(na)2 a b b

LGAC

Round waveguide: transverse eigenfunctions

TE (H) modes: Tngf) :\/ ( Em a {COS e }
T

22 -m?) 3, () Lsin(moe)

‘]m mn pj - -
TM (E) modes: Tngf) :\El g;( ((1 {Sln(mgp)} B =2a
mn ¥ m-1 )(mn) COS(m gp) 0. 1m
where o = {1 for i=0 c a
Y2 for i#0
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Standing wave — resonator

Same as above, but two
counter-running waves
of identical amplitude.

electric field

no net power flow: ;Re ”Exﬁ*-d;l =0

Cross
section

colour coding

magnetic field
(90° out of phase)
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1.43,1.09, 1.13 £, a: radius
TEy,: lowest losses!

parameters used in calculation:

f

axial electric field

TMy;:
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TE,,: fundamental mode




Pillbox cavity

TM,,,-mode (only 1/8 shown)

electric field magnetic field
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Pillbox cavity field (w/o beam tube

1 XoP h
T(p,p)= |t L ¢4 Yo = 2.40483...
i Zo1 ‘Jl(mj
a
The only non-vanishing field components :

Xo1P

g 2a

Jo (
_ 1 2o |1 a
E, ; for later:

Jos, a a‘Jl(ZOl

a wo‘pillbox
] (101,0
1 a
B¢ = U ; Q‘pillbox -
a Jl(l 01
a
R
Q pillbox

_Xou ¢ n= "0-3770
a €o

_ \/Za 10X 01

2(1+Zj
sin2(%o1 ")

_ 41 2 a
101377312(7(01) hia
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ACCELERATING GAP



Accelerating gap

gap voltage

We want a voltage across the gap!

It cannot be DC, since we want the beam tube on
ground potential.

Use E*;Edg’:_”(ifdz

The “shield” imposes a

— upper limit of the voltage pulse duration or -
equivalently —

—  alower limit to the usable frequency.

The limit can be extended with a material which
acts as “open circuit”!
Materials typically used:

—  ferrites (depending on f~range)

—  magnetic alloys (MA) like Metglas®, Finemet®,
Vitrovac®...

resonantly driven with RF (ferrite loaded cavities)
— or with pulses (induction cell)
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Induction

< IIL accelerating cel
| -
. /

b\'t

~

Beam current

Ferromagnstic cores
high inductive impedance
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PS Booster, ‘98

0.6 —1.8 MHz,
7 N <10 kV gap
& o NiZn ferrites
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Gap of PS cavity (prototype
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Drift Tube Linac (DTL) — how it works

For slow particles !
E.g. protons @ few MeV

The drift tube lengths
can easily be adapted.

electric field

colour coding

L0000e+00
L0o000e-01
.0o0o0e-01
.0o00e-01
Loo0oe-01
.0o000e-01
L0o0oe-01
L0000e-01
L0o0o0e-01
L0000e-01
L0o000e+00

[ I B R TR . B = U B Y m I )

CAS Darmstadt '09 — RF Cavity Design




Drift tube linac — practical implementations

N
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Transit time factor

If the gap is small, the voltage jEZdZ is small.
If the gap large, the RF field varies notably while the particle passes.

_[EZ ejac)zd%

Define the accelerating voltage V,,, =

JAEZeJCZd%

jEZdZ

Transit time factor

Example pillbox:
transit time factor vs. &

()

h/A
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CHARACTERIZING A CAVITY



Cavity resonator — equivalent circuit

Simplification: single mode

1 1
L V gap i
Generator L g Beam
R/B C L R L=R/(Qw,)
B: coupling factor — C=0/(Rw,)

Cavity

R: Shunt impedance \/% : R-upon-Q
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Reentrant cavity

Nose cones increase transit time factor, round outer shape minimizes losses.

one example Freq = 500.003

Example: KEK photon factory 500 MHz
- R probably as good as it gets -

this cavity optimized
pillbox
R/Q: 111 Q 107.5 Q)
Q: 44270 41630
R: 4.9 M) 4.47 M)

nose cone

&K&
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LOSS fa CtO r Impedance seen by the beam

uced) Ly
o R V| _ 1
“T 20 4w 20/
..... S
Energy deposited by a single
h gy .IO Yk 82 L=R/(Qw,)
charge g: 1oss 4 C , -0k,
v = @
Cavity
Voltage induced by a
single charge q: _ @
Vgap 0 \ /\ I\V/\VI\VA&IAVAVAV"‘VA{’AVAVAVA‘}A"’
2k loss 4 MVV -
e s s

fo
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Summary: relations V,,, W, Py,

gap voltage

7

gap

R _ Vew :
QO 20,W P ‘Vgap
2 shunt —
k — % E — I/gap 2 I)loss

Energy stored inside the

cavity
/4

Power lost in the cavity

walls

2Yi4 P loss

CAS Darmstadt '09 — RF Cavity Design
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Beam loading — RF to beam efficiency

The beam current “loads” the generator, in the
equivalent circuit this appears as a resistance in
parallel to the shunt impedance.

If the generator is matched to the unloaded
cavity, beam loading will cause the accelerating
voltage to decrease.

The power absorbed by the beam is —%Re{Vgap I,
V|

the power loss P

2R
For high efficiency, beam loading shall be high.
The RF to beam efficiencyis 7= Ll
Vew 1]

gap
1+ =
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Characterizing cavities
1

Resonance frequency

Transit time factor

field varies while particle is traversing the gap

Shunt impedance

gap voltage — power relation

O factor

R/Q

independent of losses — only geometry!

loss factor
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0)0:

JL-C
J.Ezejac)zd{

J.Ezdz

Circuit definition

Linac definition

2R P =R

shunt © loss gap shunt = loss

oy R_ Vi
loss 2 Q 4W




Example Pillbox:

C
a)o‘Pillbox - zo; Ko = 24048
= [F0-3770
o - J2anayy T e,
illbox
’ 2(1+Zj o, =5.8-107S/m
.2 Yo M
R 4r sin® (== a)

Q pillbox ZOlBﬂle(ZOl) h/d




Higher order modes

external dampers

— L+ —L

R, %1’ a2y R, 0, o, R;, O3 w;
@

" YYYY g o YYYY g oS YYYY o

n, n, ns
VAAAALS
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Higher order modes (measured spectrum)

221 leg MAG =~ 10 dB~- REF —130 dB

without dampers

Lol T Mt
™) )

START 1. o8@ g MH= STOP 1 000. B8 008 MH=

ME M log MAG 18 dB.-~ REF —1326 dB

| with dampers | [ T

]
|

!

1 4o ez MMH= STOFP 1 0ODO. DD BEG MH=




Pillbox: Dipole mode ™. .. /e

electric field (@ 0°) magnetic field (@ 90°)
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Panofsky-Wenzel theorem

For particles moving virtually at v=c, the integrated
transverse force (kick) can be determined from the
transverse variation of the integrated longitudinal

forcel
L =
J;FJ_ :VJ_Fh

Pure TE modes: No net transverse force !

Transverse modes are characterized by
* the transverse impedance in @-domain
* the transverse loss factor (kick factor) in z-domain !

W.K.H. Panofsky, W.A. Wenzel: “Some Considerations Concerning the Transverse Deflection of Charged
Particles in Radio-Frequency Fields”, RSI 27, 1957]
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mechanical ) ; 5,

short-circuit grooves for

water cooling
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Higher
order
modes

Example shown:
80 MHz cavity PS
for LHC.

Color-coded:

colour coding

. 0000e+00
L0000e-01
.0000e-01
L0000e-01
L0000e-01
.0000e-01
L0000e-01
. 0000e-01
L0000e-01
. 0000e-01
L0000e+00

[ I B R TR . B = U B Y m I )
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MORE EXAMPLES OF CAVITIES



PS 19

VI

1

Hz cavity (prototype, photo: 1966)
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Examples of cavities

PEP Il cavity LEP normal-conducting Cu RF cavities,
476 MHz, single cell, 350 MHz. 5 cell standing wave + spherical
1 MV gap with 150 kW, cavity for energy storage, 3 MV

strong HOM damping,
RF input
’— —ho/2]

Coupling
slots

i
q_8
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gap

CERN/PS 40 IVIHz cavity (for LHC)

example for
capacitive coupling

coupling C

cavity
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RF POWER SOURCES



RF Power sources

> 200 MHz: Klystrons

pictures from http://www.thales-electrondevices.com

117 kV. Achieved:

< 1000 MHz: grid tubes

Tetrode 10T

CAS Darmstadt '09 — RF Cavity Design

Thales TH1801, Multi-Beam Klystron (MBK), 1.3 GHz,

48 dB gain, 10 MW peak, 150 kW average, n = 65 %

output power

input power

— 10 4.8

UHF Diacrode

50




RF power sources

Typical ranges (commercially available)

100 -

solid state (x32)

b

=
(@]
!

=
=3,
O
=
)
a
W
o
=
)
>
<
=
)

f[MHz] 10000
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Example of a tetrode amplifier (80 MHz, CERN/PS)

400 kW, with fast RF feedback

18 Q) coaxial output (towards cavity)

22 kV DC anode voltage feed-through with A/4
stub

tetrode cooling water feed-throughs

€oaxial ingut matchipg'circuit
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MANY GAPS



What do you gain with many gaps?

e The R/Q of a single gap cavity is limited to some 100 W.
Now consider to distribute the available power to n identical
cavities: each will receive P/n, thus produce an accelerating
voltage of \/2R P/n .
The total accelerating voltage thus increased, equivalent to a
total equivalent shunt impedance of nR.

P/n P/n P/n P/n
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Standing wave multicell cavity

Instead of distributing the power from the amplifier, one might
as well couple the cavities, such that the power automatically
distributes, or have a cavity with many gaps (e.g. drift tube
linac).

Coupled cavity accelerating structure (side coupled)

The phase relation between gaps is important!
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Example of Side Coupled Structure

PICK UP
‘ BRIDGE COUPLER _ .
. LIBO (= Linac Booster)
PMQ
TS
E E E iji E Lt A 3 GHz Side Coupled
H L Structure to accelerate
w_ SUMEIG PORT protons out of cyclotrons
D AE L — from 62 MeV to 200 MeV
ACCELERATING CELL
NG EHE S Medical application:
o U BRIDGT COURLER treatment of tumours.
T 1 TANK 2 *Z*i: TANK 3 TANK 4
N tr;jj ] % A Prototype of Module 1
= e i = built at CERN (2000)
| i o Eﬁﬁ:% E
%_,ﬂ/ | [ ] / Collaboration CERN/INFN/
PUMPING PORT - mEi | SUPPORT Tera Foundation
| = = |
| |
T
MANIFOLD

| _VACUUM PUMP
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LIBO prototype

f : '
: ]

L A | =

?_

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)
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TRAVELLING WAVE STRUCTURES



Brillouin diagram
Travelling wave
structure

o L/c

27

S speed of light line,
. w=0/

N

/2

CAS Darmstadt '09
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Iris loaded waveg

11.4 GHz structure (NLC)

30 GHz structure
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Disc loaded structure with strong HOM damping
“choke mode cavity”

Microwave Absorber Water Vessel
SIC Ring Cooling Water

re

Choke Filter

S Trapped
(o | g | Accelerating
Mode

5712 MHz

" Chnke Mode

Electro-platedCopper*
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Power coupling with waveguides

Input coupler
P P shown: Re {Poynting vector}

(power density)

Output coupler

1
E
1
*
L
£
[ ]
E

o ol o = = SR S S-S T,
il laiaiiagipl o
s eri-—i-—l-—l—i-_ L o .

Travelling wave structure
(CTF3 drive beam, 3 GHz)

72 geometry shown




Hz Accelerating structure
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Examples (CLIC structures @ 11.4, 12 and 30 GHz)

ol i .
T M[ i mmua —
“lH m “m “aw !Emme[
= :?ggggEc%?fﬁnmmm .mm"'”""’" ereeeceess _%#

“T18” reached 105 MV/m!
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SUPERCONDUCTING
ACCELERATING STRUCTURES



LEP Superconducting cavities

SUPERCONDUCTING CAVITY WITH ITS CRYOSTAT

Main
coupler

Next ]%
cryostat

Vacuum Helium S.C. Cavity
tank qgas

Cold | | Tank High order
| mode coupler

Cryostat

rJ:acuum
Cavity

vacuum

i e —
- — = — = —— = —%

Slope 1.5%

Liquid Tuning
helium Bars

10.2 MV/ per cavity
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ILC high gradient SC structures at 1.3 GHz

25 -35 MV/m
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Small fsuperconducting cavities (example ria, argonne)

115 MHz split-ring cavity, 172.5 MHz 8 = 0.19 “lollipop” cavity

57.5 MHz cavities:

6=0.06 QWR
(quarter wave resonator)

1

2 ||

345 MHz 8 = 0.4 spoke cavity

6 =0.03 fork cavity

6 = 0.021 fork cavity

12 IN.
|...—E

pictures from Shepard et al.: “Superconducting accelerating structures for a multi-beam driver linac for RIA”, Linac 2000, Monterey



RFQ’S
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Old pre-injector 750 kV DC, CERN
Linac 2 before 1990

All this was replaced by the RFQ ...
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Inac 2

RFQ of CER L

;: SRR

. ,:J,...: :
::EEEE

....-..--.--.--.

72

RF Cavity Design
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The Radio Frequency Quadrupole (RFQ)

Minimum Energy of a DTL: 500 keV (low duty) - 5 MeV (high duty)
At low energy / high current we need strong focalisation
Magnetic focusing (proportional to 8) is inefficient at low energy.
Solution (Kapchinski, 70’s, first realised at LANL):

Electric quadrupole focusing + bunching + acceleration
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RFQ electrode modulation

The electrode modulation creates a longitudinal field component that creates the
“bunches” and accelerates the beam.

BA

mao

¢ "ma
o /,

Modulated vane

AN

\\

minimum distance from axis

Mma maximum distance from axis

moclulation factor
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