RF Cavity Design

Erk Jensen

CERN BE/RF

CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009

CAS Darmstadt '09 — RF Cavity Design

1

Overview

- DC versus RF
 - Basic equations: Lorentz & Maxwell, RF breakdown
- Some theory: from waveguide to pillbox
 - rectangular waveguide, waveguide dispersion, standing waves ... waveguide resonators, round waveguides, Pillbox cavity
- Accelerating gap
 - Induction cell, ferrite cavity, drift tube linac, transit time factor
- Characterizing a cavity
 - resonance frequency, shunt impedance,
 - beam loading, loss factor, RF to beam efficiency,
 - transverse effects, Panofsky-Wenzel, higher order modes, PS 80 MHz cavity (magnetic coupling)
- More examples of cavities
 - PEP II, LEP cavities, PS 40 MHz cavity (electric coupling),
- RF Power sources
- Many gaps
 - Why?
 - Example: side coupled linac, LIBO
- Travelling wave structures
 - Brillouin diagram, iris loaded structure, waveguide coupling
- Superconducting Accelerating Structures
- RFQ's

DC VERSUS RF

DC versus RF

DC accelerator

RF accelerator

Lorentz force

A charged particle moving with velocity through an electromagnetic field experiences a force

$$\frac{\mathrm{d}\,\vec{p}}{\mathrm{d}t} = q\left(\vec{E} + \vec{v} \times \vec{B}\right) \qquad \qquad \vec{v} = \frac{\vec{p}}{m\gamma}$$

The energy of the particle is

$$W = \sqrt{\left(mc^{2}\right)^{2} + \left(pc\right)^{2}} = \gamma mc^{2}$$
$$W_{kin} = mc^{2}(\gamma - 1)$$

Change of *W* due to the this force (work done) ; differentiate: $W dW = c^2 \vec{p} \cdot d\vec{p} = qc^2 \vec{p} \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right) dt = qc^2 \vec{p} \cdot \vec{E} dt$ $dW = q\vec{v} \cdot \vec{E} dt$

Note: no work is done by the magnetic field.

Maxwell's equations (in vacuum)

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = \mu_0 \vec{J} \qquad \nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \qquad \nabla \cdot \vec{E} = \mu_0 c^2 \rho$$

why not DC?

1) DC $(\frac{\partial}{\partial t} \equiv 0)$: $\nabla \times \vec{E} = 0$ which is solved by $\vec{E} = -\nabla \Phi$

Limit: If you want to gain 1 MeV, you need a potential of 1 MV!

2) Circular machine: DC acceleration impossible since

 $\oint \vec{E} \cdot \mathbf{d}\vec{s} = 0$

With time-varying fields:

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t}\vec{B} \qquad \oint \vec{E} \cdot d\vec{s} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

Maxwell's equation in vacuum (contd.)

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = 0 \quad \nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \quad \nabla \cdot \vec{E} = 0$$

curl of 3^{rd} and $\frac{\partial}{\partial t}$ of 1^{st} equation:

$$\nabla \times \nabla \times \vec{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

vector identity:

$$\nabla \times \nabla \times \vec{E} = \nabla \nabla \cdot \vec{E} - \Delta \vec{E}$$

with 4th equation :

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

i.e. Laplace in 4 dimensions

Another reason for RF: breakdown limit

surface field, in vacuum,Cu surface, room temperature

CAS Darmstadt '09 — RF Cavity Design

FROM WAVEGUIDE TO PILLBOX

Homogeneous plane wave

$$\vec{E} \propto \vec{u}_y \cos\left(\omega t - \vec{k} \cdot \vec{r}\right)$$
$$\vec{B} \propto \vec{u}_x \cos\left(\omega t - \vec{k} \cdot \vec{r}\right)$$

 E_y

$$\vec{k} \cdot \vec{r} = \frac{\omega}{c} \left(\cos(\varphi) z + \sin(\varphi) x \right)$$

x

Wave vector \vec{k} the direction of \vec{k} is the direction of propagation, the length of \vec{k} is the phase shift per unit length. \vec{k} behaves like a vector.

Wave length, phase velocity

• The components of \vec{k} are related to the wavelength in the direction of that component as $\lambda_z = \frac{2\pi}{k_z}$ etc., to the phase velocity as $v_{\varphi,z} = \frac{\omega}{k_z} = f \lambda_z$.

Superposition of 2 homogeneous plane waves

Metallic walls may be inserted where $E_y \equiv 0$ without perturbing the fields. Note the standing wave in *x*-direction!

This way one gets a hollow rectangular waveguide

Rectangular waveguide power flow Fundamental (TE_{10} or H_{10}) mode in a standard rectangular waveguide. E.g. forward wave electric field power flow: $\frac{1}{2} \operatorname{Re} \left\{ \iint_{\substack{\text{cross}\\\text{section}}} \vec{E} \times \vec{H}^* \cdot d\vec{A} \right\}$ x power flow colour coding 1.0000e+00 9.0000e-01 8.0000e-01 magnetic field 7.0000e-01 6.0000e-01 5.0000e-01 \boldsymbol{Z} 4.0000e-01 3.0000e-01 2.0000e-01 1.0000e-01 0.0000e+00 х

Waveguide dispersion

e.g.: TE₁₀-wave in rectangular waveguide:

$$\gamma = j \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{\pi}{a}\right)^2}$$
$$Z_0 = \frac{j\omega\mu}{\gamma}$$
$$\lambda_{\text{cutoff}} = 2a$$

general cylindrical waveguide:

$$\gamma = j_{1}\sqrt{\left(\frac{\omega}{c}\right)^{2} - k_{\perp}^{2}}$$

$$Z_0 = \frac{j\omega\mu}{\gamma}$$
 for TE, $Z_0 = \frac{\gamma}{j\omega\varepsilon}$ for TM

In a hollow waveguide: phase velocity > *c*, group velocity < *c*

Waveguide dispersion (continued: Higher Order Modes)

General waveguide equations:

TE (or H) modes

 \vec{n} .

Transverse wave equation (membrane equation):

$$\Delta T + \left(\frac{\omega_c}{c}\right)^2 T = 0$$

TM (or E) modes

boundary condition:

longitudinal wave equations (transmission line equations):

propagation constant:

characteristic impedance:

ortho-normal eigenvectors:

transverse fields:

longitudinal field:

$$\vec{n} \cdot \nabla T = 0 \qquad T = 0$$
ations
itions):

$$\frac{dU(z)}{dz} + \gamma Z_0 I(z) = 0$$

$$\frac{dI(z)}{dz} + \frac{\gamma}{Z_0} U(z) = 0$$

$$\gamma = j \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$$
ce:

$$Z_0 = \frac{j \omega \mu}{\gamma} \qquad Z_0 = \frac{\gamma}{j \omega \varepsilon}$$

$$\vec{r} = \vec{u}_z \times \nabla T \qquad \vec{e} = -\nabla T$$

$$\vec{E} = U(z)\vec{e}$$

$$H_z = \left(\frac{\omega_c}{c}\right)^2 \frac{TU(z)}{j \omega \mu} \qquad H_z = \left(\frac{\omega_c}{c}\right)^2 \frac{TI(z)}{j \omega \varepsilon}$$

Rectangular waveguide: transverse eigenfunctions

$$TE (H) \text{ modes:} \qquad T_{mn}^{(H)} = \frac{1}{\pi} \sqrt{\frac{ab\varepsilon_m \varepsilon_n}{(mb)^2 + (na)^2}} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$

$$TM (E) \text{ modes:} \qquad T_{mn}^{(E)} = \frac{2}{\pi} \sqrt{\frac{ab}{(mb)^2 + (na)^2}} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$$

$$\frac{\omega_c}{c} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

$$Round \text{ waveguide: transverse eigenfunctions}$$

$$TE (H) \text{ modes:} \qquad T_{mn}^{(H)} = \sqrt{\frac{\varepsilon_m}{\pi \left(\chi_{mn}^{''} - m^2\right)}} \frac{J_m \left(\chi_{mn}^{''} \frac{\rho}{a}\right)}{J_m \left(\chi_{mn}^{''}\right)} \left\{ \begin{array}{c} \cos(m\varphi) \\ \sin(m\varphi) \\ \sin(m\varphi) \\ \end{array} \right\}$$

$$TM (E) \text{ modes:} \qquad T_{mn}^{(E)} = \sqrt{\frac{\varepsilon_m}{\pi}} \frac{J_m \left(\chi_{mn} \frac{\rho}{a}\right)}{\chi_{mn} J_{m-1}(\chi_{mn})} \left\{ \begin{array}{c} \sin(m\varphi) \\ \cos(m\varphi) \\ \cos(m\varphi) \\ \end{array} \right\}$$

$$where \qquad \varepsilon_i = \left\{ \begin{array}{c} 1 & for \quad i = 0 \\ 2 & for \quad i \neq 0 \end{array} \right\}$$

Standing wave – resonator

Same as above, but two counter-running waves of identical amplitude.

electric field

٢

no net power flow:

$$\frac{1}{2} \operatorname{Re} \left\{ \iint_{\substack{\text{cross}\\\text{section}}} \vec{E} \times \vec{H}^* \cdot d\vec{A} \right\} = 0$$

colour coding 1.0000e+00 9.0000e-01 8.0000e-01 7.0000e-01 6.0000e-01 5.0000e-01 4.0000e-01 3.0000e-01 1.0000e-01 0.0000e+00

magnetic field (90° out of phase)

Round waveguide

parameters used in calculation: *f* = 1.43, 1.09, 1.13 *f_c*, *a*: radius

 $f_{c} = \frac{87.85}{}$ GHz a/mm TM₀₁: axial electric field

 $f_{c} = \frac{114.74}{114.74}$

 $GHz^{-}a/mm$ CAS Darmstadt '09 — RF Cavity Design TE₀₁: lowest losses!

 $\frac{f_c}{\text{GHz}} = \frac{334.74}{a/\text{mm}}$

19

Ē

electric field

magnetic field

Pillbox cavity field (w/o beam tube)

$$T(\rho, \varphi) = \sqrt{\frac{1}{\pi}} \frac{J_0\left(\frac{\chi_{01}\rho}{a}\right)}{\chi_{01} J_1\left(\frac{\chi_{01}}{a}\right)} \qquad A$$

The only non-vanishing field components :

ACCELERATING GAP

Accelerating gap

- We want a voltage across the gap!
- It cannot be DC, since we want the beam tube on
- $\oint \vec{E} \cdot d\vec{s} = -\iint \frac{d\vec{B}}{dt} \cdot d\vec{A}$
- The "shield" imposes a
 - upper limit of the voltage pulse duration or
 - a lower limit to the usable frequency.
- The limit can be extended with a material which
- Materials typically used:
 - ferrites (depending on *f*-range)
 - magnetic alloys (MA) like Metglas®, Finemet®,
- resonantly driven with RF (ferrite loaded cavities) - or with pulses (induction cell)

Ferrite cavitv

Gap of PS cavity (prototype)

Drift Tube Linac (DTL) – how it works

For slow particles ! E.g. protons @ few MeV

The drift tube lengths can easily be adapted.

electric field

Drift tube linac – practical implementations

Transit time factor

If the gap is small, the voltage $\int E_z dz$ is small.

If the gap large, the RF field varies notably while the particle passes.

CHARACTERIZING A CAVITY

Cavity resonator – equivalent circuit

Simplification: single mode

CAS Darmstadt '09 — RF Cavity Design

Resonance

Reentrant cavity

Nose cones increase transit time factor, round outer shape minimizes losses.

Nose cone example Freq = 500.003

Beam loading – RF to beam efficiency

- The beam current "loads" the generator, in the equivalent circuit this appears as a resistance in parallel to the shunt impedance.
- If the generator is matched to the unloaded cavity, beam loading will cause the accelerating voltage to decrease.
- The power absorbed by the beam is $-\frac{1}{2} \operatorname{Re} \left\{ V_{gap} \ I_B^* \right\}$ the power loss $P = \frac{\left| V_{gap} \right|^2}{2 R}$.
- For high efficiency, beam loading shall be high.
- The RF to beam efficiency is $\eta = \frac{1}{1 + \frac{V_{gap}}{D + I_{gap}}} = \frac{|I_B|}{|I_G|}$
Characterizing cavities

- Resonance frequency
- Transit time factor

field varies while particle is traversing the gap

Circuit definition

• Shunt impedance gap voltage – power relation

 $\left|V_{gap}\right|^2 = 2 R_{shunt} P_{loss}$

Linac definition

$$\left. V_{gap} \right|^2 = R_{shunt} P_{loss}$$

• *Q* factor

 $\omega_0 W = Q P_{loss}$

R/Q independent of losses – only geometry!

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{2\,\omega_0 W} = \sqrt{\frac{L}{C}}$$

 $k_{loss} = \frac{\omega_0}{2} \frac{R}{Q} = \frac{\left| V_{gap} \right|^2}{4 W}$

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{\omega_0 W}$$

 $k_{loss} = \frac{\omega_0}{4} \frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{4W}$

loss factor

Example Pillbox:

$$\omega_0|_{pillbox} = \frac{\chi_{01} c}{a}$$

 $Q|_{pillbox} = \frac{\sqrt{2a\eta\sigma\chi_{01}}}{2\left(1 + \frac{a}{h}\right)}$

$$\chi_{01} = 2.4048$$

$$\eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \,\Omega$$
$$\sigma_{\rm Cu} = 5.8 \cdot 10^7 \,\mathrm{S/m}$$

$$\frac{R}{Q}\Big|_{pillbox} = \frac{4\eta}{\chi_{01}^{3}\pi J_{1}^{2}(\chi_{01})} \frac{\sin^{2}(\frac{\chi_{01}}{2}\frac{h}{a})}{h/a}$$

Higher order modes

Higher order modes (measured spectrum)

Pillbox: Dipole mode (TM110)

(only 1/8 shown)

electric field (@ 0°)

magnetic field (@ 90°)

Panofsky-Wenzel theorem

For particles moving virtually at v=c, the integrated transverse force (kick) can be determined from the transverse variation of the integrated longitudinal force!

$$\mathbf{j}\frac{\boldsymbol{\omega}}{c}\vec{F}_{\perp} = \nabla_{\perp}F_{\parallel}$$

Pure TE modes: No net transverse force !

Transverse modes are characterized by

- \cdot the transverse impedance in ω -domain
- the transverse loss factor (kick factor) in *t*-domain !

W.K.H. Panofsky, W.A. Wenzel: "Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields", RSI 27, 1957]

CERN/PS 80 MHz cavity (for LHC)

Higher order modes

Example shown: 80 MHz cavity PS for LHC. Color-coded:

357.9 MHz, m=3

376.8 MHz, m=2

387.8 MHz, m=1

255.6 MHz, m=0

418.5 MHz, m=4

292 MHz, m=2

422.9 MHz, m=3

337.5 MHz, m=1

481.0 MHz, m=1

344.5 MHz, m=0

MORE EXAMPLES OF CAVITIES

PS 19 MHz cavity (prototype, photo: 1966)

Examples of cavities

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping,

LEP normal-conducting Cu RF cavities, 350 MHz. 5 cell standing wave + spherical cavity for energy storage, 3 MV

CERN/PS 40 MHz cavity (for LHC)

example for capacitive coupling

cavity

RF POWER SOURCES

RF Power sources

> 200 MHz: Klystrons

Thales TH1801, Multi-Beam Klystron (MBK), 1.3 GHz, 117 kV. Achieved: 48 dB gain, 10 MW peak, 150 kW average, $\eta = 65$ %

dB: $\frac{output \ power}{input \ power} = 10^{4.8}$

< 1000 MHz: grid tubes

UHF Diacrode

pictures from http://www.thales-electrondevices.com

RF power sources

Example of a tetrode amplifier (80 MHz, CERN/PS)

400 kW, with fast RF feedback

18 Ω coaxial output (towards cavity)

22 kV DC anode voltage feed-through with $\lambda/4$ stub

tetrode cooling water feed-throughs

MANY GAPS

What do you gain with many gaps?

- The R/Q of a single gap cavity is limited to some 100 W. Now consider to distribute the available power to n identical cavities: each will receive P/n, thus produce an accelerating voltage of $\sqrt{2RP/n}$.
 - The total accelerating voltage thus increased, equivalent to a total equivalent shunt impedance of nR.

Standing wave multicell cavity

- Instead of distributing the power from the amplifier, one might as well couple the cavities, such that the power automatically distributes, or have a cavity with many gaps (e.g. drift tube linac).
- Coupled cavity accelerating structure (side coupled)

• The phase relation between gaps is important!

Example of Side Coupled Structure

LIBO (= Linac Booster)

A 3 GHz Side Coupled Structure to accelerate protons out of cyclotrons from 62 MeV to 200 MeV

Medical application: treatment of tumours.

Prototype of Module 1 built at CERN (2000)

Collaboration CERN/INFN/ Tera Foundation

LIBO prototype

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)

TRAVELLING WAVE STRUCTURES

Iris loaded waveguide

Disc loaded structure with strong HOM damping "choke mode cavity"

Power coupling with waveguides

3 GHz Accelerating structure

Examples (CLIC structures @ 11.4, 12 and 30 GHz)

SUPERCONDUCTING ACCELERATING STRUCTURES

LEP Superconducting cavity with its cryostat

LHC SC RF, 4 cavity module, 400 MHz

ILC high gradient SC structures at 1.3 GHz

Small β superconducting cavities (example RIA, Argonne)

115 MHz split-ring cavity,

172.5 MHz θ = 0.19 "lollipop" cavity

pictures from Shepard et al.: "Superconducting accelerating structures for a multi-beam driver linac for RIA", Linac 2000, Monterey

RFQ'S

Old pre-injector 750 kV DC , CERN Linac 2 before 1990

All this was replaced by the RFQ ...

RFQ of CERN Linac 2

The Radio Frequency Quadrupole (RFQ)

Minimum Energy of a DTL: 500 keV (low duty) - 5 MeV (high duty) At low energy / high current we need strong focalisation Magnetic focusing (proportional to β) is inefficient at low energy. Solution (Kapchinski, 70's, first realised at LANL):

Electric quadrupole focusing + bunching + acceleration

RFQ electrode modulation

The electrode modulation creates a longitudinal field component that creates the "bunches" and accelerates the beam.

A look inside CERN AD's "RFQ-D"

