
Introduction to Transverse  Beam Optics II
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I.  Reminder: the ideal world
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Beam parameters of a typical

high energy ring:     Ip = 100 mA

particles per bunch: N ≈ 10 11

The Beta Function

... question: do we really have to calculate some 1011 single particle trajectories ?

Example: HERA Bunch pattern
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general solution of Hills equation:

* ε is a constant of the motion  … it is independent of „s“

* parametric representation of an ellipse in the x x‘ space

* shape and orientation of ellipse are given by α, β, γ

equation of motion:
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Beam Emittance and Phase Space Ellipse



13.) Liouville during Acceleration
x´

xBeam Emittance corresponds to the area covered in the 

x, x´ Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ...  ε ≠ const !

Classical Mechanics: 

phase space = diagram of the two canonical variables 

position &  momentum
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II ... the not so ideal world



According to Hamiltonian mechanics: 

phase space diagram relates the variables q and p

Liouvilles Theorem: p dq const

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

xdx dx dt
x

ds dt ds
where βx= vx / c

1
x dx

the beam emittance 

shrinks during 

acceleration   ε ~ 1 / γ

q = position = x

p = momentum = γmv = mcγβx
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Nota bene:

1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!!

as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes.

2.) At lowest energy the machine will have the major aperture problems, 

 here we have to minimise

3.) we need different beam 

optics adopted to the energy: 

A Mini Beta concept will only 

be adequate at flat top. 

ˆ

LHC injection 

optics at 450 GeV

LHC mini beta 

optics at 7000 GeV



Example: HERA proton ring

injection energy: 40 GeV        γ = 43

flat top  energy: 920 GeV        γ = 980

emittance ε (40GeV)   = 1.2 * 10 -7

ε (920GeV) = 5.1 * 10 -9

7 σ beam envelope at E = 40 GeV 

… and at E = 920 GeV



Linear Accelerator

1928, Wideroe

+ + + +-̶ -̶-̶

* RF Acceleration: multiple application of 
the same acceleration voltage;
brillant idea to gain higher energies 
... but changing acceleration voltage

Energy Gain per „Gap“:

tUqW RFsin0

500 MHz cavities in an electron storage ring

drift tube structure at a proton linac

14.) The „ Δp / p ≠ 0“ Problem 



Problem: panta rhei !!!
(Heraklit: 540-480 v. Chr.)
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15.) Dispersion:    trajectories for Δp / p ≠ 0 
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Force acting on the particle

… but now take a small momentum error into account !!!
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Dispersion:

develop for small momentum error
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Momentum spread of the beam adds a term on the r.h.s. of the equation of motion.

 inhomogeneous differential equation.

xk
p

p
xk

p

eB

p

px
x *

1
**

)(
*

00

0

0

2

1



2

1 1
( )

p
x x k

p

general solution:
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Dispersion function D(s) 

* is that special orbit, an ideal particle would have  for Δp/p = 1

* the orbit of any particle is the sum of the well known xβ and the dispersion

* as D(s) is just another orbit it will be subject to the focusing properties of the lattice 
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Closed orbit for Δp/p > 0
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Example: homogenous dipole field
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Example HERA 
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Amplitude of Orbit oscillation 

contribution due to Dispersion ≈ beam size

Calculate D, D´
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Example: Drift
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Dispersion is visible

HERA Standard Orbit

dedicated energy change of the stored beam

 closed orbit is moved to a  
dispersions trajectory

HERA Dispersion Orbit

Attention: at the Interaction Points 

we require D=D´= 0 



16.) Momentum Compaction Factor:

The dispersion function relates the momentum error of a particle to the horizontal 

orbit coordinate.
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inhomogeneous differential equation

general solution

But it does much more:

it changes the length of the  off - energy - orbit !!

ρ



ρ

dsx

dl

design orbit

particle trajectory

particle with a displacement x to the design orbit

 path length dl ... 
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circumference of an off-energy closed orbit
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* The lengthening of the orbit for off-momentum 

particles is given by the dispersion function 

and the bending radius.
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Question: what will happen, if you do not make too 

many mistakes and your particle performs 

one complete turn ?

17.) Tune and Quadrupoles
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Definition: phase advance 

of the particle oscillation 

per revolution in units of 2π

is called  tune
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Quadrupole Error in the Lattice

optic perturbation described by thin lens quadrupole

0

rule for getting the tune

Quadrupole error  Tune Shift

ideal storage ringquad error
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remember the old fashioned trigonometric stuff and assume that the error is small !!!

1

and referring to Q instead of ψ:
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a quadrupol error leads to a shift of the tune:

! the tune shift is proportional to the β-function at the quadrupole

!!  field quality, power supply tolerances etc are much tighter at places where β is large

!!!   mini beta quads: β ≈ 1900

arc quads: β ≈ 80

!!!! β is a measure for the sensitivity of the beam

Example: measurement of β in a storage ring:
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18.) Chromaticity: 

A Quadrupole Error for Δp/p ≠ 0

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p

dipole magnet

focusing lens
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definition of chromaticity:
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Chromaticity: Q'

in case of a  momentum spread:

… which acts like a quadrupole error in the machine and leads to a tune spread:
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Problem: chromaticity is generated by the lattice itself !!

ξ is a number indicating the size of the tune spot in the working diagram, 

ξ is always created if the beam is focussed 

 it is determined by the focusing strength k of all quadrupoles

k = quadrupole strength

β = betafunction indicates the beam size … and even more the sensitivity of  

the beam to external fields

Example: HERA

HERA-p:      Q' = -70 … -80

Δ p/p = 0.5 *10-3

Q = 0.257 … 0.337

Some particles get very close to 

resonances and are lost 
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Sextupole Magnets: 

Correction of Q':

1.) sort the particles acording to their momentum ( ) ( )D
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Chromaticity in the FoDo Lattice
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remember ...
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contribution of one FoDo Cell to the  chromaticity of the ring:

using some TLC transformations ... ξ can be expressed in a very simple form:
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question: main contribution to ξ in a lattice … ?

Chromaticity

interaction region
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19.) Resume´:
1

beam emittance: 

2

0 0 0( ) 2s s s

2

0

0

( )
s

s

beta function in a drift:

… and for α = 0 
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