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Feedback

Feedback is a mechanism that influences a system by looping back an output to the input

a concept which is found in abundance in nature

and essential to regulate the processes in any form of life

Feedback systems in
engineering

1788 Watt

adopted an automated regulation mechanism using a
centrifugal (fly-ball) governor to control a steam engine,
using the angular speed to manipulate a valve for the steam

published an analysis of Watt’s centrifugal governor

1868 Maxwell
mathematical analysis of a feedback system

1876 Vyshnegradskii independently analyzed
stability of steam engine

governor stability
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Contents and Objectives
of this lecture

What is a system, what means feedback ?

What are the purposes of feedback systems ?

recap the mathematical tools to analyze system behavior
criteria for the stability of closed loop feedback systems

steps in designing feedback systems



System input

time domain x(2)

N

System

G(s)

7

Laplace domain X(s)

System output

y(2)

N
7

Y(s)=G(s)- X(s)

G(s) called transfer function

characterized by a fixed rule determining an evolution in time of the output

deterministic, output can be calculated from input and initial state

non linear systems can be linearized in the vicinity of a “working point”

Linear-Time-Invariant systems (LTI systems)
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Control

_ Plant
input output
time domain x(2) R G(s) y(?)
Laplace domain  y .
(s) Y(s) = G(s)- X(s)

control theory tells us how

to influence the output of a system referred to as p/ant

plant can be: steam engine, living cell, your home (temperature),
ship crossing a river, particle beam trajectory
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Ways to Control

open loop input output
(simple) J| plant S

7

(but) requires
precise knowledge of plant

> plant L >

anticipate, requires
alternate means of
influencing output

feed forward

> FF

coTTTTTTTm o ! feed back means

I I influencing the system

—>0 > plant —> output by acting back on
feedback ! 1- : the input

I |

| 1

! ' new system !

! FB |« ! new properties ?

| |

! W Heefle—feadhaeidsystems ! ©




[Inventing the
negative feed back amplifier

H. S. Black, ki tube CP\
. S. Black, working at S o 5 5
Bell labs in the 1920’s amplifier 4
on looking for a way to Black patented a
improve the linearity and feed forward
bandwidth of vacuum tube R FF scheme in 1928
amplifiers -

I

tube

N

>0 5 amplifier

patent for negative
FB amplifier in
1932 (H.S. Black)

contributing to feedback
control theory at Bell labs:
Nyquist, Bode

z7!
os)
A
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Feedback model

model
uncertainties

system output

plant system input
disturbance dynamic system
- “plant”
control tracking
signal error
actuator | controller
_I_
reference

purpose of feedback control:

®cancel plant imperfections

®precise tracking of reference parameters
®stabilize a (potentially) unstable system
®reduce the effect of disturbances
®render output insensitive to model uncertainties
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Closed loop transfer function

plant

X(s) Y(s)
system input system output
>(O- - GEs) >
N
-or +
F(s) <
feedback
without feedback Y(s)=G(s)X(s) feedback
A

fclosedl l !
output of closed loop Y(s) = G(s) X (s)— G(s)F(s)Y (s)
closed loop transfer function G, (s) = Y(s) = G(s)

X(s) 1+G(s)F(s)

open 100p transfer function GOL = G(S)F(S) negative feedback (sign convention)

- or + depending on sign convention
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Let’s recap the tools

LTI systems described by differential equations (continuous-time domain)
or difference equations (discrete-time domain)

solving equations subject to initial conditions using

Laplace transform, transfer function F(s) in s-domain
complex frequency s = c+jo, for continuous-time domain signals and systems

z-transform for discrete-time domain signals and systems

1952 Ragazzini & Zadeh

Fourier transform, continuous and discrete

description in frequency domain by the response to a sinusoidal input
concept of transfer function #(w), amplitude and phase,
for purpose of system characterization by measurement



iyl

Fourier transform

/\ /\ /\ o—e %5(a)+a)0) T T %5(a)+a)o)

VU

IR -~

F(w) = f f)e ™ dt

/ \\)

f(¢) = cos(w,t) o—e F(w) :%[5(a)+a)0)+5(a)—a)0)]

\//

1) = %]:F(w) e d gy
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Laplace transforms

functions are zero for t<0

-

VUV

—

£(t) = cos(ey)

\

£>0 f(t):ij

o, X

e
\

)

o ®

Zero

o—e

—Jay,

J

pole

complex frequency

o S=o0+jw
F(s) = j ft)edt
0
\\—a
S
o—e F(S): > >
s°+ w;
ot+jw
j F(s)e"ds
o-jw
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Laplace transform - rules

step function u(?), 1 o—e E
delta function 5(t) o—e i
scaling f(at) oO—e %F(ij a>0
1t shift rule (frequency) e f(f) o—e F(s+a)
21d shift rule (time) f(t—a) o—e e“F(s) a>0
differentiation 1t derivative f (1) o—e sF(s)—f(+0)
differentiation 2"4 derivative 7(t) o—e s°F(s)— f(+0)s— £(+0)
integration j f(z)dr oO—e %F (s)

0



Second order system - free oscillation

solving differential equations using the Laplace transform

differential equation initial conditions (for example)
(free oscillation)
y(+0) =0
$—2a-j+amty =0 »(+0)=1

2 2 | /() O—@ s (s)-/(+0)
S Y—l—sZaY+a)0Y=O 1) o—e@ s2F(s)—sf (+0) — £ (+0)

1
s =205+

1 :
y= e“"sm(w/a)j—azt)

2 2

Y =

un-damped oscillation for ,, < 0



Second order system - transfer function

, System input System output
y=-2a-y+myy=x(i) x(t)=0(7) () 0
— 5| G(s) S
o5()o—e 1 X(s)
1 (t) Y(s) =G(s)- X(s)
G(s) = 2 2
s°—=2a -5+ w;
. : jo
The transfer function G(s) describes ®
the response of the system to a d(t) signal input Wap-a’ X
(24
(o)
—j\t —a’
poles s:—2a-s, +a; =0 se=atjo; —a
1 L i ( 7 2 ) in ri
— a _ oles in right half plane -> unstable
y=—T=——¢€ sinlyo, —a’’ p .g p .
Ny — A a small disturbance will grow
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Analyze and design a feedback

model
uncertainties
d(1) x(f) ¥(?)
plant System input System output
disturbance dynamic system R
I 7 llplant" -
control tracking A sensor
signal error noise
actuator |, controller _ sensor ¢
w(t) e(t) n(t)
_|_
r(t
\ ) )
|
“Feedback”
objective ? identify plant what are input & outputs ?
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Design a feedback: longitudinal feedback

What do you want to achieve ? 2 damp longitudinal instability

identify plant

beam:

synchrotron oscillation of the
centroid of a bunch in a bucket

!

beam= dynamic

what are input & outputs ? system “plant

How to sense output ? Sensor phase pick-up
How to act on input ? actuator cavity, longitudinal kicker
What type of controller ? | controller Let's try !
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Restoring stability by feedback

differential equation example:

y-2a-y+a,y=x(t)

1

beam (bunched) longitudinal instability
plant: model of beam synchrotron motion (centroid)

o >0 beam unstable without feedback

G(s)=—

s°—2a-

2
s+ w;

choose a feedback transfer function (educated guess)

F(s) = Ks K >0 “velocity” feedback
feedback proportional to differentiated output
G(s) 1 1 1
GCL (S) = = 2 2 K = 2 2
1+G(s)Ks  s"—2a-s+awy | 1, s s°+(K -2a) s+ o

s —20-5+ @]



Restoring stability by feedback

1 closed loop transfer function
s°+(K -2a) s+ o

GCL —

K .
poles %4 (K —2qa)-s5, +w? =0 Sy :—?+aij\/a)§ ~(a-K12)

(—§+a,j\/a)§—(a—K/2)2j jo ®

poles of resulting transfer X&\ \/ (a’ i - az)

function moved by feedback A
(24

into left half plane for K/2>a

(o2
K [ 2
amount of damping can be (_EJr“’_Ma’O ~(e-K/2) j - ::: _
adjusted by the gain of the <« (0‘1_1 2 _“2)
feedback X

poles in left half plane if K/2 > «

note: feedback does not table. d d lati
influence the zeros of the stable, damped oscitiation

transfer function
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Elementary building blocks (1)

Very often plant and feedback can be characterized
or approximated by transfer functions which are x(1) G ()

. . (s) >
rational functions of s.

X(s)
Y(s)=G(s) - X(s)
differential equation  transfer function impulse response step response

P () =K-x(t) G(s)=K () =K -5(1) y() =K -u(?)

Delay (@) =x(t=T) G(s) —eT y()=0(@-T) (@) =u(t-T)
- 2 —tIT

PT y+1y=x G(s) = 4 y(t)y=Te"" y(t)—T(l_et )
T sT+1
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Elementary building blocks (2)

x(1) (0
J o F(s) .
X(s)

Y(s)=G(s) - X(s)

differential equation transfer function
D y(t) = K - x(¢) F(s)=sK
1 sKT
PDT 4=y =K% F(s) =
Y T Y (5) sT+1
t 1
Ly =K[x(r)dz F(s)=-K
S
0
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Composing building blocks

x(?) y()

—>s|  F(s) >
_ X(s)

transfer function Y(s)=G(s)- X(s)

P-1-DT F(s)= K+1K vk, ST
sT+1

basic control, but offset

> K,
precision, but over shoot

1 K/
> — K2 >

S

reduces overshoot
sT —
K, a—
sT+1
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Negative feedback amplifier with delay

G = const. X (s)

System input
feedback transfer function y P

F(s)=Ke™" -

closed loop transfer function

G
G. =
“ 1+G-Ke

plant Y (s)
\ System output
G(s) S
/ if GK >>1
and 7 _,
F(s) |e
1
Gy = —
feedback K

poles: =%Iog(GK)+ jM

locus of open loop transfer function for s=jw

yjo
. ®
GK <1 !
- N’ GK >1
J_X ______ Y.
T s
=
_jz_"____x_"___f‘t{"\___GK:1 o
T i ‘I poles on
imaginary axis

GK=1 A Im{Gy, | @
e \\\
T w \
o F— \
U T \\//' w=0
i 1
-1\ \/GK £1 Re{GOL}
\ /
\ /

N s
Sl -- Nyquist plot
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Negative feedback amplifier with delay
stability restored

G = const.

feedback transfer function

lant
F(s)=K———e X(s) P (s)
1+sT, System input \ System output
>f\ > G(S) >
closed loop transfer function -
N
“ 1+GF F(s) |e
G. — G feedback
CL — 1
1+ G-Ke™"
1+sT,
poles: transcendental equation = look at plot of Gy, = 1 G- Ke*n
open loop transfer function 1+57,
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Nyquist plot and criteria

Nyquist plot:
2 T T T T T
open loop transfer function
for s=jw r
0_
G, =— 2t _G.Ke*h 3
1+ sT, S -t
=
closed loop 2
G 3r
G =
1+ G,
_i|.3
I dp=0 —> unstable
=0
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Nyquist plot and criteria

Nyquist plot:
2 T T T T T T
open loop transfer function
for s=jm r
0_
1 ST ~
Gy = G-Ke™* 0
1+ 57, 5 -1
£
closed loop T
G -3
G = 1
+ G
. U ST S B S
reaI(GOL)
Idgo =0 - stable For stability the point (-1, 0) must
=0

always lie left of locus when followed 4 — o
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Example: Transverse feedback in SPS
(coupled bunch feedback)

P

Bunch on

turn n=1 Ax'
X X

Bunch on K !

turn n=1

Bunch on / AX'
turn n=0 Bunch on
area nJ

area ndJ turn n=0

at pick-up at kicker



Example: Transverse feedback in SPS
(coupled bunch feedback)

q fractional tune

spectrum n(1-q)
' "

1111

n n+1

f/ﬁev

each line is a harmonic oscillator
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Example: Transverse feedback in SPS
(coupled bunch feedback)

model of beam due to sign definition

(harmonic oscillator) Nyquist plot: in meafurer.nent the |
X (s) Y(s) G - CF pnstab e pglr}llt ;o ?fvo;d
_>SR-_> G(s) S oL is here in right half plane
A F© |«
open loop, insert feedback

network analyzer
choice of pick-up/kicker location
—> stable

1+7-s "+l Os+a} s°+w,] 0,5+’

|
| .
two second order all-passes open loop transfer function measurement by
kicker transfer p network analyzer -G(s)F(s), SPS vertical TFB

function t=35.4 ns s correctors (electronics) (sweep from 19.5 to 19.6 MHz)
-3dB @ 4.5 MHz extend stable region to 20 MHz

F(s)=

Exact treatment for high gain requires z-transform (sampled system, once per turn)
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negative feedback example: RF cavity

model
uncertainty:
cavity tune
I5(7) I, (1) Y V(1)
plant System input System output
disturbance RF cavity R
g g impedance i
15(2)
control tracking v
signal [delay + error
power, 5 cgrigensating probe to
amplifier < w(t) Hetworks < e(t) - gi?g;g‘zl q
_I_

V()
purpose of above feedback control for cavity:
®precise setting of accelerating voltage
®reduce the effect of disturbances (beam induced voltage)

®Render the system insensitive to small model uncertainties
(resonant frequency of cavity, shunt impedance)
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Equivalent circuit of RF cavity feedback

Vref

reference

GZ, ~VpGZ, 2 Jre | ]2

feedback controller

B Attenuation
and delay Vv

plant
disturbance

V=1gZ +V Z = Z K
Z+R;

5 ZL + " GZL N v AN v A —— —

1+ ﬂGZL 1+ 'BGZL Driver amplifier Grid Final amplifier Cavity Beam

3xYL1056 resonator RS1084CJ
plant
\ J
|

actuator, gain G [ampere/volt]

Cavity feedback equivalent circuit (CERN PS)




Reduction of effect of plant disturbance

Z, GZ,
B +Vref
1+ pGZ, 1+ pGZ,

pGZ, >>1 3
Vzlei”/refi
pG B

f [MHz]

In the limiting case of large feedback gain Beam impedance reduction

beam impedance only depends by cavity feedback (CERN PS)
on feedback and amplifier gain ! [shown on a relative scale]
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Where to find feedback systems
in accelerators

magnet current regulation

direct RF feedback around accelerating cavity teadback] losed ) _ .
eedback loop closed around equipmen

DC beam current transformer

orbit, tune, chromaticity feedbacks

RF control loops (beam phase and radial feedbackloop) L.  feedbackloop closed around beam

transverse and longitudinal coupled bunch feedbacks

—

Feed forward also used to control and reduce the effect of disturbances in accelerators:

® adaptive trajectory control in a transfer line (pulse to pulse)
® RF cavity feed forward from measured beam current, turn-by-turn

Existing poles of a system response are not influenced by feed forward,
only by feedback !
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Summary

What is a system, what means feedback ?

What are the purposes of feedback systems ?
mathematical tools to analyze system behavior

criteria for the stability of closed loop feedback systems
steps in designing feedback systems

examples, feed forward versus feedback
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