Cancer Therapy Using Ion Accelerators

Thomas Haberer Heidelberg Ion Therapy Center Cern Accelerator School 2009

Rationale / Physics

Increased Relative Biological Effectiveness radiation induced myelopathy in rats after 2 carbon fractions

Dose [Gy]

Debus, Karger, Peschke, Scholz, ... Rad. Res. 2003

The key element to improve the clinical outcome is **IOCAL CONTROL!**

275 MeV/u ¹²C in Water, 3mm FWHM

entrance channel:

- low physical dose
- low rel. biol. effiency

tumour:

- high physical dose
- high rel. biol. effiency

Standard Approach

- Facilities being built at existing research accelerators
- Fixed energy machines with moderate flexibility (if at all)
- Dose delivery not exactly tumor-conform

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

Ernest Orlando Lawrence Nobel Prize 1939

184 inch Cyclotron @ LBL 1947 / 1986

Passive Dose Delivery

Standard / System + Dose Distr.

Distal edge shaping using a bolus pulls dose back into healthy tissue

Situation / Clinical Centers

- In 1994 the first dedicated clinic-based facilities, LLMUC (protons) and HIMAC (carbon), started
- Nowadays more than 50 proton treatment protocols are approved and reimbursed in the US
- LLUMC treats up to
 180 patients per day

Heavy Ion Medical Accelerator, Chiba, Japan

Requirement engineering

Application

treatment of tumors with ion beams (conform, precise)

1st level requirements

dose deposition in patient → dose delivery at isocenter

2nd level requirements

beam application system

3rd level requirements

accelerator specifications
 beam application system

accelerator requirements: interface to scanning system

Dose Delivery Concept @ GSI/HIT

Idea:

Dose distributions of utmost tumor conformity can be produced by superimposing many thousands Bragg-peaks in 3D.

Sophisticated requirements concerning the beam delivery system, the accelerator, the treatment planning, QA, ... result from this approach.

Realization:

Dissect the treatment volume into thousands of voxels. Use small pencil beams with a spatial resolution of a few mm to fill each voxel with a precalculated amount of stopping particles taking into account the underlying physical and biological interactions.

⇒ Extreme intensity modulation via rasterscanning

Protons (Pedroni et al., PSI): spot scanning gantry 1D magnetic pencil beam scanning plus passive range stacking (digital range shifter)

Ions (Haberer et al., GSI): raster scanning, 3D active, 2D magnetic pencil beam scanning plus active range stacking (spot size, intensity) in the accelerator

Beam Scanning

Th. Haberer, Heidelberg lontherapy Center

Single beam...

+ scanning in depth

(lateral scanning

= 3d conformed dose)

Active / Fluence Distribution

Fluence distribution of a single slice through the target volume

Accelerator requirements

- scanning ready pencil beam library:
 - energy: up to 30 cm WE, ~1 mm steps, ∆E/E ~1%
 p: 48 200 MeV, C: 88 430 MeV/u
 - spot sizes: 4 10 mm (3-4 steps), 2D Gaussian
 - intensity: ~10¹⁰ (p), ~10⁸ (C) per spill
 - ~ 100.000 combinations
- beam purity
- several quasi parallel particle types
 <u>– change of particle type < 60 s</u>
- availability ~95%
- low operational & maintenance cost

The Proton Data Base for HIT

K. Parodi and A. Mairani, (HIT and FLUKA Collaboration)

Hetabase Invested Winnegets Cardon

Proton-Synchrotron, Shizuoka, Japan

Cyclotron-based

Cyclotron-based

Economic requirements

- change of particle type < 60 s (dead time)
- change of treatment room < 30 s (dead time)
- number of treatment rooms ← utilization of accelerator
- 300 days per year, 16 hours per day
- ~1-2 min per treatment field (~1I, ~1-2 Gy) (target fraction duration: 15 min incl. 4 min beam)
- initial cost
- operational & maintenance cost

Scanned Carbon vs. Intensity Modulated Photons

scanned carbon 3 fields

IMRT 9 fields

reduced integral dose steeper dose gradients less fields increased biological effectiveness

courtesy O. Jäkel, HIT

Therapy @ GSI

Process

- patient immobilization
- 3D-imaging (CT, MRI, PET, ...)
- definition of target volume + organs at risk
- definition of treatment modality
- dose calculation + treatmentplan evaluation
- patient positioning
- treatment
- follow-up

Stereotactic Immobilization

- couple a coord.system to the body
- localizer with fiducials
- calculate stereotactic coordinates for the target

Th. Haberer, Heidelberg lonth

Treatment Planning

←today: 3D data set, density correction, ...

Gross Tumor Volume (GTV): klinisches manifestes Tumorvolumen

Clinical Target Volume (CTV) = GTV + subklinisches Tumorvolumen

Planning Target Volume (PTV) = CTV+Sicherheitssaum (z.B. Bewegungen

Treated Volume: Behandlungsvolumen, z.B. D > 90%

Irradiated Volume: Bestrahltes Volumen, z.B. D > D_{significant}

Th. Haberer, Heidelberg lonthera

Treatment Planning

Th. I

Pencil Beam Position

- position of the pencil beam depends on the beam energy and the beam spot size
- check the position and width at the iso-center using a tungsten sphere in front of a X-ray film

200

350

QA / Rasterscansystem

homogeneity of 2d dose distributions

QA / Rasterscansystem

verification of depth-dose distributions

Th. Haberer, Heidelberg Ion

Patient Positioning

- alignment with the room laser system
- setting of the stereotactic coordinates

Position Verification

- comparison of X-ray image with a digitally reconstructed X-ray image (source: planning CT)
- accuracy at the base of the scull 1-2 mm (Karger 2001, IJROBP)

Combined photon and carbon ion RT for adenoid cystic carcinomas clinical phase I/II trial

Treatment parametersPhoton IMRT54 Gy to the CTV

÷

carbon ion boost

18 GyE (6x3.0 GyE) to the GT\

FSRT / IMRT vs FSRT / IMRT+C12 : locally advanced adenoidcystic carzinoma

Heidelberg University Hospital

Heidelberg Ion Therapy Center

- compact design
- full clinical integration
- rasterscanning only
- low-LET modality: Protons (later He)
- high-LET modality: Carbon (Oxygen)
- ion selection within minutes
- world-wide first scanning ion gantry
- > 1000 patients/year
 > 15.000 fractions/year
- integrated R+Dinfrastructure

Some Facts

- Effective area
- Concrete 30.000 tons
- Constructional steel 7.8
- Capital Investment
- 30.000 tons 7.500 tons

5.027 m²

106 M€

Start of construction:November 2003Completion of building and acc.: June 2006Accelerator settings established: April 2008First patient planned:2nd half of 2009

Project Partners:

- University pays, owns and operates the facility
- GSI built the accelerator
- Siemens supplies all components related to patient environment
- GSI, DKFZ, Siemens ... are research partners

Hebbling Investor/Unrepte Century

HIT Accelerator System

Injector

Synchrotron

HEBT+Gantry

Medical Areas

HIT / Linac

Cooperation: GSI + IAP@ Univ. Frankfurt/M.

intensity variation (1000-times) constant

beam parameter

compact

design

fast

HIT / Synchrotron

- compact design
- proven technology
- multiturninjection => high intensities

Trigger only use C2

- rasterscanning optimized, extremely flexible beam extraction
- fast variation of energy (range)

RF-KO-Extraction

Principle

- resonant HF-excitation (betatron frequency)
- constant separatrix
- Characteristcs
 - slow extraction
 - constant ion-optical settings dring extraction
 - Multiple extractions available
 - Spillshaping via amplitude modulation

Synchroton/HEBT Commissioning

1. Turn in Synchrotron: Febr. 2007
1. Beam in Cave: March 2007

Daily ACC-QA, March 2009

Heisbelaus Investis/Alfrendes Chadrum

Accelerator Status

- **Sources, injector and synchrotron** fully commissioned for protons, carbon and oxygen (256 energies each)
- H1 / H2: pencil beam libraries (E F I) for protons and carbon in therapeutical quality reached in April, 2008
 outstanding beam quality: very high position and focus stability, small intensity fluctuations
- R+D-cave: protons, carbon and oxygen energy libs established
- Gantry: proof of principle for protons and carbon (representative settings in the full phase space (E F I α))
- To do: intensity upgrade (x3) under way (sources, LEBT, RFQ)
- Operation scheme:

2007: 24 h / 5 days

2008ff: 24 h / 7 days, 330 days, 2 shutdowns 14 days each

• Availability of the pencil beams @ H1/2: ≈ 98%

Advantages of a synchrotron

- It works and fulfills all requirements.
- proven technology
- stable & reliable operation
- built-in flexibility (particle types, energy, timing)
- active energy variation
 - maximum beam purity
 - minimum radiation protection effort

Disadvantages of a synchrotron

Particle therapy facility

- size of foot print
- initial cost
- (several treatment rooms required)

Objections (no real disadvantages)

- current uniformity
- repetition rate

440 patients

ACC Conclusion

gold standard in ion therapy: SYNCHROTRON

 all C-patients: NIRS, GSI
 new facilities: HIT, CNAO, Marburg, NROCK, Gunma

- future
 - improved accelerators wellcome
 - lower initial, operational, maintenance cost
 - HOWEVER
 - decrease in treatment quality unacceptable
 - loss of flexibility questionable (25 years)

Dose Delivery and Medical Equipment

Identical patient positioning systems

- fixed beam
- Gantry

Workflow optimization

- automated QA procedures
- automated patient hand over from shuttle

Inroom position verification

- 2D
- 3D Cone beam CT

Open for future applications and workflows

Commissioning

76 Graphic display Measured dose Dose cube: p_ubs_081017_tps Mean deviation: 19.5 % Maximum dose: 0.796 Gy / Scaling factor: 1.0 D [Gy] 📃 Planned dose Phantom: waterB Standard deviation: 2.2 % Date: 27. October 2008 06:05 D [Gy] 0.955 0.796 0.637 0.478 0.318 0.159 0.000 19 21 23 24 IC 8 9 10 11 12 13 14 15 16 17 18 20 22 IC xy-plane: F:\Waterphantom\Extract\dose_xy.ima yz-plane: F:\Waterphantom\Extract\dose_yz.ima xz-plane: F:\Waterphantom\Extract\dose_xz.ima Zoom + (x=0.0 mm, y=25.0 mm) Zoom + (y=25.0 mm, z=-50.0 mm) 30 - 40 % 40 - 50 % 50 - 60 % 70 - 80 % 60.70

commissioning result, Protons @ H1: 3d dose delivery vs. treatment planning 24 thimble-type ICs in a water phantom, standard deviation 2.2 %

QA Table Top with Water Phantom

0.955

0.796

0.637

0.478

0.318

0.159

0.000

Motivation Gantry

Advantage of a rotating beamline

Pancreas, supine position via gantry advantageous

Scanning Ion Gantry

- optimum dose application
- world-wide first ion gantry
- world-wide first integration of beam scanning
- 13m diameter
 25m length
 600to overall weight
 0,5mm max.
 deformation
- prototype segment tested at GSI

The HIT Gantry Rotates

🚰 SD Messdaten - (¥1.6, Release 8) - [Opti<u>sche Diagnose]</u>

🖲 Messprogramme Extras Benutzer Fenster Hilfe

Konfiguration Bilder Projektion Standard Messwerte

ା 🕂 🔄 Q Q 🗋 🕪 🚇

Horizontal

60

40

ຂ່າ

100

Position [mm]

120

140

160

180

200

Rechts

-VAcc Auswahl und Info

150000

100000

50000

Links

Intensität

🗐 <u>– El ×</u>

-Erweiterte Konfiguration

VAcc Daten

Geräteparameter

-Status

Schwerpunkt (berechnet von MDE)

Halbwertsbreite (berechnet von MDE)

[111.37 mm / 115.49 mm]

[9.51 mm / 8.96 mm] Intensität [% Vollausschlag]

Signal-To-Noise Ratio:

Refresh

47.0 %

1.96

Stammdaten

MDE

SD

Aktuelle Kamera: T3DF1 MANUAL

💻 Kamera OK

💻 Blende OK

Datacontrol

128 1150

CSV Export

Fehler

TDLR

Bilder invertieren

Browse

05.01.2008 13:41

DE 🤜 🚽 🚱 13:42

Online Messdaten

[2659806/20] Bilddaten gültig

freeze

Shutter Brightness: 255 Gamma: Π

05.01.2008 13:39:11

_ 8 ×

Thank you for your attention !

(Intensity modulated raster scan, ¹²C at 430 Mev/u, October 15th 2007)