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SELF FIELDS AND WAKE FIELDSSELF FIELDS AND WAKE FIELDS
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Bunched beam - Circular  Perfectly Conducting  Pipe 

- Beam at Center- Static Approximation 
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Circular  Perfectly Conducting  Pipe with Transition 

L
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There is a longitudinal Ez

 

(r,z) field in the transition and a test particle experience a 
voltage given by:
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Power lost by the beam

decelerating if d > b



For d > b the power is deposited to the energy of the fields: 
moving from left to right the beam induces the fields in the 

additional space available
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The additional power passing through the right part of the beam pipe

 

is obtained by

integrating the Poynting vector throught the sourface S   d2  b2 

Notice that if d<b the beam gains energy. If d-->∞

 

the power goes to infinity, such 
an unphysical result is nevertheless consistent with the original assumption of an 
infinite energy beam (->∞).
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Reflected and Diffracted fiels



QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompress

are needed to see this picture

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

o p essed
eded to see

o p essed
eded to see

o p essed
eded to see

o p essed
eded to see

o p essed
eded to see

TIFF (Unc
are ne



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

compressed
eded to see

compressed
eded to see

compressed
eded to see

compressed
eded to see

compressed
eded to see

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

e™ and a
d) decomp
e this pictu

co p essed
eded to see

co p essed
eded to see

co p essed
eded to see

co p essed
eded to see

co p essed
eded to see

Short Range Wake Fields Effects

Long Range Wake Fields Effects
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

d
dt

 
e

mc


E 


  e

mc
E 

e
mc

E// //



Mode f
[MHz]

(R/Q)*

[Ω/cmn] Qext

M: TM010-9 1300.00 1161 8·105

D: TE111-7a 1717.15 5.0 4·104

D: TE111-7b 1717.21 5.0 5·104

D: TE111-8a 1738.12 3.0 6·104

D: TE111-8b 1738.15 3.0 8·104

D: TM110-2a 1882.15 3.4 6·103

D: TM110-2b 1882.47 3.4 6·103

D: TM110-4a 1912.04 4.6 9·103

D: TM110-4b 1912.21 4.6 1·104

D: TM110-5a 1927.10 15.6 1.5·104

D: TM110-5b 1927.16 15.6 1.5·104

D: TM110-6a 1940.25 12.1 2·104

D: TM110-6b 1940.27 12.1 2·104

M: TM011-6 2177.48 192 104

M: TM011-7 2182.81 199 104

D: 3-rd-1a 2451.072451.07 31.631.6 11··101055

D: 3-rd -1b 2451.152451.15 31.631.6 22··101055

D: 3-rd 1-2a 2457.04 22.2 5·104

D: 3-rd 1-2b 2457.09 22.2 5·104

D: 5-th – 7a 3057.43 0.5 3·105

D: 5-th – 7b 3057.45 0.5 3·105

D: 5-th – 8a 3060.83 0.4 8·105

D: 5-th – 8b 3060.88 0.4 9·105



Example of two dipoles overlapping modeling in the TESLA cavity with Omega3P  
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"Choke Mode Cavity"



The study of the fields requires to solve the 
Maxwell equations in a given structure taking 
the beam current as source of fields. This is a 
quite complicated task for which it has been 
necessary to develop dedicated computer codes, 
which solve the e.m. problem in the frequency 
or in the time domain. There are several useful 
codes for the design of accelerator devices: 
MAFIA, MAFIA, ABCI,ABCI, URMEL,URMEL, etc...

The parasitic fields depends on the particular charge distribution of the beam. It is 
therefore desirable to know what is the effect of a single charge, i.e. find the Green find the Green 
function function ww, in order to reconstruct the fields produced by any charge distribution. 

Numerical Analysis

Theoretical Analysis

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.



The image charges travel with the same particle velocity v.
Since both the particles and the image charges move on parallel paths, in the limit 
v = c they do not interact with each other, no matter how close to the wall the 
particles are.

Scattered Field 



If a particle moves along a straight line with the speed of light, the electromagnetic  
field of this particle scattered off  the boundary discontinuities will not overtake it and, 

furthermore, will not affect the charges that travel ahead of it.

The field can interact only with the trailing charges in the beam that move behind it.
This constitutes the principle of causality

 

in the theory of wake fields



z2  z  s 2  b2     ==>    zcatchup 
b2

2s
    for s << b

We can estimate the distance at which the electromagnetic  field

 

produced by a 
leading charge reaches a trailing particles traveling at a distance s behind. 

Only after the leading charge has traveled zzcatchcatch--upup away from the discontinuity, can 
a particle at point s behind its behind it feel the field generated by the discontinuity.

b

z=ctz-s s0

ct  z  s 2  b2



there can be two effects on the test chargetest charge : 

1) a longitudinal force

 

which changes its energy, 

2) a transverse force

 

which deflects its trajectory. 

Wake PotentialsWake Potentials

    F  q Ezˆ z  Ex  vBy ˆ x  Ey  vBx ˆ y   F//  F
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ro



If we consider a device of length L:

U  Fz

0

L

 ds

  
M  F

0

L

 ds

the Energy Gain is:

These quantities, normalised to the charges, are called wake-potentials
 (volt/coulomb) and are both function of the distance z. 

Note that the integration is performed over a given path of the trajectory.

the Transverse Deflecting Kick is:
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U
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w 

1
ro

M
qoq

Longitudinal wake potentialLongitudinal wake potential
 (Volt/Coulomb)

Transverse  wake potentialTransverse  wake potential
 (Volt/Coulomb meter)

The sign minus in the longitudinal wake-potential means that the test 
charge loses energy when the wake is positive. 

Positive transverse wake means that the transverse force is defocusing.

Energy LossEnergy Loss

Transverse KickTransverse Kick



Longitudinal wake potential of a resonant HOMLongitudinal wake potential of a resonant HOM

When a charge crosses a resonant structure, it excites the fundamental mode and 
high order modes (HOM). Each mode can be treated as an electric RLC circuit 
loaded by an impulsive current.

Just after the charge passage, the capacitor is charged with a voltage Vo

 

=Cqo

 

and the 
electric field is Eso

 

=

 

Vo

 

/lo

 

. 

The time evolution of the electric field is governed by the same

 

differential equation 
of the voltage

Ý Ý V  1
RC

Ý V  1
LC

V 
1
C

ÝI 



The passage of the impulsive current charges only the capacitor,

 

which changes its 
potential by an amount Vc

 

(0). 

This potential will oscillate and decay producing a current flow

 

in the resistor and 
inductance. 

For t>0 the potential satisfy the following equation and initial

 

conditions:
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It is also useful to define the loss factor
 

as the normalised energy lost by the 
source charge qo

k  
U(z  0)

qo
2

Although in general the loss factor is given by the longitudinal

 

wake at z=0,  for 
charges travelling with the light velocity the longitudinal wake

 

potential is 
discontinuous at z=0

The exact relationship between k

 

and w(z=0)

 

is given by the  beam loading theorem:

k  w//(z  0)
2

Causality requires that the longitudinal wake potential of a charge travelling with 
the velocity of light is discontinuous at the origin.

k

z
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Longitudinal Wakefields of RF StructuresLongitudinal Wakefields of RF Structures

aa



pp

pointpoint--charge wake functioncharge wake function

K. BaneK. Bane

fitfit

SLACSLAC SS--band:band:
aa �� 11.6 mm11.6 mm
 �� 29.2 mm29.2 mm
pp �� 35.0 mm35.0 mm

W// 
2



and shortand short--range fit:range fit:

Transverse WakefieldsTransverse Wakefields

transversetransverse
 

pointpoint--charge wakefield functioncharge wakefield function

SLACSLAC SS--bandband
ss 11 �� 0.56 mm0.56 mm
aa �� 11.6 mm11.6 mm

A A �� 1.131.13
zz < ~6 mm< ~6 mm

fit
((SLACSLAC

 

SS--band)band)
pointpoint--charge wakecharge wake

W 
3



Wake potentials and energy loss of a bunched  distribution
When we have a bunch with density (z), we may wander what is the amount of 

energy lost or gained by a single charge  e in the beam

To this end we calculate the effect on the charge from the whole

 

bunch by 
means of the convolution integral:

U(z) e w// z  z' (z' )dz'





Which allows to define the wake potential of a distribution
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The total energy lost by the bunch is computed summing up the loss of all particles:
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Coupling Impedance

The wake potentials are used for to study the beam dynamics in the 
time domain (s=vt). If we take the equation of motion in the frequency 
domain, we need the Fourier transform of the wake potentials. Since 
these quantities have Ohms units are called coupling impedances:

Longitudinal impedance (�

Z//    1
v

w// z e
i
z
v dz
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Transverse  impedance (� m)
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Short Range Wake  Fields  Effects 
in  Linear Accelerators



The HOMDYN ModelThe HOMDYN Model

Δt

On Axis

Δt

Off Axis

Direct Space Charge

External Fields

Longitudinal Wake Field

Longitudinal and Transverse
Wake Field

++
++

++

++
++

http://www.lnf.infn.it/acceleratori/sparc/hsparxino5.zip
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Beam Break UpBeam Break Up

A beam injected off-center in a LINAC, because of the focusing quadrupoles, 
execute betatron oscillations. The displacement produces a transverse wake field in 

all the devices crossed during the flight, which deflects the trailing charges. 



In order to understand the effect, we consider a simple model with 
only two charges q1

 

=Ne/2
 

(leading = half bunch) and q2

 

=e
 

(trailing = 
single charge).

q1

 

=Ne/2
q2

 

=e

w

the leading charge executes free betatron oscillations:
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This force drives the motion of the trailing charge:
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This is the  typical equation of a resonator driven at the resonant 
frequency.

 
The solution is given by the superposition of the “free”

 oscillation and a “forced”
 

oscillation which, being driven at the 
resonant frequency, grows linearly with s.

the trailing charge, at a distance z
 

behind, over a length Lw

 
experiences a deflecting force proportional to the displacement y1

 

, and 
dependent on the distance z:

Fy
self (z ,y1 ) 

Ne2

2Lw

w (z )y1(s)



At the end of the LINAC of length LL

 

, the oscillation amplitude is 
grown by :
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Balakin-Novokhatsky-Smirnov Damping

The BBU instability is quite harmful and hard to take under control even 
at high energy with a strong focusing, and after a careful injection and 
steering. 

A simple method to cure it has been proposed observing that the strong 
oscillation amplitude of the bunch tail is mainly due to the

 
“resonant” 

driving. 

If the tail and the head move with a different frequency, this effect 
can be significantly removed.

Let us assume that the tail oscillate with a frequency y

 

+y

 

, the 
equation of motion reads:
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the solution of which is:

y2
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by a suitable choice of y

 

, it is possible to fully depress the oscillations 
of the tail. 
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The extra focusing at the tail can be obtained by:

• Using a RFQ, where head and tail see a different focusing strength,

•
 

Exploit the energy spread across the bunch which, because of the 
chromaticity, induces a spread in the betatron frequency. An energy 
spread correlated with the position is attainable with the external 
accelerating voltage, or with the wake fields.



More general model including charge distribution and acceleration
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M.Ferrario, V.Fusco, M.Migliorati, L. Palumbo,Int. Journal of Modern Physics A ,Vol 22, No. 3 (2007) 4214-4234



Beam during Quad scan
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Relationship between transverse and longitudinal forces : 
“PanofskyPanofsky--Wenzel Wenzel theoremtheorem”.

  

F// 

 z

F

w// 

 z

w

W

W//



Coupling impedances of a HOM resonant mode

Z//    Rs

1  iQr
 r




r











Rs 
wo
2

 shunt impedance, 

Qr 
r
2the quality factor,

Transverse Impedance:

 

Z    c


Rs

1  iQr
r




r











Longitudinal Impedance:

from  the computer codes.



Consider an harmonic oscillator with natural frequency , with an  
external excitation at frequency 

)cos(2 tAxx 

General solution:

x(t)  x free(t)  x driven(t)

 cos(t)  eit  

x free(t)  ˜ x m
f eit

xdriven (t)  ˜ x m
d eit

Instabilities : driven oscillators

substitution in the diff. equation:

(2  2 )˜ x m
d eit  Aeit

xdriven (t)  A
(2  2 )

eit



The general solution has to satisfy the initial condition at t=0. In our 
case we assume that the oscillator is at rest for t=0:

x free(t  0)  x driven(t  0)

˜ x m
f   A

 2  2

thus we get:

x(t)  A
 2  2 eit  eit 

taking only the real part:

 )cos()cos()( 22 ttAtx 









This expression is suitable for deriving the response of the 
oscillator driven at resonance or at frequency very close:

  
= (  ) / 2 
   / 2
  / 2

�� �

�/2 �/2

x

x

)sin(
2

)(lim 0 tAttx 
 

x(t)  A
2

  cos(t )cos(t / 2)  sin(t) sin(t / 2) -  cos(t)cos(t / 2)  sin(t ) sin(t / 2)  

t

t

x(t)  A


 sin(t) sin t
2









At
2

sin(t )
sin t

2








t
2




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56

