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1) Introduction

Mechanism of Landau damping

A single, undamped oscillator with resonant
frequency w, reacts to a pulse excitation with
a free oscillation. For a set of oscillators
with resonant frequencies w,;, of distribution
f(w,), a pulse excitation gives each oscillator
the same initial velocity @(0) followed by a free
oscillation with w,;. For the interaction of the
beam with its surroundings (impedance) and
for observing the beam only the center-of-
mass motion is relevant. By the different
wy; the oscillating particles change phase
relative to each other and the center-of-mass
motion is reduced while the incoherent
motion of the particles continues.  This
reduction is faster the larger the frequency
spread. It differs from other damping mech-
anisms as the decay is usually not exponential.
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In a beam instability the field created by par-
ticles in the beam induce a currents current
in the impedance of the beam surroundings.
Since it is at a relatively large distance from
the beam only the average field determined by
the center-of-mass and not the one of the indi-
vidual particles. The induced current produces
a field on its own which acts back on the beam.
Depending on its phase it can increase an ini-
tial beam motion and lead to an instability. If
the decay of the coherent center-of-mass mo-
tion by the frequency spread is sufficiently fast
it can interrupt the interaction with the wall at
infinitesimally small amplitude level and avoid
the instability.



Treatment of Landau damping

Landau damping can be understood from dif-
ferent points of view. We treat it here in a
manner which is close to beam observation
and experiment and relate it to the beam re-
sponse to a harmonic excitation, called trans-
fer function.

The fields induced by the center-of-mass mo-
tion are modified by the beam surroundings
(impedance) and act back on the beam. This
can lead to an instability with a threshold de-
termined by the beam response. Below this
threshold the frequency spread eliminates any
coherent motion at infinitesimal small
amplitudes. Above, the voltage induced in
the resistive part of the impedance leads to an
increase of the initial coherent motion and we
have an instability.
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The amount of Landau damping depends on
the frequency distribution f(w,) or its deriva-
tive at the frequency w of the instability. It can
be enhanced for coasting beams by increas-
ing the tune dependence on momentum (chro-
maticity) and for bunches by introducing non-
linearities which lead to a frequency depen-
dence on oscillation amplitude. The reactive
part of the wall impedance due to many res-
onances often leads to a frequency difference
between the coherent (center-of-mass) motion
and the incoherent oscillations of the individ-
ual particles. This makes Landau damping be-
comes ineffective.



2) Response of an oscillator-set to excitation
Response to a pulse excitation

J U NSNS Oscillators j with w,; getatt = 0 a
0(:1:~> NN Flwr) kick with z;(07) = & and oscillate
j | freely with different w,; and fixed
0 Tt amplitude &, = @g/w,;
(@) |
e o T ey — T(t) = 2o cos(wy;t)
0N T S fw)de =1 ;= & sin(wy;t)
Response of single particle and center-of-mass with inverse Fourier integrals
T(t)) =g cos(wyt), x; = (To/wyj)sin(wyt) L(t) = [ F(Aw,) cos(Awnt)duw,
. . . o1
(2(t)) = 2o [ flwy) cos(wyt)dw, o< inv. FT = F(f) Lt = — /f Aw,) sin(Aw,t)dew,
narrow distribution Aw, = w, — w,g <K Wy ( ) o F- (f(Aw )) COS((.U Ot>
<33(t>> = fij'() / f((.dr() + Awr) cos((wro + Awr)t)dwr L ]:sm (f(Awr>> Siﬂ((.dmt)
g(t) = (x(t)) /2o = cos(wpot)I1(t) + sin(w,g)I2(1) — [ + B3
= cos(wyot — @)E(t), (E(t) = envelope)

The center-of-mass velocity response ¢(t) of a frequency distribution f(Aw,) to a pulse exci-
tation is proportional to its inverse Fourier transform times an oscillation at w,.
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Single oscillator response to harmonic excitation

& | T ; Done by small kicks with harmonic modulation
to T : d
: h : da, = o cos(wr)dr = Gdr = G cos(wT)dr
Velocity response of single oscillator with dr
w, to a pulse excitation at a time tg is with acceleration G(t). Velocity at time ¢ is
. At
t(t) = @ cos(w,(t — 7)) = g cos(w,T). x(t) =G /to cos(wT) cos(wy(t — 7))dT.
Harmonic excitation at w starting at tgand || I =1t —7, 1o =t — 1, develop cos(w(t —T)),
observing at t. with (w, — w)/w, < 1. single oscillator response to harmonic excitation.
Hes
x((; = — /190 cos(w(t — T)) cos(w, T)dT = /o cos(wt) cos(wT') + sin(wt) sin(wT)) cos(w,T)dT,
1 ' r— w) T 1 — ik ,
2 — cos(wt)sm«w w)To) sin(wt) cos({wr = w)To) = cos(wt)rg, + sin(wt)rg;.
2 Wy — W Wy — W
1 si r— w) T if w=uw, _ '
Large 1)) : ry = 2811"1((:) — :)> 0) ~ | :i 5 4 5r ~~ gé(wr — w) since /smiax)dx =T,
1 — cos((w, — w)Tp) 1 L
Te = — ~ local averaging gives envelope
2(w, — w) 2(wr — W) oz,
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Single oscillator response as a function of excitation frequency and time

Response vs. t for different Aw Response vs. Aw = w, — w for different ¢
resistive response resistive response reactive response
I | I | I | I | I L L L L L ! L 1 | 1 | 1 | 1
20 | cos(wt)rw wly = 80F 407w | wTy =80

w, —w = 0.05w

40 cos(wt)rw ﬂ -
201 .
—20- . \\if -

_40 _ o ~ \éiJ\ __ = =T - =7 \‘:\\\ o =]

— .wﬂ_%‘)TO. : .M\ 20.] T (wy —w) Jwy 20.] W —w)/wp

2 4 1 - ' T ' T ' T ' ' T ' T . T T
0 0 40 0 8OwTo %0 -0.4  -0.2 0 02 04 -04 -02 0 02 0.4

Velocity response of a single oscillator after a long harmonic excitation time

i = G cos(wt)ra (1)) + sin(wt)ra(w,) ~ & |cos(wt)d(wy — w) — sin(wt) (1) ]
2 Wy — W WH Wy
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Response of an oscillator set to a harmonic excitation

flwr) ~ 1 dN || Oscillator set with resonant frequency distribution
flwr) = Ndwr f(w,) gets harmonic excitation at w. Center-of-mass
[ fw)dw, = 1 velocity response ((t)) is convolution of single oscil-
————— D — 0 r)dor lator velocity response #(t) and distribution f(w,).
1)~ Jeoswt)mdls, — ] — [t w) flw)d
t(t) ~ — |cos(wt)md(w, — w) — sin(w wr) f(wy)dw,
2 Wy W WH Wy !
c(t 1 0o fwy)dw, .
<xé>> =5 (COS(Wt)Wf( ) — sin(wt) PV/ flwr)dw ) = cos(wt)r,(w) + sin(wt)r;(w)
Wy — W
PV / “r) dw, = li O{Ow UG +/OO / wT) ] w, = 'principle value integral’
W — wy — W
00 r d r :
rr(w) = §f(w) , ri(w) = —PV/ fciwz:j = normalized response components
t 1
<xé>> =7 [{&(t))dt = — [sin(wt)r,(w) — cos(wt)r;(w)] = spatial response
' »

Response, transfer function, has resistive part absorbing energy from coherent (center-of-
mass) motion converting it into incoherent one (thermal energy), gives damping. Is proportional
to distribution at w, vanishes outside. Reactive part is proportional to "principle value’ integral.
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Short derivation using complex notation

W —Jw Wi
cos(wt) = e/ e . i) _ o0 < w < oo || Real notation, w > 0, — complex one
A2 2 ) with positive and negative frequencies
G G ' — ASajwt
i w?:z: _ Tt (—w2 n w?):z: _ §eﬂ"t and solution z = ze
. .~ Displacement response, single oscillator.
Gelvt Gelvt 1 1 :
r = . <= ( — ) For w > 0 only first and for w < 0 only
2(“’7’_ - w?) o\ —w o wetw second term is large. Taking the first and
(a:A)Jr _ v IS fwr) dw, <517A>+ :]w<fli>+ integrating over f(w,)
G 4o 0w, —w G G Integration over pole gives PV (princi-
f(wy)dw, , wr)dwr ple value) integral plus imaginary residue.
Lo —w = £jmfw) + PV/ — W Resolve sign ambiguity by &(—o0) = 0
T oWl  flw,)dw, elwt _
for w > 0 <CAZ+ — T 7Tf< —|—]PV/ u(J zw ] — 7 [TT’<W> +]T1<w>]
T e It Wy e It .
for w <0 <(; = mf(w) — jPV/_OOO j<+i)dwr = rr(w) — gri(w)]
C)— 1 0 _ : :
<:2+ + <32 =3 os(wt)m f(w) — sin(wt)PV [~ flwr) dw,| , (agrees with previous)
W —w |
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Response for a Gaussian frequency distribution

1 Aw2

. 75 f(Awy)dw, =1

Aw? 2,2

_Ow

g(t)= N [ e 28 cos(Aw,t)dw, = e 2 cos(wyot)
2moy,
r (Ld) L n e—AwQ/Qag
' 20/ 210,
riw) = e b [V (2 gy

w,-distribution around w,.
AWT — Wr — Wy
Aw = w — Wy,
pulse response
g(t) = E(t) cos(wyot)

transfer function, from FT of
E(t), Dawson integral

| TRAIl\ISFERlFUNClTION |

f(Aw,) 1__7”(00) e 7y (react.) |
| " AN

0——"- T S

14 ’ : B

AWr/aw T .
PULSE IRESPONSlE (GREEI\ll FUNCTI(l)N) —|4 —|2 (|) % Lll Aw/a,

39(t) 15 ___phase | o
1.0 0 E(t) ra(w) —ampl %(w)deggo
05_; 3 F 10_ AN C 45
0-0—2 NVWMN\MZ\N_ ———————— \“l ‘‘‘‘‘‘‘‘ - 0
—0.5 3 i = 054 . 45

3 g(t) AR E ] C
~1.0 -+ - : A e - —90

T T T T T T T ] T 00 T T T T T T

0 1 2 t3 -4 -2 0 2 4 Aw/o,

The response of this frequency
distribution has similarities to
the one of a harmonic oscil-
lator. The transfer function
phase changes by 180". How-
ever, the pulse response de-
cays like a Gaussian and not
exponentially.
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3) Transverse coasting beam instability
Oscillation modes

Coasting beam of N particles circulates
with wy, current I = eNwy/(27) in ring of
uniform focusing. Particle rotates with wy
and makes betatron oscillation with Qwy

0; = Oo; +wot, yi(t) = y cos(Quot — @;)).

Phase difference d¢ between adjacent par-
ticles gives oscillation mode seen in ro-
tating frame 0 = 6 — wyt with motion
g cos(Quot — @(0')) representing a wave
moving in +6-direction if d¢/df’ > 0 and
vice versa; called forward /backward waves.

We chose set of closed modes ¢ = +nf’ seen as
forward and backward waves for 4 or - sign in
rotating frame or as fast and slow waves by sta-
tionary observer with frequencies wgr, wgs > 0

y = 1 cos(QuotEnh") = g cos(nf—(n+Q)wpt)

Wgf = (n+Q)w0, ,n > —Q)
Wps = (n — Q)w()a n > Q

with conditions on n for positive frequencies.
For a fixed t = 0 we get the form of the frozen
oscillation cos(nf) and sin(né) forming a base
of orthogonal modes which describe any closed
distortion of the beam. Small n result in rela-
tively small observed frequencies which are more
important since the wall impedance becomes
smaller at very high frequencies and only a lim-
ited number of modes n have to be considered.
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Coasting beam and coupled bunch modes

Fast wave — upper sideband
global view - snap shot local view - seen by impedance
1bunchb 9 13 1 1 9 13 1 1 bunch
NA A A L e, u LA ./\\/\/\
(%) spectrum‘ 1\/ turn
A¢:7T/27TL:MA¢/27T:4 0 i 2 3 5 Ld/u)()
Slow — lower sideband
global view - snap shot local view - seen by impedance
1 bunch 5 9 13 1 5 l/‘\ T bunch
(|) spectrum q 2 turn
A¢:37T/2,7”LIMA¢/27T:12 0 :i_ é é él]- 5 w/wo

Coasting beam oscillates in mode n = 4. It is completed with A = 16 fictive bunches having
relative phase between A¢ = /2 for fast and A¢p = 37 /2, or —7 /2, for slow wave. Coupled
bunch modes n = MA¢/(21) = 4, for first and n = 12, or n = —4, for second case.

Global view shows all bunches at the same time, in local view bunches are seen in successive
times and advance in phase. Through bunches higher frequencies fits are possible giving higher
sidebands in spectrum, absent in coasting beam where each mode 4=n has only one sideband.
Merry-go-round with horses moving up and down illustrates coupled bunch modes.
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Effect of momentum spread

Betatron frequencies for a stationary observer

Waf = (nf + Q)WO y Wps = (ns — Q)Wo
Wgf = (n + C])WQ , Wgs = (n + 1 — Q)UJO,
depend on momentum deviation Ap through

the slip factor 7. and the chromaticity @)’

Awo/wo = —nAp/p, AQ = Q'Ap/p
Awgp = (Q" = ne(ny + Q))woAp/p
Awgs = (Q = ne(ns — Q))woAp/p.

This gives two distributions f(wgs), f(wss).
The HWHH spread op in momentum gives
widths in revolution and betatron frequencies

Sy = Newodp/p
Sar=(Q = ne(ng + Q))wodp/p
Sps = (Q" — ne(ns — Q))wodp/p
norma lization Ty = (,Uﬁf/ng, Tr = W/ng
9(zgr) =dN/Ndxsy = f(wsys)/Ssr and for s
corres pondingly for slow wave

Distributions at revolution and betatron frequencies

flwgss) =

Ny

dN
Ndwg,
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Response of narrow particle string

Excite a ring of monoenergetic particles
i+ woQ%y = G cos(wt)

Seek solution y(t) = y cos(nf — w), drive particles
not at wy() but close to either the fast or slow wave

wgr = (ny+ Q)wy or wgs = (ng — Q)wo.

(—(nwp — w)* + Q°w;) g cos(nd — wt)

— G cos(wt)

AN

S :—G( ! 1)

Wps — W Wpf — W

8),~ maloy o) (8.~
Gl 2wQ \wsr —w) T \GJs T 2w@

o)

substitute into diff. eqn.
excite, observe at 6 = ()

gives response,

excite fast wave w =
wgf, first term  much
smaller than second and
vice versa.

Note, the two responses
have opposite sign, to be
discussed later.
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Response of the whole beam
Whole beam  with frequency distributions
f(wsyr), flwgs) is excited by G(t) = Ge*'.

Center-of-mass velocity response is:

" é d
() 5= jwly) = jQQ(:O / f(:;ﬁff)_‘ff

_ Gw (Wf<w>+jpvff(wﬁf)dwﬁf>

wgf—w

Gw g(zsy)dzs
QngQwo' SIJ@f — T
_ Guw (Wg@ PV g(fﬂﬁf)dmf)

:I:gf—:c

normalized

. Gw | flwgs)dwss
B Guw _ fwss)dwgss
— _QQWQ (7Tf<w> +]PV/ g — )
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The term 7 f(w) is real, exciting accelera-
tion and responding velocity are in phase
resulting in an absorption of energy and
damping, called Landau damping. It is
only present if the excitation frequency w
is within the frequency distribution of the
individual particles. The second term is
imaginary and gives the out-of-phase re-
sponse being of less interest.

The spread in betatron frequencies is given
by the momentum spread and the depen-
dence of revolution frequency wy and be-
tatron tune () on momentum deviation
Ap/p. Itis therefore determined by an ex-
ternal parameter which is not affected
by the excitation of betatron oscillations.



Measuring the beam response

A Network analyzer gives amplitude and phase
\ .
"N of center-of-mass response to harmonic ex-
- beam — © ||| citation — beam transfer function, BTF.
kicker monitor 4

network analyzer

o

:
phase o

-
log 3
ampl.

5 1

i T oy -
I 1 1 I 1 1 I 1 1 I 1 1 1

2486 2488 2490 2492 2494
frequency, MHz

3 Vertical BTF of a coasting beam in the SIS
Vertical BTF of an unbunched beam in ISR 18 synchrotron at GSI, V. Kornilov et al.%)

g
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Transverse impedance

T < = 14
T—%Z eES E’ .
- < AT
I '—g—;(ﬂ——é—@*———_,_—@?—@@é‘i
—m - - - - F ST oo O-O-0---
— — ONONO
longitudinal transverse transverse

E(w 7 x Blw ds
foiy = (B 7 B 0,

wf (E(w) + [0 x Bw)]),.ds
Iz (w)

Response to applied GG of fast and slow wave

()1 = s [1100) +5PV 1220,
(#), = o (mf @)+ 3PV [ L5

induced fields in Zp give GG, averaged over 27 R

ef (E(w) +[8 x B(w)]), ds  —eZrl{i)

G, =

QWRmo’y 2mymo Rw

The external acceleration G excites a co-
herent oscillation (2) which itself induces
fields in the impedance leading to an addi-
tional self acceleration G.,.

It is added to the external one resulting in
a modification of the beam response.

If the induced acceleration is just as large
as the external one, G, = (G, we can turn
the latter off and the oscillation continues
at fixed amplitude — stability limit.
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Stability limit

) B Gw . f(AWT> )
()= Som (Wf(AW) + PV | o — wdwr
GUJ T —A—WZ _ 2 == 12
= — 2(;0% 1 T V2ou) t dt/
WQuovoma,. | TEh ]
w — - —
Tp=— f(Ew) +[8 x Bw)]), ds

[(z)(w)

response, Gaussian dist. center w;.
flwr)
e_AW?/QJL%
flw,) =
\V2mo,
Awr = Wy — Wre
Aw — w - wrc o _wrc AWT/O'w

A eZpl{(x)s G eZrl(T) voltage induced in Zp gives accelera-
Gy = _*ymoQWRw ’ N _*ymOQWRw tion G, If G, = G, self sustained os-
cillation without drive, inst.threshold.
(£)g = — Gw 7 _ _€CZT""I<$>S assume w = w,., excitation at center
2Quwo V2T, A Qmocy of distribution, get only real response
— GCZTTQ VT . Iy < AV2ro.QE Using £ = myc*y and 3, = R/Q with
AmQmoc*y v/ 20, ecl ring radius R.
44/2 E . - .
Zrrs < mhio, slow wave stability condition instability by large positive Zp,
ecl 3,
Zrrf 2 _dvenhio, b fast wave stability condition || instability by large negative Z7;

ecl 3,
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Stability diagram

For the general complex response and im-
pedance the stability condition can be ex- | fast wave,
pressed as a diagram by relating the beam || 11aheband
parameter against the inverse response of '

the beam, i.e. inverse amplitude plot-

Parabolic

Gaussian

ted against the negative phase, inverse | 0 3o -
Nyquist diagram. _ E ]
ecl Zr(w 1 —1 ! S :
slow wave: * r(w) < | - fraso.
47TQE fif(wﬁs)dwﬁ ! 2
wgas—w S 1 | 010 000 010 020 030 040
ecl Zr(w —1 —2 12 i
fastwave:] T(>Z : N
wap—w Left: Transverse stability diagrams calculated for at

Relation between complex impedance || the upper and lower side-band of a coasting beam
and complex beam response to excita- || with Gaussian distribution.

tion. If impedances are inside central || Right: Calculated and measured stability diagram
curve we have stability, outside an insta- || based on a coasting beam BTF measured at the
bility. Curve itself represents threshold. SS18 synchrotron at GSI, Kornilov et al.f)
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Response in the presence of an impedance
Beam response to external acceleration

A éw W3s G B W Gz
(Y)s = ZQwO/uj;(s f Z}dwﬁs <Q>s - 20wy | féwi)jdw . @>s
Oscillating beam induces a voltage in a trans- B ws eZrl
verse impedance giving a self acceleration G4 - 20w | %dwﬂs ymo2m Rw
Zr(w) = = i (B@) + 15 x B)]), ds _
GZ _ GZT[<y> _
ymo2m Rw Impedance shifts

stability diagram
by vector £ o< Zr

This self excitation ads to the external one. In-
verse response (stability diagram) due to both

. . —e/rl
(G + Gz> B W = 5 Re d .
<@>s ; QQWOIMCZW T
wgs—w "B Can be used to

Since only the external excitation is known, measure Z7.
express the response with respect to it.
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4) Longitudinal coasting beam instability

Dynamics: Distribution f(AFE), or F'(Awg) around w.

AWO M AFE dN %%%O %
- — = F — 0 (AE,m)
Wy 62 E ) O(MO) Ndwo 1(8) T>L’
I = (N@WO/27T)/FO(AWO>CZWO. ! -
t = 0: pulse excite harmonic E or || #LZF22 %N
wp modulation of n periods: 0 F = -
A 2 I(9
OF cos(nf) = gc b;(?w cos(nh) ("‘J)i\—/ﬁ\/g g
- SN 27N I HF=0.6 s
Fy. = Fy(Awy + dwp) ~ Fy(Awp) + 2E260 cos(nb) = TE&E’”)
0+ = L'o(Awp 0) = LolAwo) + 70 =
F(t)=Fy+ %5@ cos(nf —wot), use 8 =0,n =1 e
wo = we + Awy = w, — wo AEJF2E B
F(t) = Fy(wo) + (dFy/dw)dw cos(w.t + Awy) —— e
I(t)= Newy/(2m) [ F(Aw)dw = Iy + I,(t) current o
N 0 i # P
I = P [cos(wet) [(dFy/dwy) cos(Awpt)dwy L%\;i\% LT},&E)
+ sin(wet) [(dFy/dwp) sin(Awpt)dw] '
o [cos(wet) Foe (dFy ) dwy) + sin(wet) Fot (dFy /dwy)] ; ; 5
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Response to a harmonic excitation
E |: Ey+ AFE

=———, Awy=w, —wp
E Tle Wo

I(t)=Newy [ f(AE)dE = Iy + I1(t)

I; response to excitation U, give only result

L(t) oce™ = U(t)(r(w) + jriw))
- —jNewjU(t) , dFy/dwy

I(t) = d
1) 2732 E /w—nwo 0

cas091d-21
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Longitudinal stability limit

Ne2wdU () ( dF, | dFy(wp) /dwy Response is perturbed current
= (T~ IPV I ) O = U0 s o)
NewinZ(w) (ndFy  dEy(wp) /dwy Stablll’Fy limit if [1(¢) induces in
= o E 7 (w)—PVyj/ i dwo| || Z(w) just voltage used to ex-
1 0 ! cite beam U(t) = [1(t)Z(w)
] | Mapping between complex impedance and complex response
) v || presented as stability diagram.
—2 r1 = 2 Separate beam and distribution form parameters.
N
- : Iy = 26""0, 5p = half width half height
™
S = wé—ps read x_wr—wo x _ YT
0 — T -l seread, b= ey i E S
L 27TSF0((.UT>
L q | go() N , | go(z)dw
~1 0 1
, dgy , dgo/dx , elyZ(w)/n
1 = —[V'+iU'] |m—=(21) — iPV dz|, [V'+iU] =
Vi g () =PV e Vi 2m 3 Egn(Ap/p)?
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Longitudinal stability criterion (Keil-Schnell)?

’U' ‘;_-J(Q/Za2

Stability diagrams, (A. Ruggiero, V. Vaccaro?)
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We separated effects due the distribution form and
the ones due to beam and accelerator parameters and
got the normalized stability diagram

, InZ(w)/n
Vil =
2w 32 En.(0p/p)?
d | dgo/dz , 17"
= — W%(IIH) — PV | a:go—/ajl dx

Approximate these diagrams by circle of radius 0.6,
get Keil-Schnell stability criterion

Z| _ 2nB°En(dp/p)*
nl— el '




Measured coasting beam responses at ISR

N“
:

ompl.vs. phase
( Nyquist diogrom)

C

inv.ampl vs. phase

Ly
0 0
fow. i S e
=R, L &
/ S A
/ ‘1 |4 | -
e iy ""F': e A
\ ! h omplitude vs. phase [ £05
VaE 4o [/
~ ‘\__’/ I/ ?
& I

Transv.:

side-band changes phase

P i by m. Resistive response positive for
a) :g:'-::ephcse v, 'reqoencf;' d) ompl. and phose vs. frequency .
Lo [FOTr PSP = 36 box slow,negative for fast wave.
mo f [ ] [ ] -
. Longitudinal: Each revolution har-
A¥(F) . .
~ monics gives 2w phase change.
1
of dhooql A ) .
o e [ U fom b saretiy| | MeEasUred Im-
D) 1] _la=15 .
: v/ { m_c;gééé peda nce Zr —f—]ZZ
0 & /l . 'L;\ r i -l i K n]' § e ) A — s 10 | | |
1 0 kHz IE NSO kit | AS = -Q5 4 05 kHz 14
b) resistive response vs. frequency ‘E'\% j.'!;:' € [ resistive response vs. {req. | ZJ—’ ) MQ/m |
i 8 Z1i X Ziind + 5

0 |

5.0

I I
0.5 1.0 .
MHz w/2m

0.050.

(stability diagram) f)

inv. ampl vs. phose

measurement normalized
" ond corrected for woll impedonce

stability diagram shifted by impedance.

REPRESENTATIONS Of MEASURED TRANSFER FUNCTIONS

cas091d-24



5) Bunched beams

In bunched beams spread in frequencies
caused by non-linearities making them depen-
dent on amplitude. Calculations are compli-
cated but mainly amount of spread is of in-
terest. To get Landau damping coherent fre-
quency w must be inside the spread.
Example: synchr. oscil., energy E, phase de-
viation ¢, syn. phase ¢, ~ T, rev. freq. wy

V()
Vi = A
5 ncheV
w —
:iunch 0 27TE
bs i
P+w?ysin ¢ ~ ¢twyd =0, ¢ = ¢ cos(wyt)
12 2 12 2 72
W W
H = q; + Sg¢ = sg(b — Hamiltonian
wgoag

Gaussian (¢, ¢) oc e /) (H'Y = >

next approximation, sin ¢ =~ ¢—¢3 /6, seeking
solution of form ¢ = ¢ cos(wt)

(—w+02) cos(wost) g cos*(wit) /6 = 0

using cos® x = (3 cosx + cos(3x)) /4, neglect-

ing higher harmonics gives

72
R R e
ws() Ws0 16
Aw, H’ (), L, H
I T e T s
Wy 8w3, 8w3, (H')
frequency distribution |
|
Mo I
1 X . exp(—R)
R = 8 Aws
0 /’ 0(% Ws0
—6 —4 -2 0 2
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Harmonic excitation

—6 —4 —2 0 2 4
Apply harmonic excitation to bunch  y(g) [ Distribution 8 Aw,
~ ] | l ) L
G = Gcos(wto). WI’Fh W corre- 1 exp(— ) 03 Wy
sponding to Hamiltonian H|, get
dipole moment response D/G. N Ro = Hy/(H')
Stability diagram, 177 slow wave, 6 4 2 0 —2 —4
. ) 4] lower 1 —6 —|4 —|2 9 % 4
arbltrary units ] S'deba”d: ' Resistive - reactive respons T | | ;) Aw; -
3 I |
2_: | —1—: N ~
] 6 —4
- —6 4
g It vy
- l | 0.0 . -
0 1 2 6 4 2 0 —2 —4
D 8mra, R w ¢ *RAR
— X me "WRycos(wt) — PV sin(wt Boni et al. LNF- RM-23, 1981%
C wg()o-?b ( ) /() (RO . R> ( > )
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Inductive wall — gives synchrotron frequency shift in long bunches

dL/ds :
o qifds o o o We take a parabolic bunch form

L . ) 2\ 3rl ’
B R ERE SR e Lir) = I{1-2 =200 - T
I 72 20T 72
U U - dl 3]
Yiyl I(t) 0 - = a A()Ta [0 — <[b>7
dr WoT3
. 3mlyL
V' = V(sin ¢s + hwgcos ¢ps7) + i OABT, Lwy =
woT
. 3T\ L 1
V = V |sin ¢4 + cos ¢ hwy (1+ AW’ /lo OA
hV cos ¢s(woT)?
2 _w%hncchosqbs
s0 2nE
3|4 I
w? = wgo{l—k ~ mZ/nlo OA 2
hVgr cos ¢s(woT)
Aws  ws—wso 3| Z/n|oly

wo Ws0 QhVRF COS ¢S<WQ7A'()>3
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w? 3m|Z /nloly
w2, " hWVrr cos ds(woT)3
ws —wso  Aws 3w Z/n|olo
ws  ws  2hV cos Gs(woTp)?
Incoherent frequency of single particles is
changed (reduced for v > ~p and vice versa),

but coherent dipole (rigid bunch) mode. This

separation reduces Landau damping.
V(1)

~

V _______

cas091d-28

Coherent and incoherent frequency




7Increase Landau damping - double RF-system

¢/ ws
- Stability by double RF-system;
left: single RF, middle: RF and
Single RF-system bunch form, right: stable bunch
Two RF-systems wrp and nwgrp, ¢ ~ , qb.—k w20n2 - 1¢3 — 0. w, x qg
V(p) = —Vising + V,sin(ng) with V,/ = Vi /n 2 26 1
3 343 Y s
. 1 n — +wy ¢° = H = const.
V(o) = i~ [0 0]+ L (no - "5 SRR
6 n 6 5
07— 1 4 [(¢):fexp—w27n_14
= V9 ¥ 2407

wso and wy are synchrotron frequencies of basic and double RF-system. The strong amplitude
dependence of wy gives spread and Landau damping. Flat voltage form leads to long bunch.
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