Non-Linear

Imperfections

Intermediate Level CAS Darmstadt October 2009

Oliver Bruning / CERN BE-ABP

Non-Linear Imperfections

equation of motion → Hills equation → sine and cosine like solutions + one turn map Poincare section normalized coordinates smooth approximation **—** tune diagram and fixed points resonances non-linear resonances — driving terms and magnetic multipole expansion perturbation treatment of non-linear maps amplitude growth and detuning guadrupole resonance islands octupole pendulum model equation of motion and phase space Hills equations in Cylindrical coordinates examples resonance islands higher order perturbation treatment

Equations of Motion I

Lorentz Force:

$$\frac{d\vec{p}}{dt} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

path length as free parameter:

replace time 't' by path length 's': $x' = \frac{d}{ds} x$

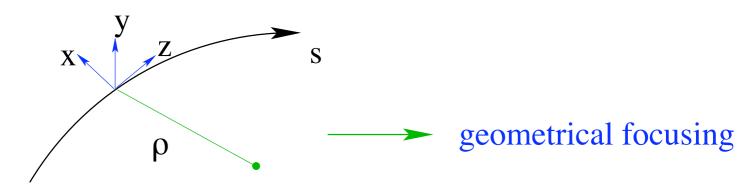
$$\frac{d}{dt} = \frac{ds}{dt} \cdot \frac{d}{ds} \longrightarrow x' = \frac{p_x}{p_0}$$

Equation of motion:

$$\frac{d^2 x}{d s^2} = \frac{F}{V \cdot P_0}$$

Equations of Motion II

Variables in rotating coordinate system:



Hills equation:

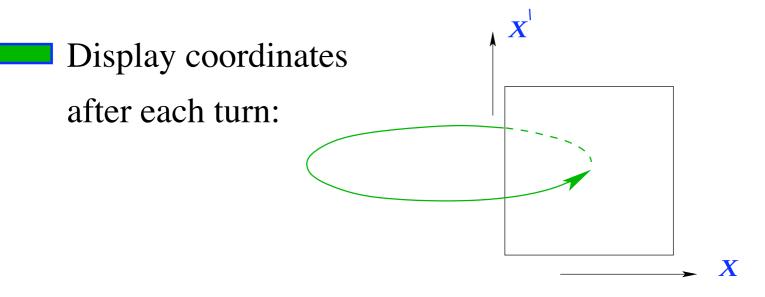
$$\frac{d^2x}{ds^2} + K(s) \cdot x = 0 \qquad K(s) = K(s + L);$$

$$K(s) = \begin{cases} 0 & drift \\ 1/\rho^2 & dipole \\ 0.3 \cdot \frac{B[T/m]}{p[GeV/c]} & quadrupole \end{cases}$$

Non-linear equation of motion:

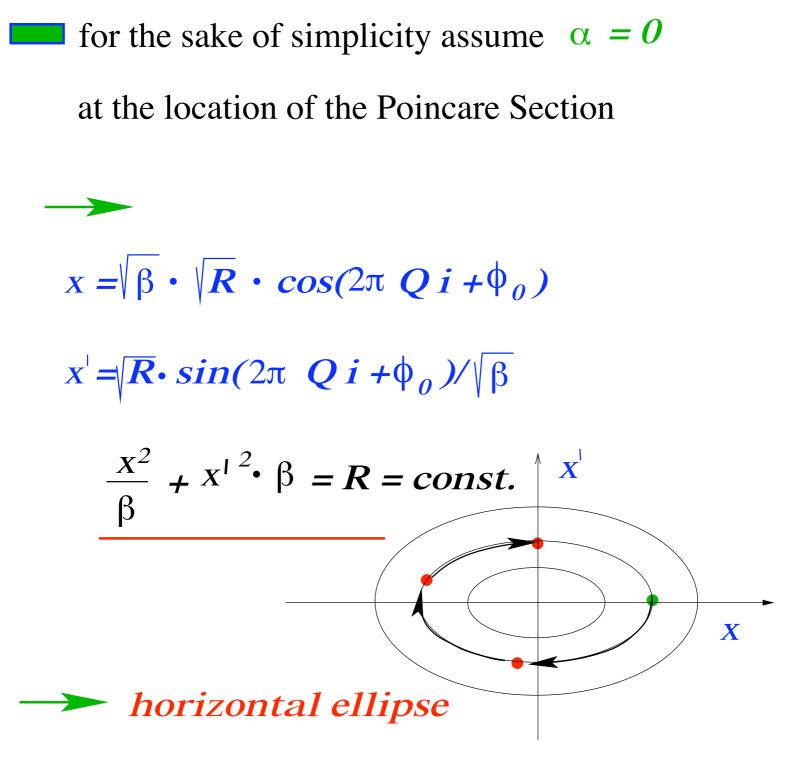
$$\frac{d^2x}{ds^2} + K(s) \cdot x = \frac{F_x}{v \cdot p}$$

Poincare Section I



the ellipse orientation and the half axis length vary along the machine

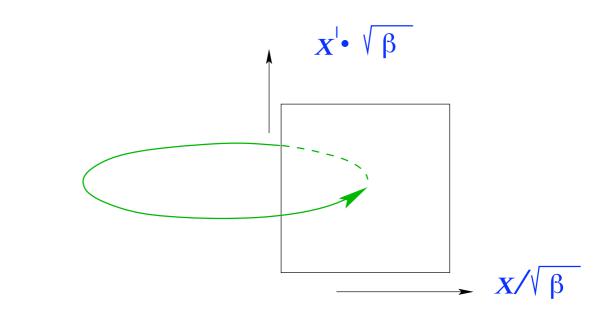
Poincare Section II



for $\alpha \neq 0$

one can define a new set of coordinates via linear combination of x and x^{\dagger} such that one axis of the ellipse is parallel to x-axis

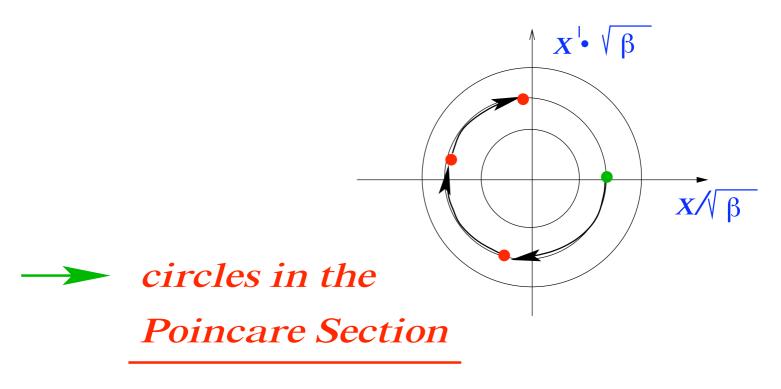
Display normalized coordinates:



normalized coordinates:

 $x/\sqrt{\beta} = \sqrt{R} \cdot \cos(2\pi Q i + \phi_0)$

 $\sqrt{\beta \cdot} x' = -\sqrt{R \cdot} \sin(2\pi Q \, i + \phi_0)$



Smooth Approximation

$$- \frac{d\phi}{ds} = \frac{1}{\beta} = \omega = \frac{2\pi Q}{L}$$

Linear β – motion: β = const $\longrightarrow \alpha = 0$

 $x = R \cdot \sqrt{\beta(s)} \cdot \sin(2\pi Q + \phi_0)$

 $x_i = \overline{R} \cdot \cos(2\pi Q + \phi_0) / \overline{\beta(s)}$

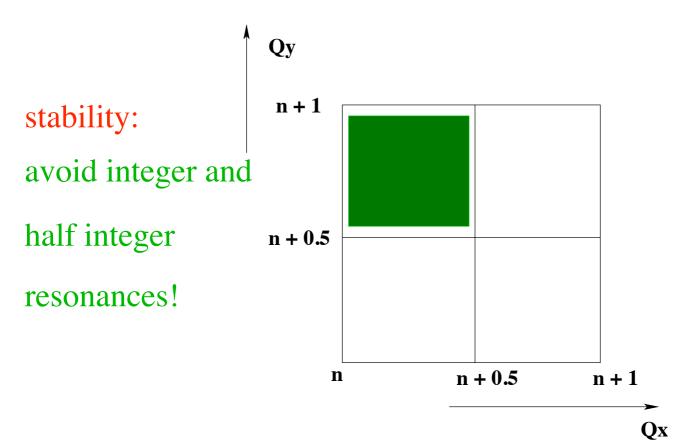
Linear equation of motion:

 $\frac{d^2x}{ds^2} \not = \left(\frac{2\pi}{L} \cdot Q\right)^2 \cdot x = 0 \quad \longrightarrow$

Harmonic Oscillator

Resonances I

tune diagram with linear resonances:



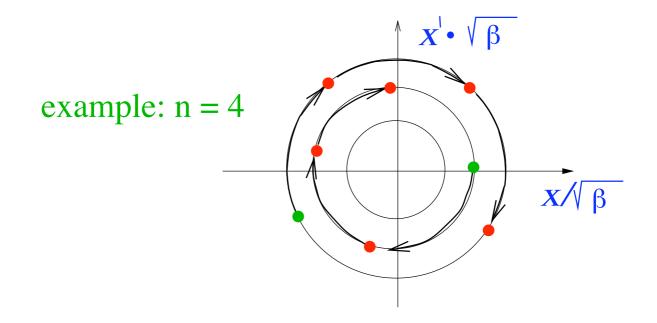
higher order resonances:

1/51/3 $n Q_x + m Q_y = r$ Qy 1.5 1.45 the rational numbers 1.4 lie 'dense' in the 1.35 1.3 real numbers 1.25 1.2 1.15 there are resonances 1.1 everywhere 1.05 1 1.25 1.05 1.15 1.2 1.3 1.35 1.4 1.45 1 1.1 1.5 stability of low order resonances?!! Qx 1/41/5

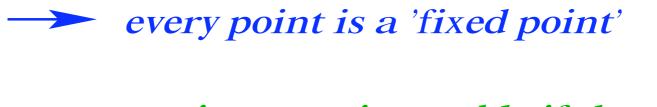
Resonances II

fixed points in the Poincare section:

Q = N + 1 / n



every point is mapped on itself after n turns!



motion remains stable if the resonances are not driven

sources for resonance driving terms?

Non-Linear Resonances I

Sextupoles + octupoles

Magnet errors:

pole face accuracy

geometry errors

eddy currents

edge effects

Vacuum chamber:

LEP I welding

Beam-beam interaction

careful analysis of all components Non-Linear Resonances II

Taylor expansion for upright multipoles:

$$B_{y} + i \cdot B_{x} = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot f_{n} \cdot (x + i y)^{n}$$

with:
$$f_{n} = \frac{\partial^{n} B_{y}}{\partial x^{n}}$$

multipole	order	B_{X}	B _y
dipole	0	0	B ₀
quadrupole	1	$f_1 \bullet y$	$f_1 \bullet x$
sextupole	2	$f_2 \bullet x \bullet y$	$\frac{1}{2} f_2^{\bullet} (x^2 - y^2)$
octupole	3	$\frac{1}{6} f_3^{\bullet} (3y x^2 - y^3)$	$\frac{1}{6} f_3 \cdot (x^3 - 3x y^2)$

convergence:

the Taylor series is normally not convergent for $|x + iy| > 1 \longrightarrow$ define 'normalized' coefficients

$$\mathbf{b}_{n} = \frac{\mathbf{f}_{n-1}}{(n-1)! \cdot \mathbf{B}_{0}} \cdot \mathbf{R}_{ref}^{n-1}$$

Non-Linear Resonances III

normalized multipole expansion:

$$\boldsymbol{B}_{y} + \boldsymbol{i} \cdot \boldsymbol{B}_{x} = \boldsymbol{B}_{main} \sum_{n=1}^{n} b_{n} \cdot \left(\frac{x + i y}{R_{ref}}\right)^{n-1}$$

b $_{n}$ is the relative field contribution of the n-th multipole at the reference radius

 $b_1 = dipole; b_2 = quadrupole; b_3 = sextupole; etc$

skew multipoles:

rotation of the magnetic field by 1/2 of the azimuthal magnet symmetry: 90° for dipole 45° for quadrupole 30° for sextupole; etc

general multipole expansion:

$$\boldsymbol{B}_{y} + \boldsymbol{i} \cdot \boldsymbol{B}_{x} = \boldsymbol{B}_{main} \sum_{n=1}^{n-1} (b_{n} - i a_{n}) \cdot \left(\frac{x + i y}{R_{ref}}\right)^{n-1}$$

Perturbation I

perturbed equation of motion:

$$\frac{d^{2}x}{ds^{2}} + \left(\frac{2\pi}{L} \cdot Q_{x}\right)^{2} \cdot x = \frac{F_{x}(x,y)}{v \cdot p}$$
$$\frac{d^{2}y}{ds^{2}} + \left(\frac{2\pi}{L} \cdot Q_{y}\right)^{2} \cdot y = \frac{F_{y}(x,y)}{v \cdot p}$$

assume motion in one degree only:

 $y \equiv 0$ is a solution of the vertical equation of motion

$$\rightarrow$$
 $B_x \equiv 0;$ $B_y = \frac{1}{n!} \cdot f_n \cdot x^n$ $F_x = -v_s \cdot B_y$

perturbed horizontal equation of motion:

$$\frac{d^2 x}{d s^2} + \left(\frac{2\pi}{L} \cdot Q_x\right)^2 \cdot x = \frac{-1}{n!} \cdot k_n(s) \cdot x^n$$

normalized strength:

$$k_n = 0.3 \cdot \frac{f_n [T/m^n]}{p [GeV/c]}; [k_n] = 1 / m^{n+1}$$

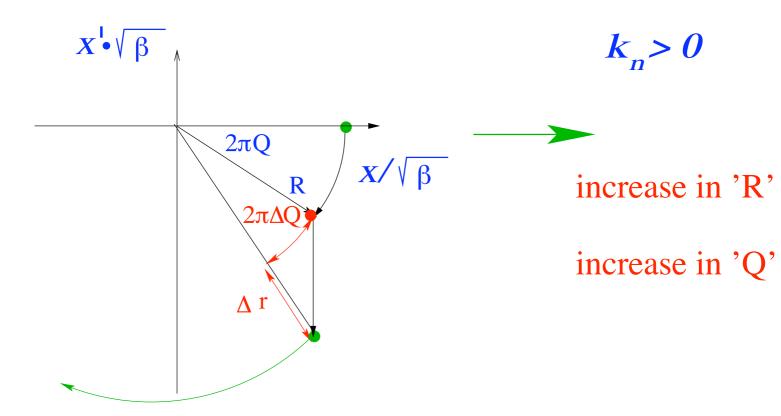
Perturbation II

perturbation just infront of Poincare Section:

$$\Delta x' = \int \frac{F_y}{v \cdot p} \, ds \quad \longrightarrow \quad = \frac{-l}{n!} \cdot k_n \cdot x^n$$

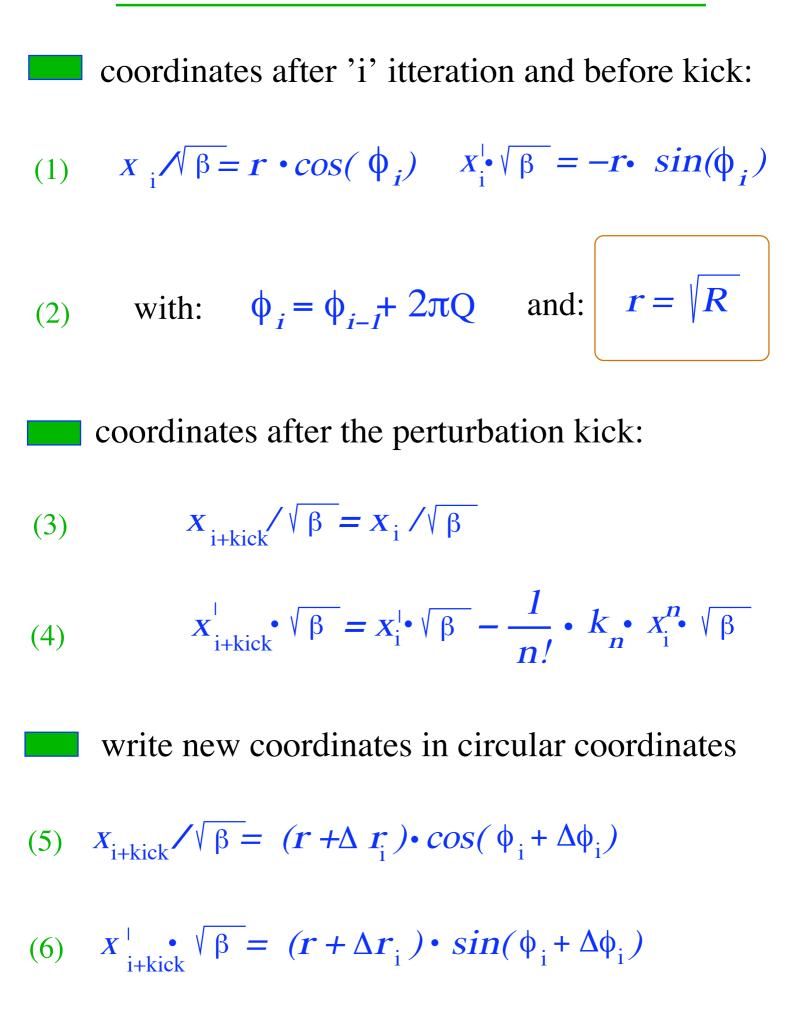
where 'l is the length of the perturbation

perturbed Poincare Map:



stability of particle motion over many turns?

Perturbation III



Perturbation IV

solve for ' Δ r' and ' $\Delta \phi$ ': substitute (1) and (2) into (3) and (4) set new expression equal to (5) and (6) use: $\sin(a+b) = \sin(a) \cos(b) + \cos(a) \sin(b)$ $\cos(a+b) = \cos(a) \cos(b) - \sin(a) \sin(b)$

and:
$$\sin(\Delta \phi) = \Delta \phi$$
; $\cos(\Delta \phi) = 1$

- solve for
$$\Delta r_i$$
 and $\Delta \phi_i$:

$$\Delta \mathbf{r}_{i} = -\Delta \mathbf{x}_{i}^{!} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})$$
$$\Delta \phi_{i} = \frac{-\Delta \mathbf{x}_{i}^{!} \cdot \sqrt{\beta} \cdot \cos(\phi_{i})}{[\mathbf{r} + \Delta \mathbf{x}_{i}^{!} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})]}$$

substitute the kick expression:

(7)
$$\Delta r_{i} = \frac{l}{n!} \cdot k_{n} \cdot x_{i}^{n} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})$$

(8)
$$\Delta \phi_{i} = \frac{\frac{l}{n!} \cdot k_{n} \cdot x_{i}^{n} \cdot \sqrt{\beta} \cdot \cos(\phi_{i})}{[r + \Delta r_{i}]}$$

Perturbation V

quadrupole perturbation: $\Delta \mathbf{r}_{i} = \boldsymbol{l} \cdot \mathbf{k}_{i} \cdot \mathbf{x}_{i} \sqrt{\beta} \cdot \sin(\phi_{i})$ with: $x_i = \sqrt{\beta \cdot r} \cdot \cos(\phi_i)$ $\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{1} \cdot \mathbf{r} \cdot \beta \cdot \sin(2\phi_{i})$ sum over many turns with: $\phi_i = 2\pi Q \cdot i$ \rightarrow $\sum_{i} \Delta r_i = 0$ unless: Q = p/2(half integer resonance)

tune change (first order in the perturbation):

 $\Delta \phi_i = l \cdot k_1 \cdot \beta \cdot [1 + \cos(2\phi_i)]/2$

average change per turn:

 $\phi_i = 2\pi Q \cdot i$

 $<\Delta Q > = l \cdot k_l \cdot \beta / 4\pi$

 \rightarrow Q = Q₀+ < Δ Q>

Perturbation VI

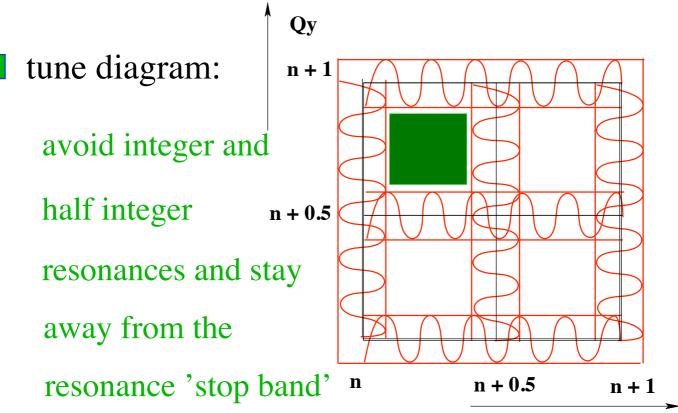
resonance stop band: $Q \neq p/2$

the map perturbation generates a tune oscillation

 $\delta Q_i = l \cdot k_1 \cdot \beta \cdot \cos(4\pi \cdot Q \cdot i + 2\phi_0)/4\pi$

= $<\Delta Q > \cdot \cos(4\pi Q i + 2 \phi_0)/4\pi$

particles will experience the half integer resonance if their tune satisfies:



Perturbation VII

sextupole perturbation:

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{x}_{i}^{2} \sqrt{\beta} \cdot \sin(\phi_{i})/2$$

with: $x_i = \sqrt{\beta \cdot r \cdot \cos(\phi_i)}$

 $\Delta \mathbf{r}_{i} = \boldsymbol{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} [\sin(\phi_{i}) + \sin(3\phi_{i})]/8$

sum over many turns: $\phi_i = 2\pi Q \cdot i$

r = 0 unless: Q = p or Q = p/3

tune change (first order in the perturbation):

 $2\pi \Delta Q_{i} = l \cdot k_{2} \cdot r_{i} \cdot \beta^{3/2} [3 \cos(2\pi Q i + \phi_{0}) + \cos(6\pi Q i + 3\phi_{0})]/8$

sum over many turns: (unless: Q = p or Q = p/3)

 $<\Delta Q>=0$

stop band increases with amplitude!

Perturbation VIII

what happens for Q = p; p/3?

$$\Delta \mathbf{r}_{i} = \boldsymbol{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} [\sin(2\pi \mathbf{Q} \mathbf{i} + \phi_{0}) + \sin(6\pi \mathbf{Q} \mathbf{i} + 3\phi_{0})]/8$$

$$(\cos t \sin t \text{ for each kick})$$

$$2\pi \Delta \mathbf{Q}_{i} = \boldsymbol{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i} \cdot \beta^{3/2} [3\cos(2\pi \mathbf{Q} \mathbf{i} + \phi_{0}) + \cos(6\pi \mathbf{Q} \mathbf{i} + 3\phi_{0})]/8$$

amplitude 'r' increases every turn — instability

dephasing and tune change

→ motion moves off resonance

stop of the instability

what happens in the long run?

Perturbation IX

let us assume: Q = p/3

 $\Delta \mathbf{r}_{i} = \boldsymbol{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} \left[\sin(\boldsymbol{\phi}_{i}) + \sin(3\boldsymbol{\phi}_{i}) \right] / 8$

$$\Delta \phi_{i} = \boldsymbol{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i} \cdot \boldsymbol{\beta}^{3/2} \left[3 \cos(\phi_{i}) + \cos(3\phi_{i}) \right] / 8 + 2\pi Q$$

the first terms change rapidly for each turn

 the contribution of these terms are small and we omit these terms in the following (method of averaging)

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} \sin(3\phi_{i}) / 8$$

$$\Delta \phi_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i} \cdot \beta^{3/2} \cos(3\phi_{i}) / 8 + 2\pi Q$$

Perturbation X

fixed point conditions: $Q_0 \gtrsim p/3; k_2 > 0$ $\Delta r / turn = 0$ and $\Delta \phi / turn = 2\pi p / 3$ $\Delta \mathbf{r} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} \sin(3\phi_{i}) / 8$ with: $\Delta \phi_i = 2\pi Q_0 + l \cdot k_2 r_i \cdot \beta^{3/2} \cos(3\phi_i) / 8$ $\phi_{\text{fixed point}} = \pi/3; \pi; 5\pi/3;$ $r_{\text{fixed point}} = \frac{16\pi (Q_0 - p/3)}{l k_2 \beta^{3/2}}$

 \rightarrow r = 0 also provides a fixed point in the

x; x' plane

(infinit set in the r, ϕ plane)

Perturbation XI

fixed point stability:

linearize the equation of motion around the fixed points:

Poincare map: $r_{i+1} = r_i + f(r_i, \phi_i)$ $\phi_{i+1} = \phi_i + g(r_i, \phi_i)$

single sextupole kick:

 $\longrightarrow f = l \cdot k_2 \cdot r_i^2 \beta^{3/2} \sin(3\phi_i) / 8$ $g = l \cdot k_2 \cdot r_i \cdot \beta^{3/2} \cos(3\phi_i) / 8$

linearized map around fixed points:

$$\begin{pmatrix} \mathbf{r}_{i+1} \\ \boldsymbol{\phi}_{i+1} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{r}_{i+1}}{\partial \mathbf{r}_{i}} & \frac{\partial \mathbf{r}_{i+1}}{\partial \boldsymbol{\phi}_{i}} \\ \frac{\partial \boldsymbol{\phi}_{i+1}}{\partial \mathbf{r}_{i}} & \frac{\partial \boldsymbol{\phi}_{i+1}}{\partial \boldsymbol{\phi}_{i}} \end{pmatrix} \| \cdot \begin{pmatrix} \mathbf{r}_{i} \\ \boldsymbol{\phi}_{i} \end{pmatrix}$$
fixed point

Perturbation XII

Jacobin matrix for single sextupole kick:

Jacobian matrix

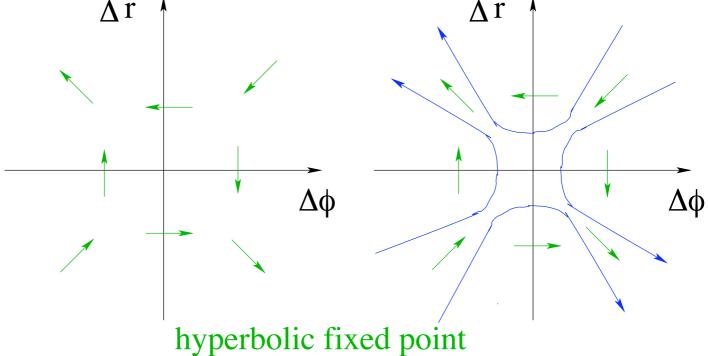
$$\frac{\partial \mathbf{r}_{i+1}}{\partial \mathbf{r}_{i}} = 1; \qquad \frac{\partial \mathbf{r}_{i+1}}{\partial \phi_{i}} = -3\mathbf{l} \cdot \mathbf{k}_{2} \ \beta^{3/2} \cdot \mathbf{r}_{fixed point}^{2} / 8$$

$$\frac{\partial \phi_{i+1}}{\partial \mathbf{r}_{i}} = -\mathbf{l} \cdot \mathbf{k}_{2} \cdot \beta^{3/2} / 8; \qquad \frac{\partial \phi_{i+1}}{\partial \phi_{i}} = 1$$

$$\phi_{fixed point} = \pi/3; \pi; 5\pi/3; \quad \text{and } \mathbf{r}_{fixed point} \neq 0$$

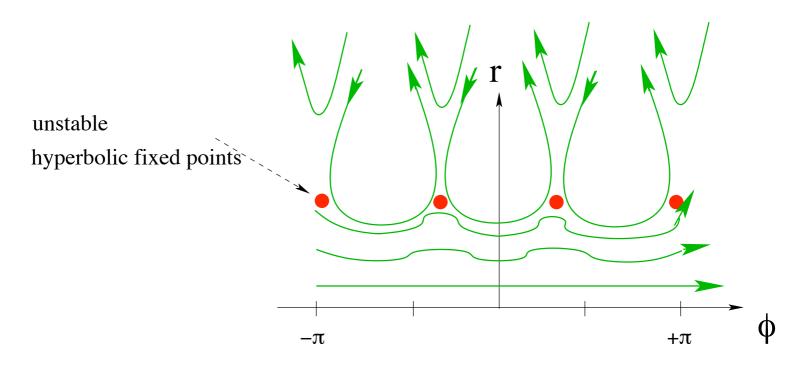
$$\Delta \mathbf{r}_{i+1} = -3\mathbf{l} \cdot \mathbf{k}_{2} \cdot \beta^{3/2} \cdot \mathbf{r}_{fixed point}^{2} / 8 \cdot \Delta \phi_{i}$$

$$\Delta \phi_{i+1} = -\mathbf{l} \cdot \mathbf{k}_{2} \cdot \beta^{3/2} / 8 \cdot \Delta r_{i} \qquad \text{stability}?$$

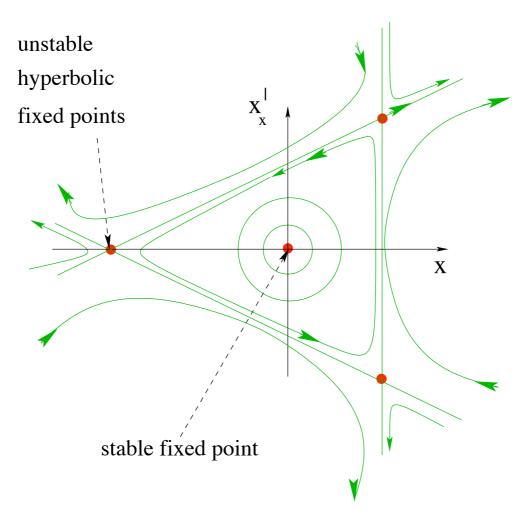


Perturbation XIII

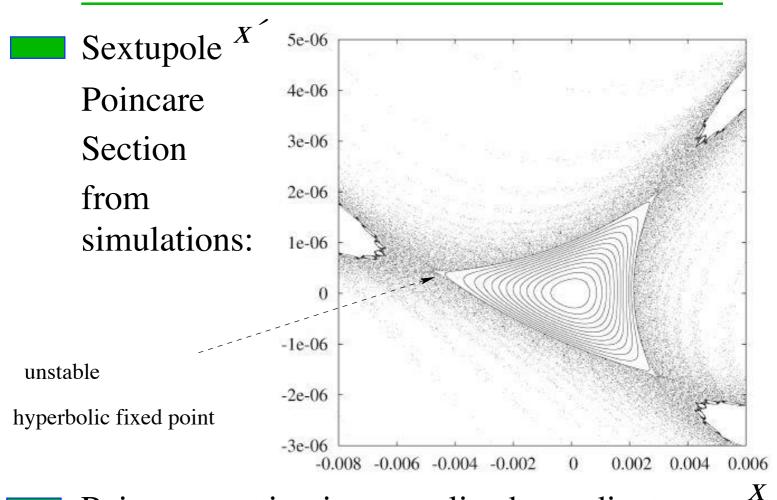
Poincare Section for 'r' and ϕ ':



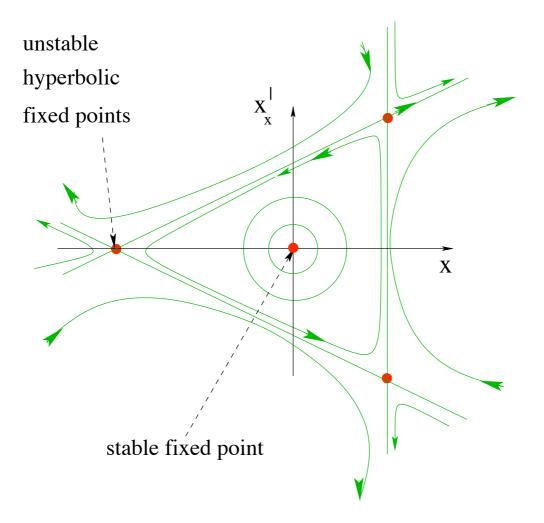
Poincare section in normalized coordinates:



Perturbation XIV

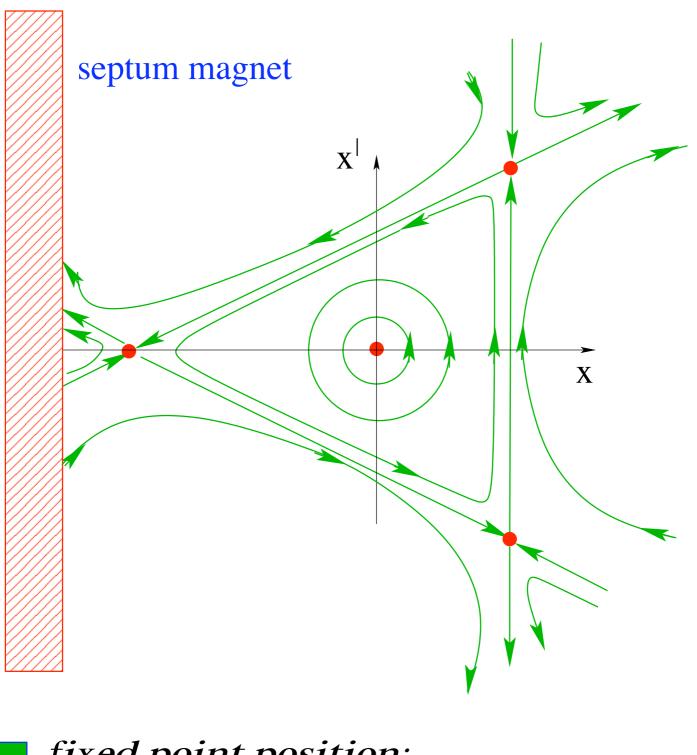


Poincare section in normalized coordinates:



Perturbation XVI

slow extraction:



fixed point position:

 $r_{\text{fixed point}} = \frac{16 \pi \left(Q - \frac{p}{3}\right)}{l \cdot k_2 \cdot \beta^{3/2}}$

changing the tune during extraction!

Perturbation XVII

octupole perturbation:

$$\Delta \mathbf{r}_{i} = \boldsymbol{l} \cdot \mathbf{k}_{3} \cdot \mathbf{x}_{i}^{3} \sqrt{\beta} \cdot \sin(\phi_{i})/6$$

with: $x_i = \sqrt{\beta \cdot r \cdot \cos(\phi_i)}$

 $\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{3} \cdot \mathbf{r}_{i}^{3} \beta^{2} \cdot \left[2 \sin(2\phi_{i}) + \sin(4\phi_{i})\right] / 48$

sum over many turns: $\phi_i = 2\pi Q \cdot i + \phi_0$

r = 0 unless: Q = p, p/2, p/4

tune change (first order in the perturbation):

$$2\pi \Delta Q_{i} = l \cdot k_{3} r_{i}^{2} \beta^{2} [4 \cos(4\pi Q i + 2\phi_{0}) + 3 + \cos(8\pi Q i + 4\phi_{0})]/48$$

sum over many turns (unless: Q = p or Q = p/4):

$$\rightarrow \langle \Delta Q \rangle = l \cdot k_3 \cdot r^2 \cdot \beta^2 / 16 / 2\pi$$

Perturbation XVIII

detuning with amplitude:

particle tune depends on particle amplitude

->> tune spread for particle distribution

 \rightarrow install octupoles in the storage ring

→ distribution covers more resonances

in the tune diagram

avoid octupoles in the storage ring

requires a delicate compromise

Poincare section topology: Q = p/4 and apply method of averaging

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{3} \cdot \mathbf{r}_{i}^{3} \cdot \beta^{2} \cdot \frac{\sin(4\phi_{i})}{48}$$

$$\Delta \phi_{i} = \mathbf{l} \cdot \mathbf{k}_{3} \cdot \mathbf{r}_{i}^{2} \cdot \beta^{2} \cdot [3 + \cos(4\phi_{i})] / 48 + 2\pi Q$$

Perturbation XIX

fixed point conditions: $Q_0 \le p/4$; $k_3 > 0$ $\Delta r / turn = 0$ and $\Delta \phi / turn = 2\pi p / 4$ $\Delta \mathbf{r} = \mathbf{l} \cdot \mathbf{k}_{3} \cdot \mathbf{r}_{i}^{3} \beta^{2} \cdot \sin(4\phi_{i}) / 48$ with: $\Delta \phi_{i} = 2\pi Q_{0} + l \cdot k_{3} \cdot r_{i}^{2} \beta^{2} [3 + \cos(4\phi_{i})] / 48$ $\phi_{\text{fixed point}} = \pi/2; \pi; 3\pi/2; 2\pi$ $\mathbf{r}_{\text{fixed point}} = \sqrt{\frac{96 \pi (p/4 - Q_0)}{l k_3 \beta^2 (3+1)}}$ $\phi_{\text{fixed point}} = \pi/4; 3\pi/4; 5\pi/4; 7\pi/4$ $\mathbf{r}_{\text{fixed point}} = \sqrt{\frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3-1)}}$

Perturbation XX

fixed point stability for single octupole kick:

Jacobian matrix

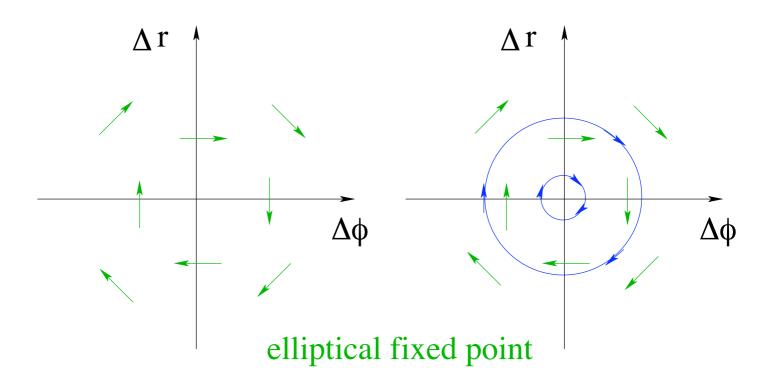
$$\frac{\partial r_{i+1}}{\partial r_i} = 1; \qquad \frac{\partial r_{i+1}}{\partial \phi_i} = \frac{+}{4} \mathcal{l} \cdot k_3 \cdot \beta^2 \cdot r_{fixed point}^3 / 48$$

$$\frac{\partial \phi_{i+1}}{\partial r_i} = + \mathbf{l} \cdot k_3 \cdot \beta^2 \cdot r (3 \pm 1) / 24; \qquad \frac{\partial \phi_{i+1}}{\partial \phi_i} = 1$$

•
$$\Delta \mathbf{r}_{i+1} = \pm 4 \mathbf{l} \cdot \mathbf{k}_3 \cdot \beta^2 \cdot \mathbf{r}_{\text{fixed point}}^3 / 48 \cdot \Delta \phi_i$$

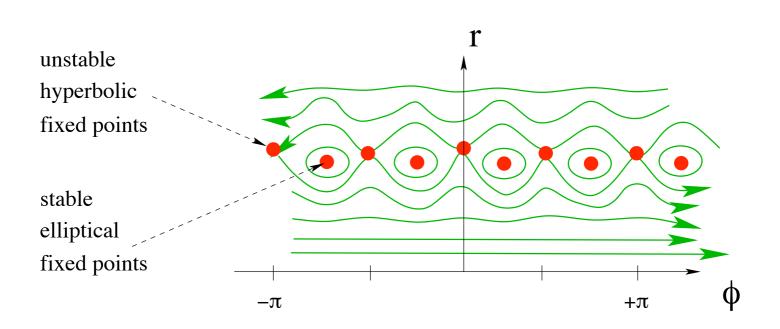
$$\Delta \phi_{i+1} = \boldsymbol{l} \cdot \mathbf{k}_{3} \cdot \boldsymbol{\beta}^{2} (3 \pm 1) / 24 \cdot \Delta \mathbf{r}_{i}$$

Stability for '-' sign and $k_3 > 0$?



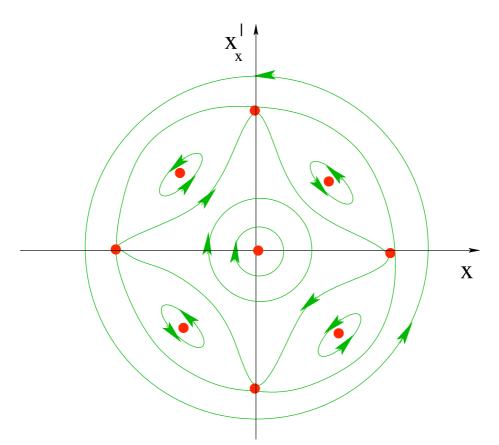
Perturbation XXI

Poincare Section for 'r' and ϕ ':

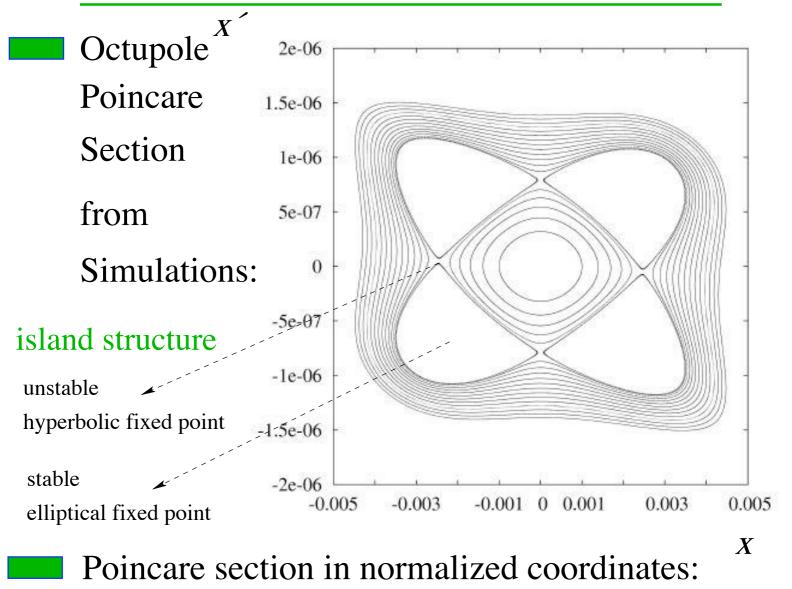


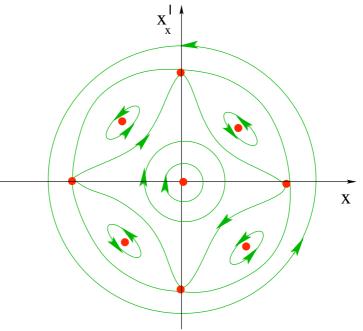
island structure

Poincare section in normalized coordinates:



Perturbation XXII





generic signature of non-linear resonances:

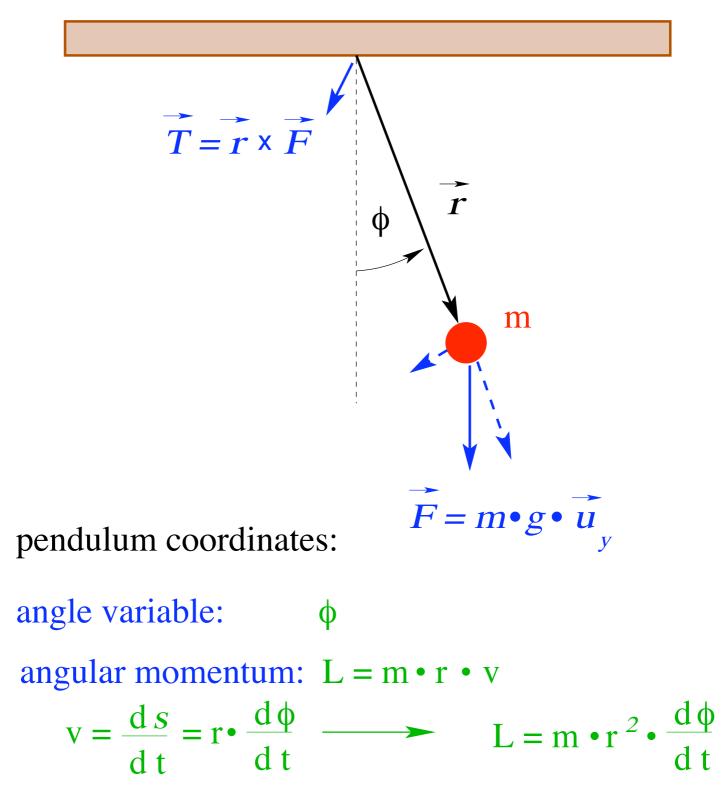
chain of resonance islands

Pendulum Dynamics I

generic signature of non-linear resonances:

chain of resonance islands

pendulum dynamics:



Pendulum Dynamics II

equations of motion:

$$\frac{d\phi}{dt} = \frac{1}{m \cdot r^{2}} \cdot L \qquad \qquad \frac{dL}{dt} = -r \cdot g \cdot m \cdot \sin(\phi)$$

$$| \text{generic form:} \qquad \qquad \frac{d\phi}{dt} = G \cdot p \qquad \qquad \frac{dp}{dt} = -F \cdot \sin(\phi)$$

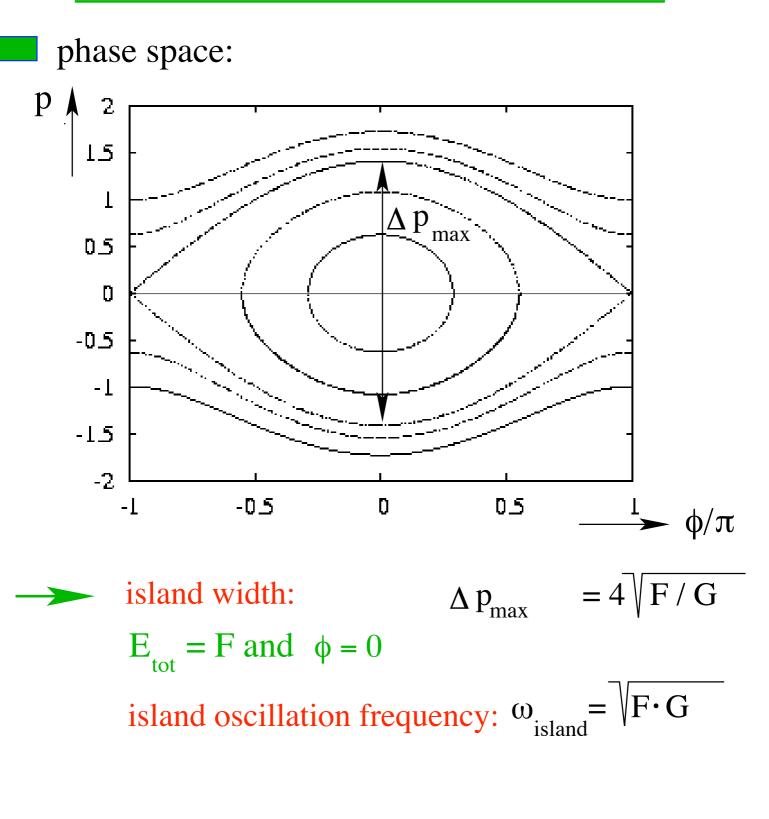
$$| \text{constant of motion:} \qquad E_{tot} = E_{kin} + U_{pot}$$

$$| \text{constant of motion:} \qquad \qquad E_{kin} = \frac{1}{2} \quad G \cdot p^{2} \qquad U_{pot} = -F \cdot \cos(\phi)$$

$$| \text{solution:} \qquad \qquad \frac{d\phi}{dt} = G \cdot p \qquad p = \sqrt{[E + F \cdot \cos(\phi)]} \cdot \sqrt{\frac{2}{G}}$$

$$| \text{constant of motion:} \qquad \qquad \qquad \frac{d\phi}{dt} = G \cdot p \qquad p = \sqrt{[E + F \cdot \cos(\phi)]} \cdot \sqrt{\frac{2}{G}}$$

Pendulum Dynamics III



pendulum motion:

libration:oscillation around stable fixed pointrotation:continuous increase of phase variableseparatrix:separatrion between the two types

Cylindrical Coordinates I

linear solution:

 $x = \sqrt{\beta} \cdot \sqrt{R} \cdot \cos(\phi) \quad x' = -\sqrt{R} \cdot \sin(\phi) / \sqrt{\beta}$

with:
$$\frac{d\phi}{ds} = \omega = \frac{2\pi Q}{L} = \frac{1}{\beta}$$

perturbed Hill's equation:

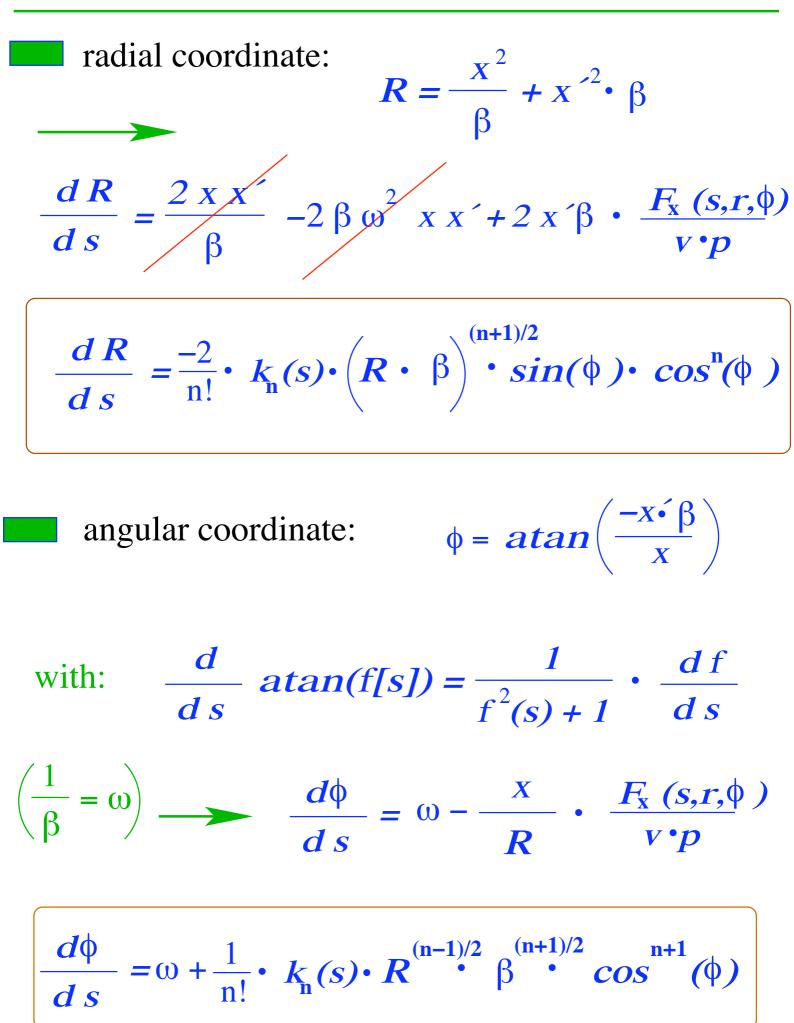
$$\frac{d^{2}x}{ds^{2}} + \omega^{2} \cdot x = \frac{F_{x}(x,y)}{v \cdot p}$$

$$\longrightarrow \qquad x'' = \frac{-1}{n!} \cdot k_{n}(s) \cdot x^{n} - \omega^{2} \cdot x$$

equation of motion in cylindrical coordinates:

 $\frac{d\phi}{ds} = \frac{d\phi}{dx} \cdot x' + \frac{d\phi}{dx'} \cdot x''$ $\frac{dR}{ds} = \frac{dR}{dx} \cdot x' + \frac{dR}{dx'} \cdot x''$

Cylindrical Coordinates II



Examples for Equation of Motion I

quadrupole: n = 1

$$\frac{dR}{ds} = -k_1(s) \cdot R \cdot \beta \cdot \sin(2\phi)$$

$$\frac{d\phi}{ds} = \omega + k_1(s) \cdot \beta \cdot \left(1 + \cos(2\phi)\right) / 2$$

similar expressions as with the map approach but we can now treat distributed perturbations!

sextupole:
$$n = 2$$

$$\frac{dR}{ds} = \frac{-1}{4} \cdot k_2(s) \cdot \left(R \cdot \beta\right)^{3/2} \left(sin(\phi) + sin(3\phi)\right)$$
$$\frac{d\phi}{ds} = \omega + \frac{1}{8} \cdot k_2(s) \cdot R^{1/2} \beta^{3/2} \left(3cos(\phi) + cos(3\phi)\right)$$

similar expressions as with the map approach

Examples for Equation of Motion II

octupole:
$$n = 3$$

$$\frac{dR}{ds} = \frac{-1}{24} \cdot k_3(s) \cdot R^2 \cdot \beta^2 \cdot \left(2 \sin(\phi) + \sin(4\phi)\right)$$
$$\frac{d\phi}{ds} = \omega + \frac{1}{48} \cdot k_3(s) \cdot R \cdot \beta^2 \cdot \left(3 + 4\cos(2\phi) + \cos(4\phi)\right)$$

one single kick at one location:

►
$$\frac{F(s)}{v \cdot p} = I k_n(s) \cdot \delta_1(s - s_0)$$

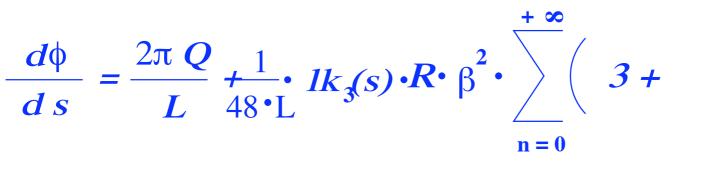
with: $\delta = \begin{cases} 1 \text{ for } s = s + n \cdot L \\ 0 \text{ else} \end{cases}$
► Fourier series of δ -function:

 $\frac{F(s)}{v \cdot p} = 1 \underset{n}{k} (s) \cdot \frac{1}{L} \sum_{\substack{n = -\infty}}^{+\infty} \cos(n \cdot 2\pi \cdot s/L)$

Examples for Equation of Motion III

single octupole magnet at s_0 : n = 3

$$\frac{dR}{ds} = \frac{-1}{24 \cdot L} \cdot lk (s) \cdot R^2 \cdot \beta^2 \cdot \left(2 \sin(\phi + n \cdot 2\pi \cdot s/L) + \sin(4\phi + n \cdot 2\pi \cdot s/L)\right)$$



+2 $cos(\phi + n \cdot 2\pi \cdot s/L)$

+ $cos(4\phi + n \cdot 2\pi \cdot s/L)$

resonance:
$$\phi = \frac{2\pi Q}{L} \cdot s + \phi_0$$

with $\overline{Q} = N + 1/n$

all but one term change rapidly with s!
 method of averaging!

Examples for Equation of Motion IV

 $1/4 \text{ resonance} : \qquad p = 4$

$$\frac{dR}{ds} = \frac{-1}{24 \cdot L} Ik_3 \cdot R^2 \beta^2 \cdot sin(4\phi_0)$$

$$\frac{d\phi}{ds} = \frac{2\pi Q}{L} + \frac{1}{48 \cdot L} Ik_3 \cdot R \cdot \beta^2 \cdot (3 + cos(4\phi_0))$$
fixed point conditions: $Q_0 \leq p/4$; $k_3 > 0$

$$\Delta R / turn = 0 \quad \text{and} \quad \Delta \phi / turn = 2\pi p / 4$$

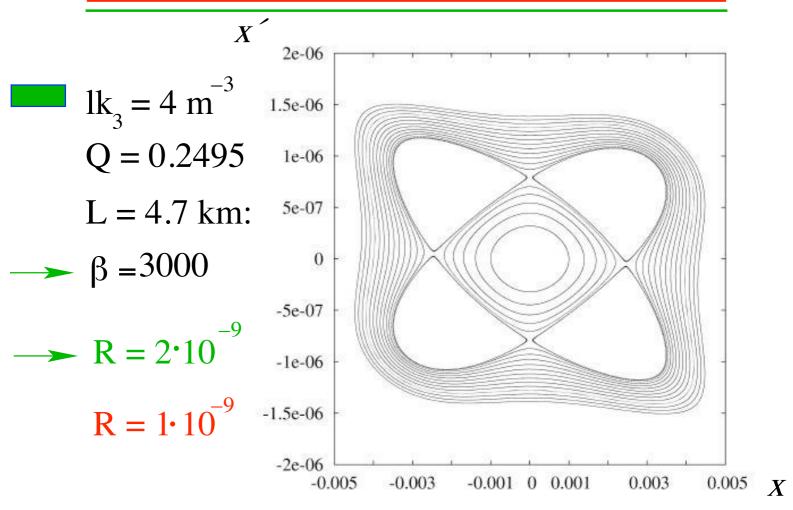
$$\Rightarrow \quad \phi_{\text{fixed point}} = \pi/2; \pi; 3\pi/2; 2\pi$$

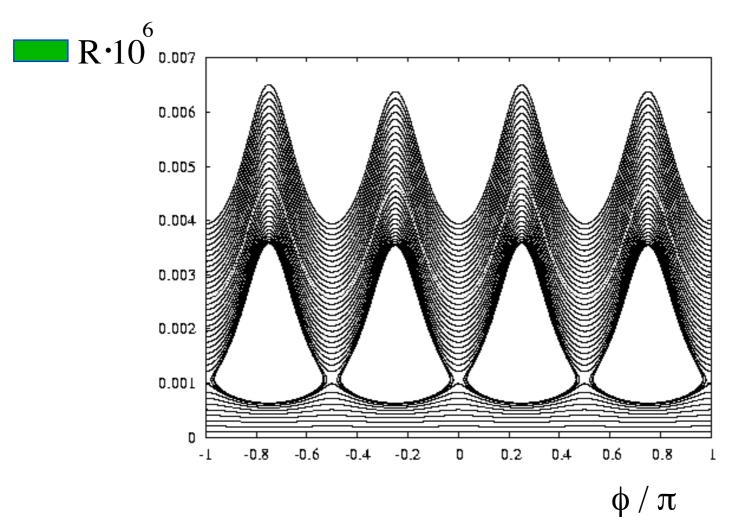
$$R_{\text{fixed point}} = \frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3+1)}$$

$$\phi_{\text{fixed point}} = \frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3+1)}$$

$$R_{\text{fixed point}} = \frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3-1)}$$

Example Octupole





Examples for Equation of Motion V

expand motion around stabel fixed point:

$$\phi = \frac{2\pi Q}{L} s + \phi_{fix} + \Delta \phi$$

$$R = R_{fix} + \Delta R \quad \text{and keep only first order in} \Delta R$$

$$\frac{d\Delta R}{ds} = \frac{-1}{24 \cdot L} I k_3 \cdot R_{fix}^2 \cdot \beta^2 \cdot sin(4\Delta\phi)$$

$$\frac{d\phi}{ds} = \frac{2\pi Q_0}{L} + \frac{1}{48 \cdot L} I k_3 \cdot R_{fix} \cdot \beta^2 \cdot (3 - cos(4\Delta\phi))$$

$$+ \frac{1}{48 \cdot L} I k_3 \cdot \Delta R \cdot \beta^2 \cdot (3 - cos(4\Delta\phi))$$

change to new angular variable:

 $\varphi = 4\phi - 8\pi \mathbf{Q} \cdot \mathbf{s} / L \qquad \mathbf{r} = \mathbf{4} \cdot \Delta \mathbf{R}$

with
$$Q = Q_0 + \frac{1}{48 \cdot \pi} \cdot R_3 \cdot R_{\text{fix}} \cdot \beta^2$$

Examples for Equation of Motion VI

pendulum approximation:

$$\frac{dr}{ds} = -F \cdot \sin(\varphi)$$
with $F = \frac{4}{24 \cdot L} \cdot lk_3 \cdot \beta^2 \cdot R_{fix}^2$

$$\frac{d\varphi}{ds} = G \cdot r$$
and $G = \frac{1}{24 \cdot L} \cdot lk_3 \cdot \beta^2$

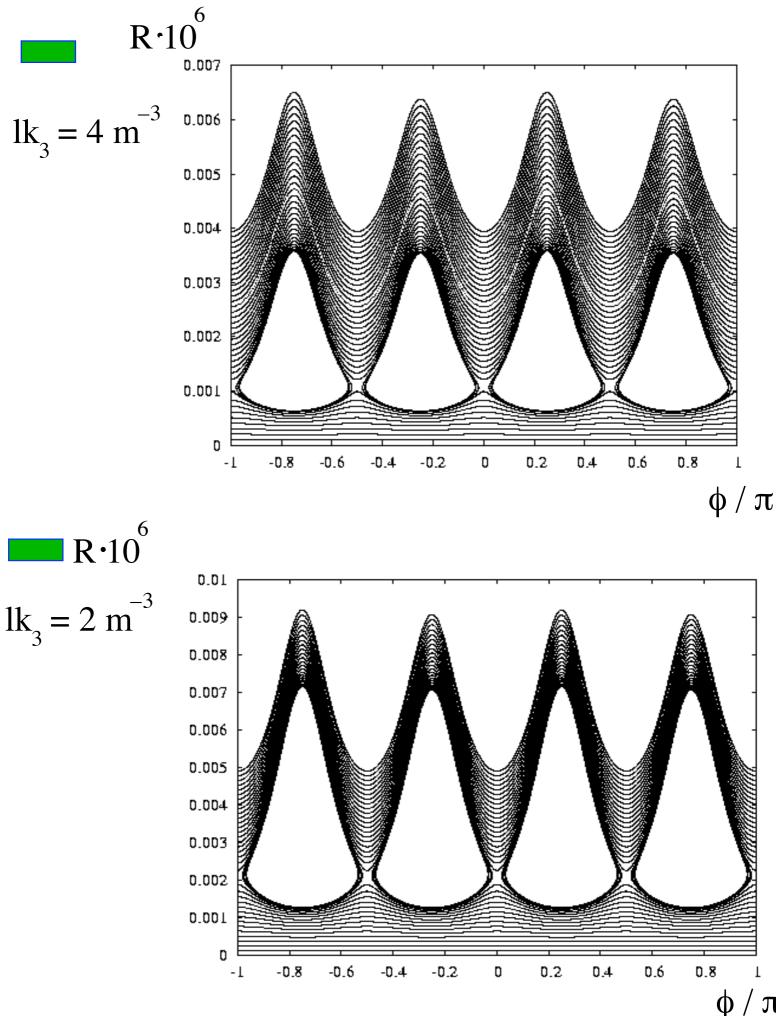
resonance width:

$$\Delta r_{\max} = \overline{4} F / G = 8 \cdot \Delta R_{\text{fix}}$$

 $\longrightarrow \Delta R_{\text{max}} = 2 \cdot \Delta R_{\text{fix}}$

resonance width equals twice the stable fixed point resonance width increases with decreasing k_3 !

Example Octupole

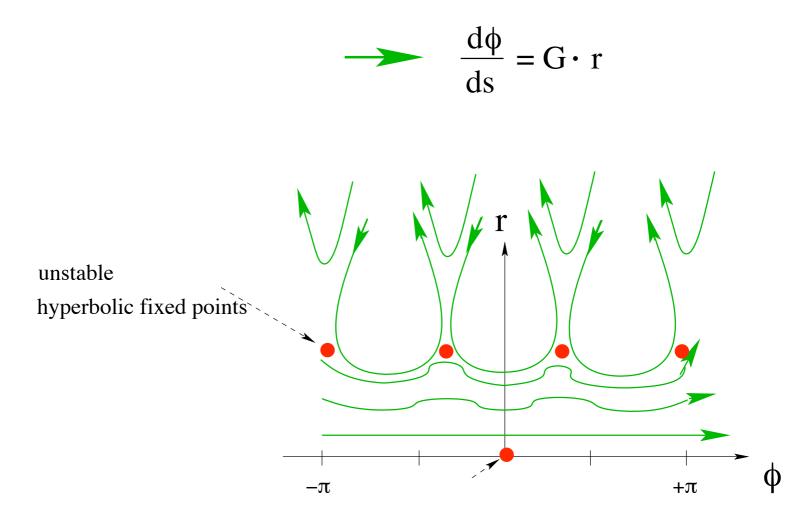


 $/\pi$

Example Sextupole

why did we not find islands for a sextupole?

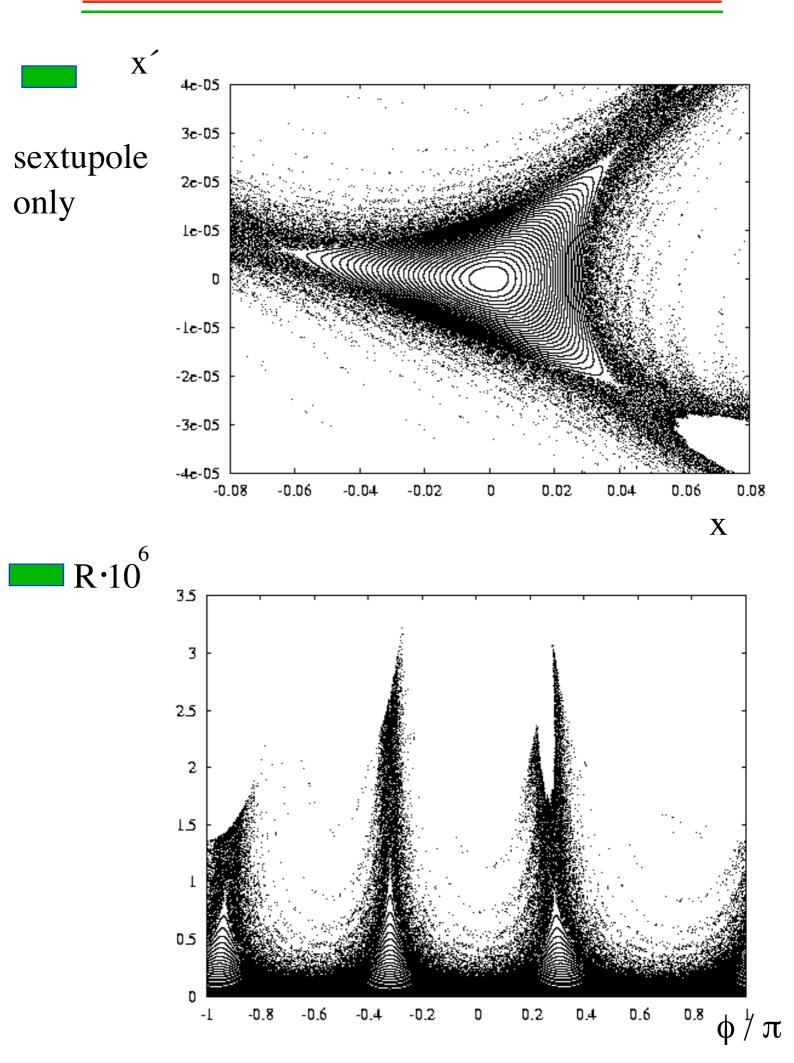
The pendulum approximation requires an amplitude dependent tune!



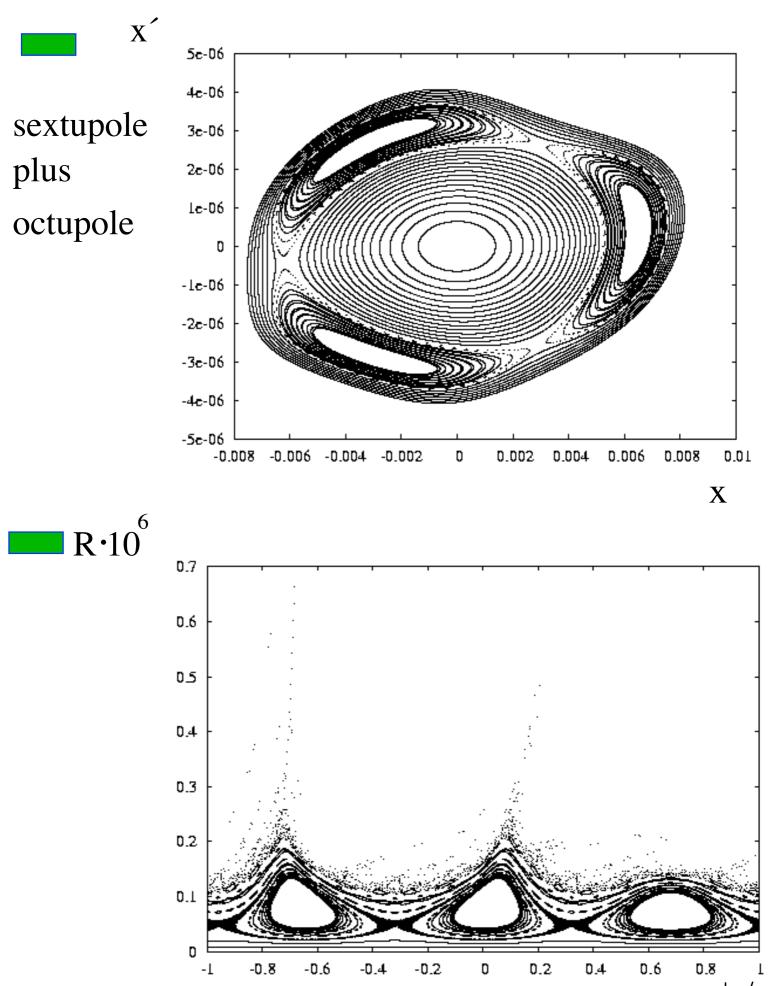
the sextupole perturbation has not amplitude dependent tune (to first order)

stabilization by an octupole term?

Example Sextupole



Example Sextupole + Octupole



φ/π

Higher Order

so far we assumed on the right-hand side:

$$\phi = 2\pi Q_0 \cdot s/L + \phi_{fix} + \Delta \phi$$
$$R = R_{fix} + \Delta R$$

and kept only first order terms in ΔR higher order perturbation treatment:

 $R(s) = R_0(s) + \varepsilon R_1(s) + \varepsilon^2 R_2(s) + O(\varepsilon^3)$

 $\phi(s) = \phi_0(s) + \varepsilon \phi_1(s) + \varepsilon^2 \phi_2(s) + O(\varepsilon^3)$

with: $\varepsilon = (\beta R_{fix})^{(n+1)/2} lk_n / L$

match powers of ε :

match powers of ´ɛ´ solve lowest order without perturbation substitute solution in next higher order equations solve next order etc

Higher Order II

expand equation of motion into a Taylor series around zero order solution

$$\frac{\mathrm{d}r}{\mathrm{d}s} = F(r,\phi) \qquad \qquad \frac{\mathrm{d}\phi}{\mathrm{d}s} = G(r,\phi)$$

single sextupole kick:

 $F = f(R) \cdot [\sin(3\phi) + 3\sin(\phi)]$ $G = g(R) \cdot [\cos(3\phi) + 3\cos(\phi)] + \frac{2\pi Q}{L}$

$$\frac{\mathrm{d}\mathbf{R}}{\mathrm{d}\mathbf{s}} = \varepsilon \cdot \mathbf{f} + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{r}} \cdot \mathbf{r}_{1} + \frac{\partial \mathbf{F}}{\partial \phi} \cdot \phi_{1}\right] \cdot \varepsilon^{2} + O(\varepsilon^{3})$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}\mathbf{s}} = \frac{2\pi Q}{L} + \varepsilon \cdot \mathbf{g} + \left[\frac{\partial \mathbf{g}}{\partial \mathbf{r}} \cdot \mathbf{r}_{1} + \frac{\partial \mathbf{G}}{\partial \phi} \cdot \phi_{1}\right] \cdot \varepsilon^{2} + O(\varepsilon^{3})$$

Higher Order III

match powers of ε and solve equation of motion in ascending order of ε^{n} :

zero order: $\phi_0(s) = \frac{2\pi Q}{L} \cdot s + \phi_0$ $R_0(s) = R_0$ (Q = p + v)

substitute into equation of motion and solve for $\phi_1(s)$ and $r_1(s)$

first order:

$$\phi_{1}(s) \propto \left[\sin\left(\frac{6\pi Q}{L} \cdot s + 3\phi_{0}\right)/3 + 3 \cdot \sin\left(\frac{2\pi Q}{L} \cdot s + \phi_{0}\right) \right]$$

$$R_{1}(s) \approx \left[\cos(\frac{6\pi Q}{L} \cdot s + 3\phi_{0})/3 + 3 \cdot \cos(\frac{3\pi Q}{L} \cdot s + \phi_{0}) \right]$$

Perturbation IV

second order:

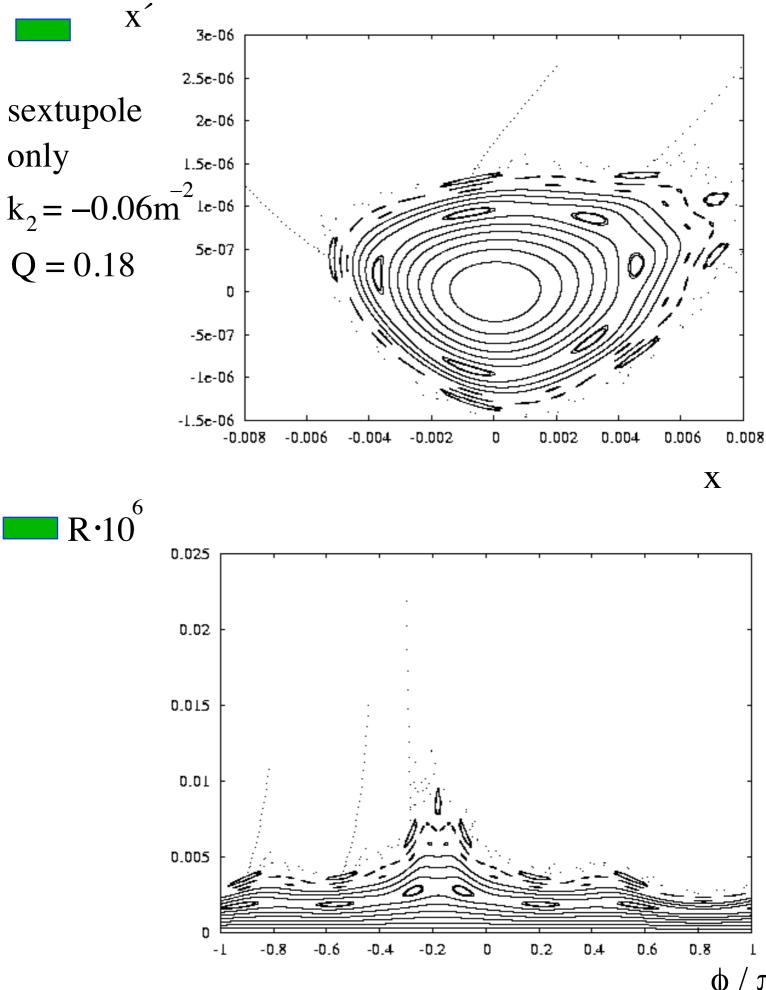
 \rightarrow substitute $\phi_1(s)$ and $r_1(s)$ into equation

of motion and order powers of ϵ^2

you get terms of the form: $\frac{dr_2}{ds} = \left[\frac{\partial f}{\partial r} \cdot r_1 + \frac{\partial f}{\partial \phi} \cdot \phi_1\right]$ $\frac{\mathrm{d}\phi}{\mathrm{d}s} = \left[\frac{\partial g}{\partial r} \cdot r_1 + \frac{\partial g}{\partial \phi} \cdot \phi_1\right]$ $\sin(3 \phi) \cdot \cos(3 \phi); \ \sin(3 \phi) \cdot \cos(\phi); \ \sin(\phi) \cdot \cos(\phi)$ $\cos(3\phi) \cdot \cos(3\phi); \cos(3\phi) \cdot \cos(\phi); \cos(\phi) \cdot \cos(\phi)$ $\frac{d\phi}{ds} \propto \cos(6\phi); \cos(4\phi); \cos(2\phi); 1$ $\frac{\mathrm{dr}}{\mathrm{ds}} \propto \sin(6 \,\phi); \sin(4 \,\phi); \sin(2 \,\phi)$ higher order resonances: ϵ^n

a single perturbation generates ALL resonancesdriving term strength and resonance widthdecrease with increasing order!

Perturbation V

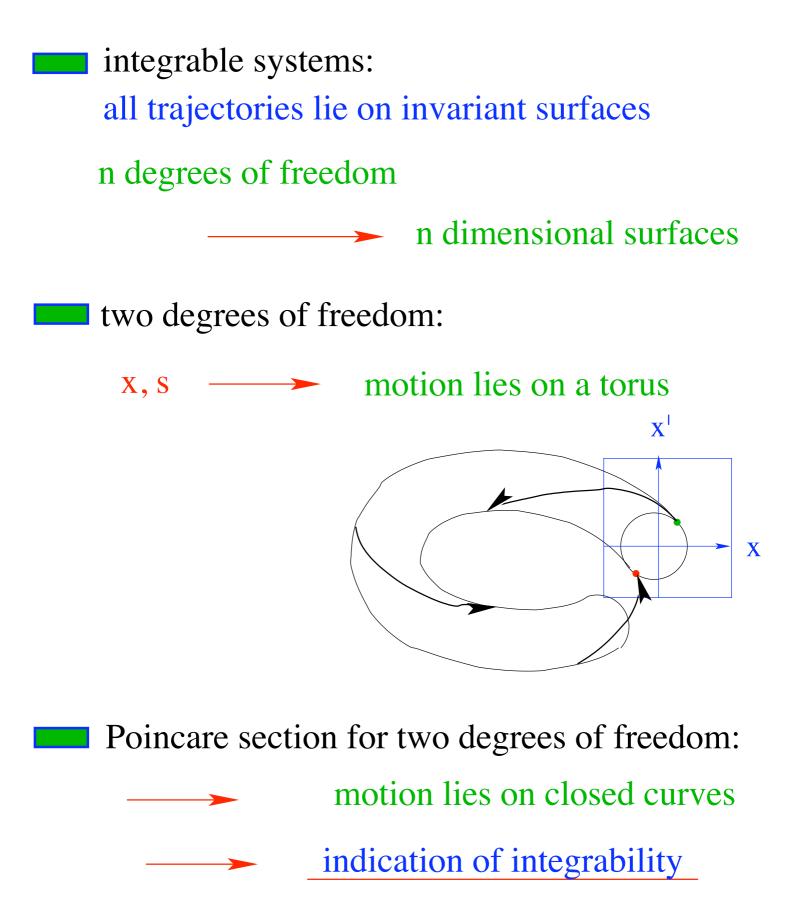


/π

Integrable Systems

trajectories in phase space do not intersect

deterministic system



Non-Integrable Systems

'chaos' and non-integrability:

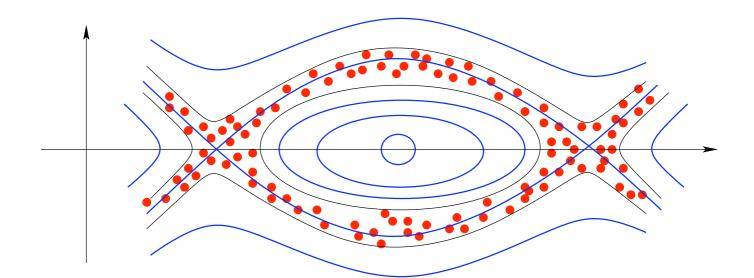
so far we removed all but one resonance (method of averaging)

dynamics is integrable and therefore
 predictable

re-introduction of the other resonances 'perturbs' the separatrix motion

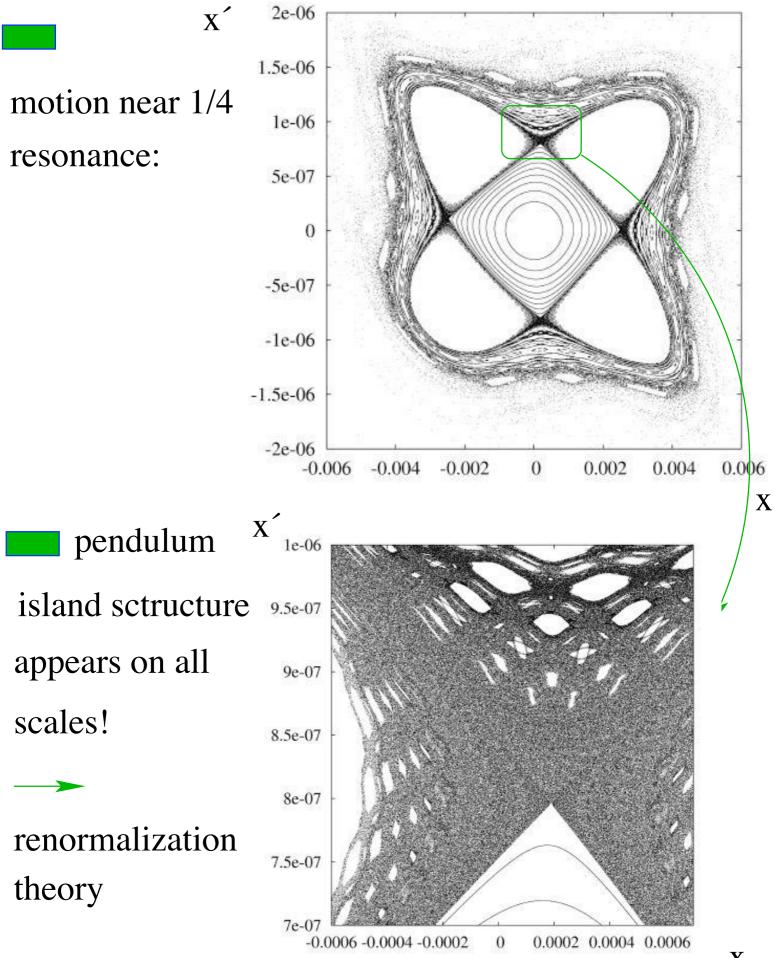
→ motion can 'change' from libration to rotation

generation of a layer of 'chaotic motion'



no hope for exact deterministic solution in this area!

Sextupole + Octupole



Non-Integrable Systems

slow particle loss:

particles can stream along the 'stochastic layer' for 1 degree of freedom (plus 's' dependence) the particle amplitude is bound by neighboring integrable lines

not true for more than one degree of freedom

global 'chaos' and fast particle losses:

if more than one resonance are present their resonance islands can overlap

the particle motion can jump from one resonance to the other

— 'global chaos'

fast particle losses and dynamic aperture

Summary

Non-linear Perturbation:

amplitude growth

detuning with amplitude

coupling

Complex dynamics:

3 degrees of freedom

- 1 invariant of the motion
- *+ non–linear dynamics*

no global analytical solution!

analytical analysis relies on

perturbation theory