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I.) Reminder: I.) Reminder: thethe ideal ideal worldworld
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Beam parameters of a typical
high energy ring:     Ip = 100 mA
particles per bunch: N ≈ 10 11

TheThe Beta Beta FunctionFunction

... question: do we really have to calculate some 1011 single particle trajectories ?

Example: HERA Bunch pattern

( ) ( ) cos( ( ) )= ⋅ +x s s sε β ψ φ

0

( )
( )

= ∫
s dss

s
ψ

β D

β



2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

BeamBeam EmittanceEmittance and Phase and Phase SpaceSpace EllipseEllipse
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II.) II.) EmittanceEmittance ... so ... so sorrysorry .constε ≠

According to Hamiltonian mechanics: q = position = x
phase space diagram relates the variables q and p        px = momentum = mcγβx

Liouvilles Theorem: p dq const=∫

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

xdx dx dtx
ds dt ds

β
β

′ = = = where β = v/c

xp dq const mc dx mc x dxγβ γβ ′= = =∫ ∫ ∫

1x dxε
βγ

′⇒ = ∝∫ the beam emittance shrinks
during acceleration ε ~ 1 / γ

…… thethe notnot so ideal so ideal worldworld



Momentum error: 0p
p
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neglecting higher order terms …
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p ρρ
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Momentum spread of the beam adds a term on the r.h.s. of the equation of motion.
inhomogeneous differential equation.

Force acting on the particles

Question: do you remember yesterday on page 11 … sure you do: 

III.) DispersionIII.) Dispersion
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general solution:
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Normalise with respect to Δp/p:
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Dispersion function D(s) 

* is that special orbit, an ideal particle would have for Δp/p = 1

* the orbit of any particle is the sum of the well known xβ and the dispersion

* as D(s) is just another orbit it will be subject to the focusing properties of the lattice
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Closed orbit for Δp/p > 0
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Matrix formalism:
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DispersionDispersion
Example: homogenous dipole field
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Amplitude of Orbit oscillation
contribution due to Dispersion ≈ beam size
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Example: Drift
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Example: Dipole
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IV.)IV.) MomentumMomentum CompactionCompaction FactorFactor::

The dispersion function relates the momentum error of a particle to the horizontal 
orbit coordinate.
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inhomogeneous differential equation

general solution

But it does much more:
it changes the length of the off - energy - orbit !!
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dsx
dl

design orbit

particle trajectory

particle with a displacement x to the design orbit
path length dl ... 
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circumference of an off-energy closed orbit
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* The lengthening of the orbit for off-momentum

and the bending radius.
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Definition:

αcp combines via the dispersion function 
the momentum spread with the longitudinal
motion of the particle.

o

dipoledipoles
dipoles

DldssD *)()( Σ=∫



Question: what will happen, if you do not make too
many mistakes and your particle performs
one complete turn ?

V.) Tune and QuadrupolesV.) Tune and Quadrupoles
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Transfer Matrix from point „0“ in the lattice to point „s“: 
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Definition: phase advance
of the particle oscillation
per revolution in units of 2π
is called  tune
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Quadrupole Error in Quadrupole Error in thethe LatticeLattice

optic perturbation described by thin lens quadrupole

0ψ ψ ψ= +Δ

rule for getting the tune

Quadrupole error Tune Shift

ideal storage ringquad error
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remember the old fashioned trigonometric stuff and assume that the error is small !!!

1≈ ψ≈Δ

and referring to Q instead of ψ:
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a quadrupol error leads to a shift of the tune:

! the tune shift is proportional to the β-function at the quadrupole
!!  field quality, power supply tolerances etc are much tighter at places where β is large
!!!   mini beta quads: β ≈ 1900

arc quads: β ≈ 80

!!!! β is a measure for the sensitivity of the beam

Example: measurement of β in a storage ring:
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VI.) VI.) ChromaticityChromaticity: : ξξ

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p
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definition of chromaticity:

ChromaticityChromaticity: : ξξ

in case of a  momentum spread:

… which acts like a quadrupole error in the machine and leads to a tune spread:
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Problem: chromaticity is generated by the lattice itself !!

ξ is a number indicating the size of the tune spot in the working diagram, 
ξ is always created if the beam is focussed

it is determined by the focusing strength k of all quadrupoles

k = quadrupole strength
β = betafunction indicates the beam size … and even more the sensitivity of  

the beam to external fields

Example: HERA

HERA-p:      ξ = -70 … -80
Δ p/p = 0.5 *10-3

Q = 0.257 … 0.337

Some particles get very close to 
resonances and are lost 
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Sextupole Magnets: 

CorrectionCorrection of of ξξ::
1.) sort the particles acording to their momentum ( ) ( )D
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2.) apply a magnetic field that rises quadratically with x (sextupole field)
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ChromaticityChromaticity in in thethe FoDoFoDo LatticeLattice
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contribution of one FoDo Cell to the chromaticity of the ring:

using some TLC transformations ... ξ can be expressed in a very simple form:
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question: main contribution to ξ in a lattice … ?

Chromaticity

interaction region
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ResumeResume´:´:

beam emittance

dispersion orbit

momentum compaction

quadrupole error

chromaticity
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