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LargestLargest storagestorage ring:ring: TheThe Solar SystemSolar System

astronomical unit: average distance earth-sun
1AE ≈ 150 *106 km
Distance Pluto-Sun ≈ 40 AE

AE



HERA Storage Ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about v ≈ c
L = 1010-1011 km 

... several times Sun - Pluto and back

LuminosityLuminosity Run of a Run of a typicaltypical storagestorage ring:ring:

guide the particles on a well defined orbit („design orbit“)
focus the particles to keep each single particle trajectory
within the vacuum chamber of the storage ring, i.e. close to the design orbit.  



Lorentz force * ( )= + ×
r r rrF q E v B

„ ... in the end and after all it should be a kind of circular machine“
need transverse deflecting force

typical velocity in high energy machines: 83*10≈ ≈ m
sv c

old greek dictum of wisdom:
if you are clever,  you use magnetic fields in an accelerator wherever
it is possible.

But remember:  magn. fields act allways perpendicular to the velocity of the particle
only bending forces,   no „beam acceleration“

TransverseTransverse BeamBeam Dynamics:Dynamics:

0.) Introduction and Basic Ideas



circular coordinate system
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field map of a storage ring dipole magnet
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Magnetic field of a dipole magnet:

„radius of curvature, bending strength“

I.) I.) TheThe MagneticMagnetic Guide Guide FieldField

Dipole Magnets:

define the ideal orbit
homogeneous field created by two flat pole shoes

court. K. Wille



required:    focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field = − ⋅ = − ⋅z xB g x B g z

at the location of the particle trajectory: no iron, no current

0∇× = → = −∇
r r r r

B B V

the magnetic field can be
expressed as gradient of 
a scalar potential !

( , ) = ⋅V x z g xz

equipotential lines (i.e. the surface of the iron contour) = hyperbolas

Quadrupole Magnets:



Example:
heavy ion storage ring TSR

Calculation of the Quadrupole Field:

normalised quadrupole strength:

gradient of a 
quadrupole field:

g  k
/

=
p e

Separate Function Machines:

Split the magnets and optimise
them according to their job: 

bending, focusing etc 

INadjsdH
A

*==∫ ∫
rrrr

rgrB *)( =

2
02

r
nIg μ

=



II.) II.) TheThe equationequation of of motionmotion::

Linear approximation:

* ideal particle design orbit

* any other particle coordinates x, z small quantities
x,z << ρ

magnetic guide field: only linear terms in x & z of B 
have to be taken into account

Taylor Expansion of the B field:
2 3

2 3
z 0 2 3

1 1  B ( ) ...
2! 3!
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… what about the vertical plane:

Maxwell:
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Equation of Motion:
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●Consider local segment of a particle trajectory
... and remember the old days:
(Goldstein page 27)

radial acceleration:
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develop for small x:
2 2

2 (1 )− − = z
d x mv xm eB v
dt ρ ρ

x ρ<<

guide field in linear approx.
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Remarks:

2
1( ) 0′′ + − ⋅ =x k x
ρ

… there seems to be a focusing even without
a quadrupole gradient

„weak focusing of dipole magnets“

Mass spectrometer: particles are separated
according to their energy
and focused due to the 1/ρ
effect of the dipole

Equation for the vertical motion:

0′′ + ⋅ =z k z

*
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K = const within a magnet

Differential Equation of harmonic oscillator …  with spring  constant K

1 2( ) cos( ) sin( )= ⋅ + ⋅x s a t a tω ωAnsatz:

general solution:  linear combination of two independent solutions

III.) Solution of III.) Solution of TrajectoryTrajectory EquationsEquations

Define …  hor. plane:

… vert. Plane:

21= −K kρ
* 0′′ + =y K y

=K k



Hor. Focusing Quadrupole  K > 0:

0 0
1( ) cos( ) sin( )′= ⋅ + ⋅x s x K s x K s
K

0 0( ) sin( ) cos( )′ ′= − ⋅ ⋅ + ⋅x s x K K s x K s

0

0
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For convenience expressed in matrix formalism:
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1cosh sinh

sinh cosh
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hor. defocusing quadrupole: K < 0

drift space: K = 0
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!     with the assumptions made, the motion in the horizontal and vertical planes are
independent  „ ... the particle motion in x & z is uncoupled“  



ThinThin LensLens Approximation:Approximation:
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sin cos
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matrix of a quadrupole lens

in many practical cases we have the situation:

1
= >> q

q
f l

kl ... focal length of the lens is much bigger than the length of the magnet

0→l kl const=limes: while keeping
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... usefull for fast (and in large machines still quite accurate)  „back on the envelope
calculations“ ... and for the guided studies !



focusing lens

dipole magnet

defocusing lens

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

*.....* * * *= etotal QF D QD B nd DM M M M M M

x(s)

0

typical values
in a strong
foc. machine:
x ≈ mm, x´ ≤ mrad s

court. K. Wille
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„C“ and „S“ = sin- and cos- like trajectories of the lattice structure, in other words the
two independent solutions of the homogeneous equation of motion



Tune: number of oscillations per turn

31.292
32.297

Relevant for beam stability:
non integer part

0.292*47.3 13.81kHz kHz=

IV.) Orbit & Tune:IV.) Orbit & Tune:

HERA revolution frequency:  47.3 kHz



Question: what will happen, if the particle performs a second turn ? 

x

... or a third one or ... 1010 turns

0

s



19th century:

Ludwig van Beethoven: „Mondschein Sonate“

Sonate Nr. 14 in cis-Moll (op. 27/II,   1801) 



Astronomer Hill:
differential equation for motions with periodic focusing properties
„Hill‘s equation“

Example: particle motion with
periodic coefficient

equation of motion: ( ) ( ) ( ) 0′′ − =x s k s x s

restoring force  ≠ const,                                        we expect a kind of quasi harmonic
k(s) = depending on the position s                oscillation:  amplitude & phase will depend
k(s+L) = k(s),   periodic function on the position s in the ring.



V.) V.) TheThe Beta Beta FunctionFunction

General solution of Hill´s equation:

( ) ( ) cos( ( ) )= ⋅ +x s s sε β ψ φ

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles 

ε, Φ = integration constants determined by initial conditions

Inserting (i) into the equation of motion … 

0

( )
( )

= ∫
s dss

s
ψ

β

Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice.
For one complete revolution: number of oscillations per turn „Tune“

1
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dsQ
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VI.) VI.) BeamBeam EmittanceEmittance and Phase and Phase SpaceSpace EllipseEllipse

(1) ( ) * ( ) *cos( ( ) )= +x s s sε β ψ φ

{ }(2) ( ) * ( )*cos( ( ) ) sin( ( ) )
( )

′ = − + + +x s s s s
s
ε α ψ φ ψ φ

β

( )cos( ( ) )
* ( )

+ =
x ss

s
ψ φ

ε β

general solution of
Hill equation

from (1) we get

Insert into (2) and solve for ε

2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

* ε is a constant of the motion … it is independent of „s“
* parametric representation of an ellipse in the x x‘ space
* shape and orientation of ellipse are given by α, β, γ
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2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

BeamBeam EmittanceEmittance and Phase and Phase SpaceSpace EllipseEllipse

x´

xεβ

εα β−εγ

εα γ−

●

●

●

●

●

●
x(s)

s

Liouville: in reasonable storage rings 
area in phase space is constant.

A = π*ε=const

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, 
cannot be changed by the foc. properties. 

Scientifiquely spoken: area covered in transverse x, x´ phase space … and it is constant !!! 



βεσ *=

Ensemble of many (...all) possible particle trajectories

( ) * ( ) *cos( ( ) )= +x s s sε β ψ φ
max. amplitude of all 
particle trajectories

( ) * ( )=x s sε β

Beam Dimension: 
determined by two parameters

Example: transverse beam profile
measured using a wirescanner

HERA beam size



VII.) Transfer Matrix MVII.) Transfer Matrix M … yes we had the topic already

{ }( ) ( ) cos ( )= +x s s sε β ψ φ

{ } { }( ) ( ) cos ( ) sin ( )
( )

−′ ⎡ ⎤= + + +⎣ ⎦x s s s s
s
ε α ψ φ ψ φ

β

general solution
of Hill´s equation

remember the trigonometrical gymnastics:  sin(a+b)= … etc

( )( ) cos cos sin sin= −s s sx s ε β ψ φ ψ φ

[ ]( ) cos cos sin sin sin cos cos sin−′ = − + +s s s s s s
s

x s ε α ψ φ α ψ φ ψ φ ψ φ
β

starting at point s(0) = s0 , where we put Ψ(0) = 0

0

0

cos ,=
xφ
εβ

0 0
0 0

0

1sin ( )′= − +
xx αφ β

ε β

inserting above …



{ } { }0 0 0 0
0

( ) cos sin sin ′= + +s
s s s sx s x xβ ψ α ψ β β ψ

β

( ){ } { }0
0 0 0 0

0

1( ) cos (1 )sin cos sin′ ′= − − + + −s s s s s s s
ss

x s x xβα α ψ α α ψ ψ α ψ
ββ β

which can be expressed ... for convenience ... in matrix form
0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠s

x x
M

x x

( )

( )

0 0
0

0 0 0

0

cos sin sin

( ) cos (1 )sin cos sin

⎛ ⎞
+⎜ ⎟

⎜ ⎟= ⎜ ⎟− − +⎜ ⎟−⎜ ⎟
⎝ ⎠

s
s s s s

s s s s
s s s

s

M

s

β ψ α ψ β β ψ
β

α α ψ α α ψ β ψ α ψ
ββ β

* we can calculate the single particle trajectories between two locations in the ring, 
if we know the α β γ at these positions. 

* and nothing but the α β γ at these positions. 

*     …  !



Stability Criterion:

Question: what will happen, if we do not make too
many mistakes and your particle performs
one complete turn ?

Matrix for 1 turn:

cos sin sin
sin cos sin
+⎛ ⎞

=⎜ ⎟− −⎝ ⎠
turn s turn s turn

s turn turn s turn
M

ψ α ψ β ψ
γ ψ ψ α ψ

1 0
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0 1
α β

ψ ψ
γ α

⎛ ⎞ ⎛ ⎞
= ⋅ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

1 J
Matrix for N turns:

( )1 cos sin 1 cos sin= ⋅ + ⋅ = ⋅ + ⋅NNM J N J Nψ ψ ψ ψ

The motion for N turns remains bounded, if the elements of MN remain bounded

real=ψ 1cos <↔ ψ 2)( <↔ MTrace



VIII.) Transformation of VIII.) Transformation of αα, , ββ, , γγ

consider two positions in the storage ring: s0  , s
0

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠s s

x x
M

x x
since ε = const:

2 2

2 2
0 0 0 0 0 0 0

2

2

x xx x

x x x x
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express x0 , x´0 as a function of  x, x´.
... remember W = CS´-SC´ = 1

0

0
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x S x Sx
x C x Cx

inserting into ε 2 22′ ′= + +x xx xε β α γ

2 2
0 0 0( ) 2 ( )( ) ( )′ ′ ′ ′ ′ ′ ′ ′= − + − − + −Cx C x S x Sx Cx C x S x Sxε β α γ

sort via x, x´and compare the coefficients to get ....
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2 2
0 0 0( ) 2s C SC Sβ β α γ= − +

0 0 0( ) ( )′ ′ ′ ′= − + + −s CC SC S C SSα β α γ
2 2

0 0 0( ) 2′ ′ ′ ′= − +s C S C Sγ β α γ

in matrix notation:

2 2
0

0
2 2
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2
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C SC S
CC SC CS SS

C S C S

ββ
α α
γ γ

!

1.)  this expression is important

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and 
calculate their values at any other point in the ring.

3.) the transfer matrix is given by the focusing properties of the lattice elements, 
the elements of M are just those that we used to calculate single particle trajectories.

4.) go back to point  1.) 



IX.) IX.) RésuméRésumé:: beam rigidity: ⋅ = pB qρ

bending strength of a dipole: 1 00.2998 ( )1
( / )

− ⋅⎡ ⎤ =⎣ ⎦
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p GeV cρ

focusing strength of a quadrupole: 2 0.2998
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p GeV c

2 0
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nIk m
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focal length of a quadrupole:
1

=
⋅ q

f
k l

equation of motion:
1 Δ′′ + =

px Kx
pρ

matrix of a foc. quadrupole: 2 1= ⋅s sx M x
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