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1) INTRODUCTION

Overview

The single particle motion is given by external
guide fields (dipoles, quadrupoles, RF), initial
conditions and synchrotron radiation.

Beam with many particles induces currents in
vacuum chamber impedance and creates self
fields acting back on it. This collective action
by many particles can: give synchrotron fre-
quency shift due to modified focusing; increase
initial disturbance, instability; change particle
distribution, (bunch lengthening).

Multi-turn effects driven by narrow-band cav-
ity with memory build up instability in many turns
with small self-fields treated as perturbation.
Start a small disturbance from a stationary beam,
calculate fields it produces in impedance, check if
they increase/decrease the initial amplitude, give
growth /damping rate. Check this for orthogonal
(independent) modes of disturbances.
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Bunch induces fields in passive cavity, they os-
cillate and act back next turn, in- or decrease
initial disturbance depending on phase.

‘/cavity (t)

turn 1 turn 2
Single traversal effects driven by strong

self-fields from broad impedances change
distribution, modify oscillation modes and
can couple them. Self consistent solutions

are difficult to get, bunch lengthening.
dL/ds
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Mechanism of single bunch, multi-turn instability

turn k: ko ko + 1 ko + 2 ko + 3 ko + 4 stationary bunch
f’/\ I, = Iy + 2% I, cos(pwot)
T
O A S I,= Tio Jo " 1(t) cos(pwot)dt
turn k: () k0—|—1 k0—|—2 k0—|—3 k0—|—4

oscillating bunch, ), = i

€ = €sin(2wrQsk) phase-
T, = T cos(2mQ)sk) space
I =1y+ ¥ I, |cos(pwot)+

pa; T (sin(w, t) + sin(w, t))
;: (p + Qs)WO

0 1 2 w/wO

field E induced in Z,(w¥)

p
acts on energy deviation ¢
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4) IMPEDANCE, WAKE FUNCTION
Resonator

L (L G
O
(1) R — L |V
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Cavities have narrow band oscillation modes
which can drive coupled bunch instabilities.
Each resembles an RCL - circuit and can,
in good approximation, be treated as such.
This circuit has a shunt impedance R, an in-
ductance L and a capacity C. In a real cavity
these parameters cannot easily be separated
and we use others which can be measured di-
rectly: The resonance frequency w,, the
quality factor () and the damping rate a:

1 C R
WT—\/T—Ca Q_RS\I:—LWT—RSCWT

Wy R, Q
Y- -
“ 20Q) 7 Qu;  © wr R




Driving this circuit with a current I gives the

voltages and currents across the elements
1

—

W el i f Ve = ek
e Ve = 5/10dt
(1) Re —— L |V 0
vV, = L—*
L dt
- _Y

Ve=Vo=V =V
In+1c+1=1
Differentiating with respect to t gives

T Vs LV
I =1 I, Ir = — —.
r+1c+ 1 RS+CV+L
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Using L = Ry/(w,Q), C = Q/(w,Rs) and
a=w,/(2Q), w, = 1/v/LC gives diff. eq.
W wTRs[-

Q Q

The solution of the homogeneous equation
represents a damped oscillation

V4 V4V =

V(t) = Ve cos (wrll — @t +
—at A 1
V(t) = e cos [wy |1 — 4—Q2t

+ B sin (WTJ1 — 422215))



Wake function — Green function

Response of RCL circuit to a delta pulse

i

I

V +

V+wfV:

v

Wy

Q

(87

wy R -
Q

q-
Q

C
R,
&
20

Charge ¢ brings the capacity to a voltage

V(0
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general solution V(t) = e (A COS (wr

pulse response V() = 2qk,e ™ (cos

q _ weli

q using C' =

Q
wr R

Energy stored in C' = energy lost by ¢

2 +
q wrRs o V(07)
°C 20 q 5 q pmd
with the parasitic mode loss factor
kpm = wrRs/(2Q), given usually in [V /pC].

Capacitor discharges first through resistor
- q I 1V(07)

2

U:

VO =—c="¢c~ "k
B _wERS B _Qwrkpm
Q! Q

Initial conditions V (07), V(0%) give from

\

1 : t
4Q)?

+ Bsin (er1 — Z@t))
wrll B} 113) B sin (wm/l — ﬁt)
4Q)2 20),/1 — ﬁz




sin (wy /1 —
G(t) = @ = 2kpme” at (COS (er1 — 4(1¥ ) Q(QFJQJ IC
1Q2

G(t) is called Green or wake function. (G(t) is related to longitudinal field F. by an
G(t) ~ 2kyme " cos (wpt) for Q > 1 integration following the particle with v ~ ¢
This voltage induced by charge ¢ at ¢t = 0 and taking momentary field value

changes energy of a second charge ¢’ travers- V= Gge — (2B t)dz = —f, [* B.(2)d
ing cavity at t by U = —¢'V (t) = —qq'G(t). 9= / (2,t)dz = ft/ zZ.

i(ﬂ with "transit time factor’ f;. We use
A wake function G(t) > 0 where energy is lost.
A WANAN t A particle inside a bunch of charge ¢ and

q
q v \4./ N4 current I(t) going through a cavity at time
(B (1) t sees the wake function created by all the

particles passing at earlier times t' < ¢

A /l\ /N resulting in a voltage

longitudinal field

V(t) = [ G(t)dg = [ I(E)G(t)dt' = qW (2) y
W(t) = V(t)/q wake potential . T t—t




Impedance

AVAVARGRR:? — L |V

I(t) = I cos(wt)

———_\y

A harmonic excitation of circuit with current
I = I cos(wt) gives differential equation

VA V4wV = 2] = -7~
Q Q Q

Homogeneous solution damps leaving particular

one V(t) = Acos(wt) + Bsin(wt). Put into
diff-equation, separating cosine and sine
Wyl
w”— wiA+ B =0
—(w? — w;) 0 ’
5 Wyw wrwR -
w? — w?)B + A= I.
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Twsin(wt).

Induced voltage by the harmonic excitation
. cos(wt) + Q“ﬂ—_w% sin(wt)
— [RS 2 D)
! ™ Q2 ( Wrw >

has a cosine term in phase with exciting
current. |t absorbs energy, is resistive.
The sine term is out of phase, does not
absorb energy, reactive. Ratio between
voltage and current is impedance as func-
tion of frequency w

V(t)

1
Zr(w> — R wi—w? 2_ 2 2
1+Q2< Wrw >
w2—w2
Zw) = Ry

1+Q2( — )2°

Resistive part Z,(w) > 0, reactive part
Zi(w) positive below, negative above w;.



Complex notation
We used a harmonic excitation of the form

AGJWt—l—e Jwt

I(t) = I cos(wt) = 1 5

with 0 < w < 0.
It is convenient to use a complex notation
I(t) = I/ with —o0o <w < 0

giving compact expressions. Using the differ-
ential equation

V+ 2V 4wV ="]
Q Q

with I(t) = I exp(jwt) and seeking a solu-

tion V (t) = Vyexp(jwt), where Vjis in gen-
eral complex, one gets
wrw R
—w? +]7+w Vyeltt = j= 2 et

Q Q
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The impedance, defined as the ratio V/I be-
comes

Z(w) = E Uz

[o1+je(z-+)
R
T ()

For () > 1 the impedance is only large for
W R Wy of lw— w|/w, = |Aw|/w, < 1and
can be simplified

= Ry

— Zr+jZi

1 - j2Q%
1 4 4Q? (f}—f)Q'

Z(w) ~ Ry

Caution: sometimes I(t) = Ie ™" instead of

I(t) = Ie’“! is used, this reverses the sign
Zz(w)



Properties of Green functions and impedances
The resonator impedance has some

Green function Green function

a0 G specific properties:
L 2kpm . 2kpm
atw =w, — Z.(w,) max., Zj(w,) =0

M\ )

ovi\/z 51 2/ 0\/1V2 /3\/0@00 0 <w<w, — Zj(w) >0 (inductive)

- w > w, — Zi(w) <0 (capacitive)

Impedance Impedance and any impedance or wake potential
Z) 2) has the general properties

Zr(w) =2 (—w) , Zijw)=—2Z(-w)
Z(w) = [72 G(t)e *dt
Z(w) o Fourier transform of G(t)
fort <0 — G(t) =0,

no fields before particle arrives, 5 ~ 1.
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Typical ring impedance

Aperture changes form cavity-like objects
with w,, Ry and () and impedance Z(w) de-
veloped for w < w,, where it is inductive
. Q)Q‘——QJ%
1 @7,
2, ,2\2
L+ Q)
Sum impedance at w < w,. divided by mode
number n = w/wy is with inductance L

Z(w) = R

w C
sk: O—L(.d()_ 6

= L—.
k kark R
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It depends on imf)edance per length, ~ 15
(2 in older, 1 €2 in newer rings. The shunt
impedances R, increase with w up to cut-
off frequency where wave propagation starts
and become wider and smaller. A broad band
resonator fit helps to characterize impedance
giving Z,., Z;, G(t) useful for single traversal
effects. However, for multi-traversal instabil-
ities narrow resonances at w,; must be used.



5) LONGITUDINAL DYNAMICS

A particle with momentum deviation Ap has
different orbit length L, revolution time 7, and
frequency wy

AL B Ap e AFE Usfel = = =4
L ) ac p . /62 E bunch

AT AWO 1 Ap Ap t

T T T Qe o) T T e 0 N
T wo ) p p

. _ . RF-cavity of voltage v, frequency wge =
with momentum compaction a. :2 1/v7. slip hwy SR energy loss U the energy gain or
factor 7. At transition energy moc™yr the Wy~ |oss of a particle in one turn e = E/E is

Tooon Ap ch . )
ependence on Ap changes sign OF = eV sin(hwy(ts + 7)) — U

1 A
E>FBr - —=<a.— n.>1, w0<0

~? AE ts= synchronous arrival time at the cav-

1 Awy ity, 7= deviation from it, synchronous phase
b <br——5>a—mn<l AE > 0. ¢, = hwgty. For hwyr < 1 we develop

2
Fory>1 — Ap/p~ AE/E =€, 1. = a.. OF = eV sin(¢s) + hwoeV cos ps7 — U.
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For 0FE/E < 1 use smooth approximation Combining these into a second order equation

E~O0E/Ty, T=AT/Ty =nAE/E  woU , won.oU
Sy : T—|—T—|—(w80—|— )
woeV sin @ N wiheV cos s wy 7 2mOE 2k Ot
T — —U.

2T 2T 2T 5 —w%hncef/ COS Qg - lwyoU

7 =10,
E =

Use Ty = 27 /wy, relative energy e = AE/E V50 = o kE X5 T 90t OF
. wpeVsin O wghev COS (P wo U wi = WQO - uJo??ca_U ~~ wgo
¢ — + T———. s 5 ° 2nE Ot
2mE 2 E 2 E . . 9
T+ 2007 + wiyT = 0
Energy loss U may depend on € and 7
T =7e “'cos(wat) , € = e sin(wgt)
oU oU
Ule, 7) ~ Uy + (9—EAE + ET From 7 = n.€ we get € = w7 /1.

To get real wy,y we need cos @, < 0 above

N transition where 1. > 0 and vice versa.

: wyheV cos CbsT B ﬂa_UE . ﬂa_UT To get a stable (decaying) solution we need
2rk 2w OE 2m Ot an energy loss which increases with E

_ w0l _ w U
A7 OFE  4AnE Oe

giving for the derivative of the energy loss

T = 1€
> ().

where we used that for synchronous particle Qs

e =0, 7 =0 we have Uy = eV sin ¢

cas07li-13



7) ROBINSON INSTABILITY
Stationary bunch
Spectrum

time domain

frequency domain

Il wO
=

w

0
Symmetric bunch, I(t) = I(—t), C|rcu|ates
with turns k£ of duration T, is a periodic cur-
rent and expressed by a Fourier series
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~

I(w) \/127/[ cos(wt)dt, I(t) single
L(t)=3 I(t—kTy) = ¥ Le™" multi

=1Iy+2 OZO I, cos(pwot)  traversal
To/2 w
Iy = TO T %//2 e/ d
= L I(t) cos(pwot)dt = a=1 (pwo).
With I(t) = ](— ), real I,,, cosine terms only.

At low frequencies I, =~ I
Gaussian bunch:

¢ b q o5 1
I(t) = e 20t2 , ] = —¢ 20%) , Oy = —
( ) \/%O't b T() < Ot



Voltage induced by a stationary bunch

Stationary bunch induces voltage in im- Use Z(0) = 0, combine positive/negative frequen-

pedance Z(w) = Z,(w) + j Z;(w) cies with Z,.(—w) = Z.(w) , Z;}(—w) = —Z;(w)
I.(t) = > ]pejp/wot =l +2 3 I, cos(p'wot)
p'=—00 p'=1
Vit)= & Z(puwg) L™ =2 2 Iy | Z(pwo) cos(pwit) — Zi(pwo) sin(put)]
p=—00 p=

Energy loss of a stationary bunch

Energy lost by the whole bunch with IV, par- This contains integrals
ticles per turn in impedance Z(w) is /OTO cos(plwqt) sin(puwgt)dt = 0.
Wy = [, I(t)Vi(t)dt T,

0 < o /TO cos(p'wot) cos(pwot )dt = for p =
Wb — TO p:z—:oo [pZ<pr> = 2T0 21: [p Zfr (pW()) 0

2
0 forp #p

has only Z,. Loss U = W} /N, per particle is

2T000 9 2600 9
= — ] ZT — ] ZT .
U N, 21: p (pwo) I, T 7 (pwo)
1,42, I,

ke o AN o
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Robinson instability
Qualitative treatment

Wy hu)() w

Important longitudinal instability of a bunch
interacting with an narrow impedance, called
Robinson instability. In a qualitative ap-
proach we take single bunch and a narrow-
band cavity of resonance frequency w, and
impedance Z(w) taking only its resistive part
Z,. The revolution frequency wy depends on
energy deviation AE

Aw() AFE

o g
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While the bunch is executing a coherent di-
pole mode oscillation €(t) = €cos(wst) its
energy and revolution frequency are modu-
lated. Above transition wgis small when
the energy is high and wyis large when
the energy is small. If the cavity is tuned
to a resonant frequency slightly smaller than
the RF-frequency w, < pwy the bunch sees
a higher impedance and loses more energy
when it has an energy excess and it loses
less energy when it has a lack of energy.
This leads to a damping of the oscillation. If
w, > pwy this is reversed and leads to an in-
stability. Below transition energy the depen-
dence of the revolution frequency is reversed
which changes the stability criterion.



Oscillating bunch

time domain Bunch executing synchrotron oscillation with
Lt T Ty Ty ws = wols and amplitude 7 modulates pas-
" A - NC T sage time ;. at cavity in successive turns k
| | | 00
. ' . Ii(t)= > I(t—kTy— )
| ' : k=—o00
0 To 21 with 7, = 7 cos(2mQsk) =~ T cos(wst)
_ frequency domain, w > 0 giving current without DC-part
fw) o
I:(t) =2 ¥ I, cos(pwy(t — 7 cos(wst))).
w>0
‘IIH]] HHHMM'I'MMI!.I Develop for pwyT < 1
0 s ~op” W

cos(pwoT) & 1, sin(pwoT) ~ pwoT

I:(t) = 2 ¥ I,[cos(pwot) + pwoT sin(pwot ) cos(wst)]

w>0

=2y I,

w>0

el (sin((p + Qs)wot) + sin((p — Qs)wol))| -

The modulation by the synchrotron oscillation results in sidebands in the spectrum.
They are out of phase with respect to carriers and increase first with frequency pwy.

cos(pwot) + P
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Voltage induced by oscillating bunch

Abbreviate: w = (p + Qs)wo , w, = (p — Qs)wy

pwoT

.

(sin(w, t) 4 sin(w, t))

cos(pwot) + )

Ik<t> =2 > [p

w>0

We restrict on resistive impedance Z, and get voltage

Vir(t) = 25250 I, |2, (pwo) cos(puwt)
pwoT

2
Vir(t) =2 3 I, [Z, (pwo) cos(pwot)

Zp(w,)) (sin(pwot) cos(wst) + cos(pwot) sin(wst))
+Z,(w, ) (sin(pwot) cos(wst) — cos(pwot) sin(w,t))|]

(Z(w) ) sin(w, t) + Zr(w, ) sin(w, 1))

T p

pwoT
2

+

it v
pwo
Synchr. motion, smoothed:
T, = T cos(2mQsk) —
T =T cos(wst)
T = —w,T sin(wst) = 1€

Vie(t) = 2@20 L, [ Z,(pwy) cos(pwt)
Dby

2 p

Ws
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T {Zr(wﬂ (Sin(Pwot)T - COS(Pwot)T.) +Zr(wy) (Sin(p wot )T + cos(p woty)”

Ws




Energy exchange

Express factors differently, use 7 = n.€
I (t)=2 X L, [cos(p'wot) + p'wo sin(p'wot ) 7]
w>

Vir(t)=2 3 1, (Z/(pw) cos(pwit)

X ]% [(ZT@;) + Zr(w;)) sin(pwot )T
~(Z0(;) = Zilep)) cos(pnt)

The energy per particle and turn exchanged be-
tween bunch and impedance

, 1 271
U7 = O I()Vi(t)dt, Ny = 500

Neglect higher terms in 7, €, use integrals
Lifp' =p
0

T
Iy * cos(p'wot) cos(pwot)dt = £ % p

10 cos(plwot) sin(puwgt)dt =0.

_2600

U = Towgongr(pwo)
. E S 2 +\ Z — 776
T2y ool Zelwy) = Zrlwy )7
9 —[—OEO Iypwo(Zp(wy ) — Zr(w, ))w—s

Discussed stability of phase oscillation 7 + 20,7 + w? T =0, T = 7e~ " cos(wyt)

wy dU —wineheV cos d, SIp(Ze(wf) — Zp(w,))

p

Qs

B ArE de 2k

_ waSpIAZ, () — Zilwy))

2[0h‘7 COS PsWq
> () stable

S

2IohV cos D
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< () unstable




Narrow impedance, only one harmonic p

Z,

S

Damping if g > 0, inswtrabiIit;/%(i(l)c as < 0 N
e = ée ™sin(w,t)
9 -
B2 = L)
210hV cos ¢y

Above transition: cos ¢ < 0, stability if:
Zr(w,) > Z;(w, ) Damping rate proportional
to difference in Z, between lower and upper

sideband. Important narrow-band impedance
= RF-cavity:p = h, I, = I.

oy  Io(Z,(w)) — Z(w,))  Ainduced V
wso 2V cos O Vrr slope

cas07li-20

Qualitative understanding

turn k T turn k+1
f 0 1
gl Oscillating bunch !
t t
(1), (. = 0.25) T’ky\
| _ I
| t 1
I(t) Stationary bunch I(t)
1% 1O
| + 1
t
7.(t) | Perturbation 71(t) i
/\: : E
Cavity field induced by the two sidebands
E, Wy = (2 + CQS)CUO
. =
E. _ wr = (2 —Qs)wp _
TN i

¢ Phase motion of the bunch center
% }—T Y > T @l

€ €




6) POTENTIAL WELL BUNCH LENGTHENING

dL/ds
— === === === mf\ufmﬂ—

+++

Vil

Ry !
b, = _d—LdL de[b
V= —/Bde =L

[ Budz= L%
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We take a parabolic bunch form

A T 3l T
I = 1|1—— 1 ——
i7) ( %2> 2w0%( %2)
dly 3mlyT
— = — Iy = (I
dr word T Y ).
. 3mlyL
V = V{(sin ¢s + hwycos ¢s7) + 1 0A37'7 Lwy =
woT
. 3|2 /n|ol,
V = V |siné + cos ¢shwg (1+ 3miZ/mlo v
hV cos ¢s(wyT)3
5 w% hncef/ COS @y
Weo = —
2k
3m|Z/nlol
wg = wgo{lJr ~ T2/l OA
hVgr cos ¢s(woT)?
Aws  Ws—ws 3m|Z /nloly

Ws0

-~ QhVRF cos Ps(woTp)?

SN




w? 3m|Z /nloly

w2, " hWVrr cos ds(woT)3

31| Z/n|ody

ws 2RV cos ¢s(woTp)?
Only incoherent frequency of single particles
is changed (reduced for v > ~7, increased for

v < ~r), but not the coherent dipole (rigid

bunch) mode. This separates the two.

V(1)
74 R

WS - (.(.)30 AWS

Ws0
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Reduction of w, reduces longitudinal focusing
and increases the bunch length

Me/Ws

rel. energy spread €, long. emitt. & = 7¢
Protons: &= constant, 7 x 1/, /wj

AT Aws 37T|Z/n’0]()
small: — ~ N ——— —
4hV cos ¢s(woTp)?

70 2WSO
371 Z [ T
’ /n|0 0 ( ) 1 O

F=enws, T = TN ws =

AN

24
or: (A) +
70

WV cos ¢ (woTn)? \Fo
Electrons: é= const. by syn. rad. 7 o< 1/wy
AT Aws 37T|Z/n’0[0
smal: — ~ — N ——— —
T0 Ws0 2hV cos ¢8(w070)3

AN

(7’)3 ’7A' 37r]Z/n|0[0
or: (| ———+ = -
7o hV cos ¢s(woTp)?

- =0
70



