Linear Imperfections

sources for linear imperfections

equations of motion with imperfections:
smooth approximation

perturbation treatment: driven oscillators and resonances

transfer matrices with coupling: element and one-turn

what we have left out (coupling)

orbit correction for the un-coupled case
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Sources for Linear Field Errors

B sources for linear imperfections:
-magnetic field errors: by, by, a,, 8,

-powering errors for dipole and quadrupole magnets
-energy errors in the particles =» change in normalized strength
-roll errors for dipole and quadrupole magnets

-feed-down errors from guadrupole and sextupole magnets

=>» example: feed down from a quadrupole field
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Skew Multipoles: Example Skew Quadrupole
B normal quadArupoIe:-) clockwise rotation by 45° =» sk};ew quadrupole
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Sources for Linear Field Errors
B sources for feed down and roll errors:

-magnet positioning in the tunnel
transverse position=> +/- 0.1 m
roll error = +/- 0.5 mrad

-tunnel movements:
slow drifts
civilization
moon
seasons
civil engineering

-closed orbit errors =» beam offset inside magnetic elements

-energy error: =» dispersion orbit



Equation of Motion |

Bl Smooth approximation for Hills equation: W=XY

d 2 K(s) = const d 2

157 w(s)+ K(s)-w(s) =0

(constant B-function and phase advance along the storage ring)

—— W(s) = A-sin(e, S+ ¢,) o, =27-Q, /L
(Q is the number of oscillations during one revolution)

B perturbation of Hills equation:
Ao w(s)+ o, - w(s) = F(X(s), Y(5),5) /(v p)

In the following the force term will be the Lorenz force of a L o=
charged particle in a magnetic field: F = g-VX B



Equation of Motion |

B perturbation for dipole field errors: F_ AB,
V- p p
Bl perturbation for quadrupole field errors: A __Ag
V-p p
F
A9
B normalized multipole gradients: v-p P
=03 AB[T] K =03 gLl /m] =03 N[T /m]
p[GeV /c] p[GeV /c] p[GeV /]

2
Bl perturbation of Hills equation: (;182 X(S) + @, - X(s) =< =k, - X(s)




Coupling I: Identical Coupled Oscillators

B fundamental modes for identical coupled oscillators:

® mode: Ko © mode: 1 Ko
(= )

) =x+y |5 k LO=Xx-y | £ |
i_zqu(t)+a)az)'(11(t):0 (‘jt—iqz(t)+a)§-q2(t):0

\_,ww:m o, =k, + 2

B weak coupling (k << k,): => degenerate mode frequencies

=>» description of motion in unperturbed ‘x’ and ‘y’ coordinates
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Coupling 1l: Equation of Motion In Accelerator

Bl distributed coupling: 4

ZX(s) + 0, X(5) = =K, - Y (5)

ZY(s)+@," - Y(s) = —x; - X(5)

B solution by decomposition into ‘Eigenmodes’:
0, (s)=a-x+b-y q,(s)=c-x+d-y

With orthogonal condition: a-c+b-d=0

2> gTzqu(S)+a)12'q1(S):O gTzzqz(S)+a)22'q2(S):O



Coupling 1l: Equation of Motion In Accelerator

B take second derivative of g, and g,:

=> expressions for ®, and w, as functions of a, b, ¢, d, ®,, ®,

B use Orthogonal condition for calculating a,b,c,d (set b=1=d)

2 2 2 2 \2 2 2 2 2 \2
a, —Q a, —Q a, — Q) a, —Q
a= X y_|_ 1_|_ X y ,C: X y 1_|_ X y
2K, 2K, 2K, 2K,

yields: 42q,(s)+@?-q(s)=0  $U:(8)+@; Gy(s) =0

=
with:

2 2)\?
2 — 1 (0 + @2 ST P e
a)l,zzg-(a)era)y)irQ =K,




Coupled Oscillators Case Study: Case 1

2 2)?
B very different unperturbed frequencies: [a)x _wyj >>1
2K,

2
of, =3[0} + 0] )2 1-(of - of) [(wZKl )) +1

2 2
X _a)y
expansion of the square root: Vit e =l+2¢
K K,
? |lo=ot+t——Fr0, |0,=0,~——F=0,
W, — O, W, — ),

= ‘nearly’ uncoupled oscillators a=1b=1c~-1;d =1
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Coupled Oscillators Case Study: Case 2

B almostequal frequencies: @, =@, +3A @, =@, —5 A

=> keep only linear terms In A:

> 4 a)ozé(a)x+a)y)

2 2 2
W, + 0, = 20

2 2
W, — 0, = 20,

> o,=o i\//cf + N

expansion of the square root
for small coupling and A:

with:
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Coupled Oscillators Case Study: Case 2

Bl measurement of coupling strength: 1 &

measure the difference in the Eigenmode frequencies while
bringing the unperturbed tunes together:

0.025
A
VY,

-0.025

-0.02-0.0

0.02
0.015 t
0.01 t
0.005 t
0 L
-0.005 t
-0.01 t
-0.015 t
002 F

15-0.01-0.005 O 0.005 0.01 0.015 0.02

> A

=» the minimum separation yields the coupling strength!!
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Coupled Oscillators Case Study: Case 2

B initial oscillation only in horizontal plane:

x(0)=A; x'(0)=0; y(0)=0; y'(0)=0

2 g,=A-sin(w,-sS+¢) and (,=A-sin(w,-S+¢,)

. ~ ql(t) =X—Y
with @, = 5-(60X + a)y)i (2 and
g, (t) =X+Y
sum rules for sin and cos functions:
=>
— ; 1 =>
X(s)=A- COS(Q ' S)' cos(; [0)1 + 602]' s+3l¢ + ¢z]) modulation

. (= : of the
y(s) = —Aosm(Q - s)-sm(% (0, + 0, ] s+ 1[d, + &,]) amplitudes
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Beating of the Transverse Motion: Case |

I two almost identical harmonic oscillators with weak coupling:

n-mode and m=mode frequencies are approximately identical!

—> frequencies can not be distinguished and energy can be
exchanged between the two oscillators

B modulation of the oscillation amplitude:
X ] a)o 1(&) +a))

i D AA/\MAA
J V VV N
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Driven Oscillators

B Perturbation treatment:
substitute the solutions of the homogeneous equation of motion:

W(s) = A-sin(w, -S+ ¢,)

Into the right-hand side of the perturbed Hills equation and
express the ‘s’ dependence of the multipole terms by their Fourier
series (the perturbations must be periodic with one revolution!)

B equation of motion =» driven un-damped oscillators:

(S) + Q)WZW(S) _ ZWklme(k-a)X-S-l-'-a)y+2T”-m-8+¢k|m)
k.I.m

2 —
w7 W(s)+,Q

=>» large number of driving frequencies!
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Driven Oscillators

B single resonance approximation: o=ko, + Ia)y + mZT”

consider only one perturbation frequency (choose @ = @, ):

L W(S) +ay - QL W(S) + @, - W(S) =W (s) - cos(@- S + )
B general solution: wW(s) =w, (S)+w,(S)

Bl without damping the transient solution is just the HO solution

W, (s) =a-sin(w,-S+¢,)
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Driven Oscillators
W(w
B stationary solution: W, (S) = ( ) -cos[w- 5//)]

— where ‘o’ Is the driving angular frequency!
and W(w) can become large for certain frequencies!
W (C()) :Wn ' .

2 2 .
0] 0] resonance condition:

\ “0 0 @, = O,
=>» justification for single resonance approximation:

=> all perturbation terms with: @, # @, de-phase with the transient

=>» no net energy transfer from perturbation to oscillation (averaging)!
17



Resonances and Perturbation Treatment

F
B cxample single dipole perturbation: (S) —K; 0L (S=Sp)

wy=27-Qy /L \ .
. resonance condition: o =N 27/ L—""—=-Q, =n

—| avoid integer tunes!

Fourier series of
dic o-f
d82 W(S) + Cf)o W(S) = —lk @OS(H 2mr-S/ L) periodic o-function
N=—00

__BG)
ACO(S) = 5 iy KO-V AE) -cos(| (1) —(s) | -7Q)t

—

(see general CAS school for more details)
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Resonances and Perturbation Treatment

B integer resonance for dipole perturbations:

assume.

Q = Iinteger

=>» dipole perturbations add up on consecutive turns! =» Instability
19



Resonances and Perturbation Treatment

B integer resonance for dipole perturbations:

assume.

Q = Integer/2

=>dipole perturbations compensate on consecutive turns!
=> stability
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Resonances

and Perturbation Treatment

Bl cxample single quadrupole perturbation:

with: '\72:— X W, (S) = A-cos(a, , - S+ ¢,)
) k, &
ESW(S) + @, -W(s) = —A- 5t Zcos([27z-n/ L+ w, ] std,)

—

resonance condition: 2@, =n-27/L—22T2L Q) =—

——| avoid half integer tunes!

AB(S) 1 |
Bo(s)  2sin(22Q)

§ Ak, (1) B(t)-cos(2] 4(t) - 4(s) | -22Q)dt

—> (see general CAS school for more details)
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Resonances and Perturbation Treatment

B half integer resonance for quadrupole perturbations:

assume:
Q = integer + 0.5

feed down error:

B,=b-y=F =+q-v-b-y

=>» quadrupole perturbations add up on consecutive turns!

=> Instability .



Resonances and Perturbation Treatment

B cxample single skew quadrupole perturbation:

I\:/X(:) =Ky Yo(S) = A- COS(a)o,y ‘S+¢)

with:

2 | N
(9 29 =-A S Sosor /Lo, 1 520)

resonance condition:

— | avoid sum and difference resonances!

difference resonance =» stable with energy exchange
sum resonance =¥ instability as for externally driven dipole

—
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Resonances and Perturbation Treatment: Case 1
B coupling with: Q,>>Q, or Q, <<Q,

=» drive and response oscillation de-phase quickly
no energy transfer between motion in ‘x’ and ‘y’ plane

=> small amplitude of ‘stationary’ solution: W (o) =W, - L
J[l—(ﬂ>2]2+(}59/)2
0 [0

=>» no damping of oscillation in *x’ plane due to coupling

=>» coupling is weak =» tune measurement in one plane will
show both tunes in both planes but
with unequal amplitudes

=>» tune measurement is possible for both planes
24



Resonances and Perturbation Treatment: Case 2
B coupling with: Q, =Q,

=» drive and response oscillation remain in phase and energy
can be exchanged between motion in ‘X’ and ‘y’ plane:

[1-(2)2124(_2-)?
0)0 a)O

=>» large amplitude of ‘stationary’ solution: W (e)=W,- \/ 1

=» damping of oscillation in X’ plane and growth of ‘
oscillation amplitude in ‘y’ plane

=> ‘X’ and ‘y’ motion exchange role of driving force!

=>» each plane oscillates on average with: l(Qx +Qy)

2

=>» Impossible to separate tune in ‘x’ and ‘y’ plane!
25



Exact Solution for Transport in Skew Quadrupole

B coupled equation of motion:  x"+x,-y=0 and y"+x,-Xx=0

B can be solved by linear combinations of ‘X’ and ‘y’:
(x+y)”+K1.(x+y):O and (X_Y)”_K1’(X_y)zo
- solution as for focusing and defocusing quadrupole

B transport matrix for ‘x-y’ and ‘x+y’ coordinates for i, > O:

(x—y] _ cos( 14/x,) sm(\}iZ) ( y]
Y Jicy -sin(1yfxe,)  cos( 14/x,) R

(x+yj _ cosh( 14/x,) smhi/%) (X+YJ
X+Y ) o -sinh( 1y/x,)  cosh( 14/x,) "

26



Transport Map with Coupling

Bl transport map for skew quadrupole: =M, -7,
(X C e b e g
with: = X and M, = -xd a —-xb c
y c d a b
Y \—xb ¢ —-xd a

B transport map for linear elements without coupling:

'm, m, O 0)
. m m 0 0
Zog =M, -Z;, with M, = 021 022 m m
33 34
\ 0 0 m43 m44/




Transport Map with Coupling

Bl coefficients for the transport map for skew quadrupole:

a= [cos(vNs)-+cosh(~'Ns)]/2
b =[sin(v'N's)+sinh(vNs)]/2¥/N
C= [cos(«/ﬁ S) — cosh(m s)]/2
d =[sin(Ns)—sinh(v'Ns)]/ 2«/N

with:

28



One-Turn Map with Coupling

B one-turn map around the whole ring:

Z(s,+L)=T(s,)-Z(s,) with:

B notation:
(M n with: M ,N,m,n
- \m N

B T isasymplectic 4x4 matrix

T-S.-T=S with:

determines n*(n-1)/2 parameters for a n X n matrix

being 2x2 matrices
=» 16 parameters in total

(0 1 0 0
10 0
S:
=10 0 0 1
L0 0 -1 0,

29



Parametrization of One-Turn Map with Coupling

B uncoupled system: parameterization by Courant-Snyder variables

T Is a2 x 2 matrix =» 4 parameters
T 1s symplectic =» determines 1 parameter

=>» 3 Iindependent parameters

T=1-cos(u)+Jd-sin(u) with:

(10 (a B :1+a2
I I S

30



Parametrization of One-Turn Map with Coupling

B rotated coordinate system:

=» using a linear combination of the horizontal and vertical position
vectors the matrix can be put in ‘symplectic rotation’ form

T — Icos(¢) D sin(¢) .(Al Qj. 1 cos(¢) —D7sin(g)
~ (—Dsin(g) lcos(g) )\ 0 A,) (Dsin(g) Lcos(g)

or. T_=R°LL-R_1 with: ﬁzh-cos(yihi-sin(yi);i:1,2

D isasymplectic 2x2 matrice = 3 independent parameters

=>» total of 10 independent parameters for the One-Turn map
31



One-Turn Map with Coupling

B rotated coordinate system:

A

- y

y

X1

tan( 2¢) = ‘ﬂT ‘:e(tl\glmjl\rl‘;)
_ a b
with: [C q

' d
adjo int —matrix
/7
—C

B

B rotated coordinate system:

=>» new Twiss functions and phase advances for the rotated coordinates

A =1-cos(s)+J; -sin(x;)

w0

cos( z,) —cos( p,) = [ATr(M = N)f +det(m +n*)

32



Summary One-Turn Map with Coupling

B coupling changes the Twiss functions and tune values in the
horizontal and vertical planes

=>» a global coupling correction is required for a restoration of the
uncoupled tune values (can not be done by QF and QD adjustments)

Bl coupling changes the orientation of the beam ellipse along the ring

=» a local coupling correction is required for a restoration of the
uncoupled oscillation planes
(=» mixing of horizontal and vertical kicker elements and correction dipoles)

33



What We Have Left Out

B p-beat: skew guadrupole perturbations generate [3-beat

similar to normal quadrupole perturbations

B dispersion beat:

skew quadrupole perturbations generate vertical dispersion

B integer tune split and super symmetry

the (1,-1) coupling resonance In storage rings with super
symmetry can be strongly suppressed by an integer tune split

B general definition of the coupling coefficients:

K _ 1 i 27y,
=—t—=ls K. == $,(5)-[B,(5) B, (5) - € # M s
) 27 24



Orbit Correction

Bl deflection angle: 0 __03-AB,[T]] =AX'(s.)

| p[GeV /c]

Bl trajectory response:

fAVA (S) — \/ﬁu IB(S) "9i ’Sin(¢(3)_¢i)

AZ'(S)=+/B,1 B(s) -6, -cos(4(s) - &)

B closed orbit bump

compensate the trajectory response with additional dipole
fields further down-stream =>» “closure’ of the perturbation
within one turn

35



Orbit Correction
Bl 3 corrector bump:

M o QF . QF
Kt 41+ 4+ 11

01 o @ 9 QD"”*.__ QD

B closure

6, - VB sinAd) , g, ( SiN(AG1) ocin ¢31)j. JB

JB, sin(Ad,,)
B limits

sensitive to BPM errors; large number of correctors

36



SVD Algorithm |

B linear relation between corrector setting and BPM reading:

COR=(c,¢,,....C,) =2 Vector of corrector strengths

BPM =(b,b,,....b,) =» vector of all BPM data

BPM = A-COR A being a nxm matrix

B global correction: . _ .
] COR=A"-BPM

problem =>» A is normally not invertible
(it i1s normally not even a square matrix)!

solution =» minimize the norm: HBPM —A-CORH

37



SVD Algorithm |1

B solution:

=>» find a matrix B such that HW - A-E-@H

attains a minimum with B being a mxn matrix and:
m 1/p
P
=[S
g singular value decomposition (SVD):
any matrix can be written as: A=0,-D-0,

where O, and O, are orthogonal matrices and D Is diagonal

O—l _ Ot
- 38



SVD Algorithm I
B diagonal form:

/011 O oo e e e D)
0 0 -+ v o 0
p=| . 72 o k <min(n, m)
; : .0 = 0
0 - 0 o, 0 - 0,
Bl define a pseudo inverse matrix:
1/, 0 0 0 )
0 1/oy, O :
.0 .0 1 0
D=| 0 e 0 lUoy,| =2 D-D=L = -
0 R 0 \0 1)
: . ' . 1, being the kxk unit matrix
. 0 0

39



SVD Algorithm IV

B correction matrix:

=> define the ‘correction’ matrix: B=0,-D-0O,

'Qi):

lw)

>  AB=(0,-0:0,)(0}

=

k
I Main properties:
=> SVD allows you to adjust k corrector magnets  k < min(n, m)

=» if K = m = n one obtains a zero orbit (using all correctors)

=» for m = n SVD minimizes the norm (using all correctors)

=» the algorithm is not stable if D has small Eigenvalues
=» can be used to find redundant correctors!

40



Harmonic Filtering
Bl Unperturbed solution (smooth approximation):

|27Z'

X"+22.Q%-x=0 = X(s)=A-e'"

B orbit perturbation X"+22.Q%-x=F(s)

B periodicity: F(s)=>_f, T CO(s) = Sd, gD

A dn R
i . Q=643

| 441 \ I/[ | ‘ [\ \ F ==
30 40 5 60 70 80 90
harmonic number 'n’

spectrum peaks around Q = n =» small number of relevant terms!
41




Most Effective Corrector
Bl the orbit error is dominated by a few large perturbations:

= minimize the norm: HBPM _A.E.CORH
using only a small set of corrector magnets

B brut force: select all possible corrector combinations
=>» time consuming but god result

B selective: use one corrector at the time + keep most effective

=» much faster but has a finite chance to miss best
solution and can generate © bumps

B MICADO: selective + cross correlation between orbit

residues and remaining correcotr magnets
42



Example for Measured & Corrected Orbit Data
B LEP:

Vertical Contrel Plot (E+ E- Average) 8834.00 07:21:42 1402101 16:15:40
ARC RMS: 10.578 10.048 7.787 5.812 7.718 9.808 B.483 9.287
Monitor vertical

GLOBAL: mean = 0.075 RMS = 7.453 #pu = 486 (IP zones +/— G511)
RMS IP2= 5207 IP4=4.389 IP6=6558 IP8=6.891

ol

20_

|

| SO 7SN 100NN 125N 1500 17 5[ 200N 225NN 250 7SI 300N 32508 350 N 375N 400l <25 <50 475l 500

Da 113.000 0.6382 dy 26.6727 PU.QL17.L3 L33 Cu 113.215 27.3109 mony

Vertical Control Plot (E+ E- Average) 8834.00 07:21:42 14/02/01 16:13:56
ARC RMS: 0.695 0538 0.928 0406 0.9494 0.970 0.681 0.800|

Monitor vertical

GLOBAL: mean = 0.071 RMS = 0.631 #pu-= 486 (IP zones +/- Q511)
RMS IP2=0.475 IP4=0.369 IP6=0.441 IP8=0.40

- !ll"’llu“"l"l“'l'ﬂ rlllL‘-"lﬁ“rfn‘f-'-‘ll‘-‘l-"-F"“f[TmF'J'-L'”*fr ol i L rJ'|' Uit ‘fhﬁlll'r‘d"'#‘r'mf'-‘m'n"lu"l' ﬁﬂ"'T“fLThl'Llhu"nl‘r

—5_

- A

| 250 SO 75NN 100fRN 1258 150 175/ 200fSN 225 [ 250 27588 3008 3258 3508 375 4008 425N 4508 475 I 500)

Da 151.000 -1.9303 dy 5.92563 PU.QD32.R3 A38
DB/B = —0.09 E-4

Corrector vertical

| 300]

Da 96.0000 0.00515 dy —0.0038 CV.GQD4z.1 4 Cu 95.5394 0.00137 codv
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