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UPPSALA What is this talk about?

UNIVERSITET

* First, you come up with lattice and design optics

- nice and shiny beta functions
— high periodicity — systematic errors cancel
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UPPSALA But then...

UNIVERSITET

e ..the accelerator is built, and..

- the magnets are not quite where they should be;
— power supplies have calibration errors;
- magnets have incorrects shims;

- the diagnostics might have imperfections, too.

e BPM
« Screens
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Therefore...

UNIVERSITET

e | talk about

- things that can go wrong (courtesy of Mrs Murphy...)
— Imperfections

- how to figure out what is wrong
— Diagnostics to use

— and fix it
— Corrections
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Outline

UNIVERSITET

* Imperfections
o Straight systems

- Beamlines and Linac

- Imperfections and -
their corrections

* Rings

- Imperfections and
their corrections
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- Part 1: Linear Imperfections
UNIVERSITET
» Spoil the 'nice&shiny ™' periodic magnet lattice
- due to unwanted magnetic fields in the wrong place
 that's where the beam is

— average: dipole kick
- gradient: focussing

- skew gradient: coupling
» Solenoidal fields

— detector
— electron cooler
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Sources of Imperfections

« Anything that is not in the design lattice

UNIVERSITET

» Fringe fields and cross talk between magnets

« Saturation of magnets

« Power supply calibration and readback errors

 Wrong shims AN

xxxxxx

« Earth magnetic field in low-energy beam lines

« Nickel layers in the wrong place

e Solenoids in detectors or coolers ==t
« Weak focussing from undulators IR

 Tilt and roll angles of magnets

PY M isal ig ned magnets (Or beamS) Figure 1: The LEP dipole chamber and its nickel layer
J. Billan et al., PAC 1993
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Alignment

 How do you do it?
- Magnets on tables
- Fiducialization to pods
- Triangulation
 How well can you do it?

- 0.2-0.3 mm OK
— <0.1 mm increasingly more difficult

- more difficult in large installations
* Sub-micron for linear colliders — beam-based
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rPSALA Misaligned Magnets

UNIVERSITET

* Misalignment of linear elements

s Jo..at 1

L

« and for a thin quadrupole...

@*[Rl](%)(o% g><%)<%>

* An additional dipolar kick appears — feed-down
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UPPSALA

Misaligned quadupoles focus

~vwstr - just as good as centered ones

\

— « Same focal length
despite misalignment

—=

* Lower ray is further

away from the quad
center and bent more

<

 Upper ray is closer to

axis and Is bent less

* But they kick the

180923, CAS Constanta

— centroid of the beam
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Tilted elements

UPPSALA
UNIVERSITET

* come in, step right and point left, go through,
step right again and point right

(%) = CEn)al(C87) ()
()l (4 D)) -ea(3)
* Again,normal transport and a constant vector
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UPPSALA
UNIVERSITET

Longitudinally Shifted Elements
* Add a short positive element on one side and
the negative on the other

* Dipole

- kick on either side

e Quadrupoles

- thin quadrupoles

180923, CAS Constanta
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% |ncorrectly powered Quadrupoles

UPPSALA
UNIVERSITET

* Focal length changes

- beam matrix differs from the expected
- beta functions change
- In rings, the tune changes

too_ weak

%ocal length
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UPPSALA Undulators

UNIVERSITET

« B, ~ cos(2ms/A,) — horizontal oscillations
« 9B, /ds=0B /dy — vertically changing B

« Focus vertically (only)
 Many Rbends

» weak effect (I/p)z, but
e changing gap may

— affect orbit

— affect tune
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Dispersion

UNIVERSITET

» Effect of magnetic fields on the beam (~B/p) with
pP=p,(1+0) is reduced by 1+0
* Every dipole behaves as a spectrometer

— separates the particles according to their momentum
— even dipole correctors contribute

* |n planar systems the vertical dispersion is by
design zero

- but rolled dipoles (and quadrupoles) make it non-zero.
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Chromaticity

UNIVERSITET

* Also quadrupolar fields are reduced by 1+0

- longitudinal location of the focal plane depends on

momentum and enlarges the beam sizes at the IP

— chromaticity Q'=dQ/dd

- tune spread

higher .
energy thin lens

quadrupole

lower
energy
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' Measuring Dispersion and
oNeRSITET Chromaticity

* Change the beam energy, in rings by changing the
RF frequency

- and look at orbit from BPMs (dispersion)
- and measure the tune (chromaticity)

* |n transfer line or linac change the energy of the
Injected beam

* Optionally, may scale all magnets with the same
factor

- all beam observables ~B/p
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UPPSALA
UNIVERSITET

 Coordinate rotation

To Cos @ 0 Sin @ 0 1
R 0 cos ¢ 0 sing x)
| | —sino 0 Cos ¢ 0 U1
U 0 — Sin @ 0 Cos ¢ Y]

 sandwich roll-left before the element and then
roll-right after the element

Rolled elements

* example quad to skew-quad (example, thin quad)

1 0 0 0
oo Qr 02 ) _| 0 L YL
1/f 0 0 1

* mixes the transverse planes — coupling
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i . .
upPSALA Reminder: Multipoles

UNIVERSITET

« Magnet builder's view (b, : upright, a_: skew)

Ry

By + 18, = By Z U)m an 1i{-l“ﬂrr’a) (

m=1

e How the beam “sees” the fields

B, +1B,)L X k,L .
Ax' —iAy = (By _;} ) — Z —— (x4 wy)"
0

* Multipole coefficients

- real part: upright = Bp (bnt1 + tapy1)

- Imaginary part: skew
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Feed-down from displaced multipoles

UPPSALA
UNIVERSITET
. . . ., k.L
» Kick from thin multipole Az" —iAy" = (@ +ay)”
» and from a displaced multipole
kL |
Az’ —ily' = — (2 + dy +iy)"
i
kL knl = (0N ..
@ +iy)" + Z(,{)dm (z + 1y)

— binomial expansion

* Displaced multipole still works as intended, but
also generates all lower multipoles
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Feed-down from sextupoles

UNIVERSITET

* Horizontally misalinged

koL f r
Az' — 1Ay = 27 [(.’I;‘ + iy)? + 2d, (x + iy) + di)] 151

— additional quadrupolar and
dipolar kicks

» Vertically misaligned *
7 . / . c7\2 koL - N2 c7 o0 . 72
Az' —iAy = (x + iy +idy)” = 5 [(.‘L +iy)” + 2idy, (x + 1y) — dy)]
— additional skew-quadrupolar and dipole kicks
- vertical displacement in sextupoles causes coupling
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Detrimental effects

* Dipole fields cause beam to be in wrong place
- losses, bad if you have a multi-MJ beam
- Background in the experiments (Coll+LS)
» Gradients change the beam size, this spoils
- Luminosity, if you work on a collider
- Coherence, if you work on a light source
* Breaks the symmetry of the optics of a ring

— more resonances
- reduces dynamic aperture

* Need observables to figure out what's wrong

180923, CAS Constanta V. Ziemann: Imperfections and Correction 22



Beam Position Monitors
wvste—— gnd their Imperfections

 Transverse offset S R .
 (Longitudinal position) < 2 > >

 Electrical offset >W

e Scale error . (Sa+Sp) —(SB + Sc)
* Sa+ S+ Sc+Sp

Se
B

Signal/ Sum Signal
o©
8]

o

o
3

Difference

| | | | 1
05 -0.04 -0.03 0.02 0.01
-0.02 -0.01 0 0.01 0.02

x, set value [m]
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Find offsets with K-modulation

UPPSALA
UNIVERSITET

« BPM+Quadrupole are often mounted on the
same support

Local bump Reference BPM?2

J. Wenninger
— rﬁ?“-~“4r7\ —4 CAS 2018
V V- Vv v "‘ /
Quadrupole BRPM1 center
center

TI:IO+AICOS(®mﬂt)

0 I s I L Ll M e | " | . il " ]
-3 -2 -1 0 1 2 3
i e orbit at quad. (mm)

 Modulate gradient of quadrupole

- Kick from quadrupole © = dx/f(w) is also modulated

- Observe on BPM2 and minimize signal by moving
beam with a bump — quadrupole center

- Reading of BPM1 gives BPM1 offset rel. to Quad
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;ii: |
wes  SCreens et al. and their Bugs

* Transverse position

» Scale errors from the optical system
— place fiducial marks on the screen
* Looking at an angle

* Depth of focus limitations, especially at large
magnification levels

e Burnt-out spots on fluorescent screens
* Non-linear response of screen and saturation
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% Imperfections and their Correction

UNIVERSITET |n Beam LlneS or LlnaCS

* Dipole errors

» Gradient errors
» Skew-gradient errors
* Filamentation

x ::——?
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wsaa | ransfer matrices in Linacs

UNIVERSITET

e Just a reminder...

 The beam energy at the location for the kick
and the observation point may be different.

* Adiabatic damping
— transverse momentum p, is constant
- longitudinal momentum p,increases
- X'=p,/p, scales with p.= By mc

« R,,then scales with (By),.../(BY)

look

180923, CAS Constanta V. Ziemann: Imperfections and Correction
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Beam lines: Dipole errors

UPF’SALF\
UNIVERSITET

« Each misaligned element with label k may add a

misalignment dipole-kick gz

Tn = Rp - (Qr+1+ Rk+1)(ffk + Ry) -+ (q1 + R1)Zo
= RH{HrZ - Rjy1)G
« Simple interpretation R(01 to BEM n)

- at the look-point (BPM) nall | » 02

perturbing kicks are added
with the transfer matrix from
kick to end

180923, CAS Constanta V. Ziemann: Imperfections and Correction 28
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s Correct with orbit correctors

UNIVERSITET

 small dipole magnet, here for both planes (steerer
for CTF3-TBTS)

o affects the beam like
any other error

(%)= () (%)

51=5+Efo

e treat just as additional
misalignment

180923, CAS Constanta V. Ziemann: Imperfections and Correction 29



Local trajectory Bumps

* Occasionally a particular displacement or angle
of the orbit at a given point might be required

» Displace orbit at IP to bring beams into collision

 or a slight excursion (3-bump)

v

 Differential changes ('by' not 'to')
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UPPSALA
UNIVERSITET

 Change position and angle at reference point

Trajectory knob

I - -
pn S
- -
- -
] -
I - -
-r -
.‘ o
" w
=

D V V
ﬂs}{n, Axo' 02 01

« Remember that kicks add up with TM from
source to observation or reference point

Axg - R% R(fﬁ 01
Azy )\ RS RY3 02
e and the columns of the inverse matrix are the

knObS 91 o R% R{l}ﬁ - A."I;‘(]
0 ) ~\ RY R3 Ac
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UPPSALA

A trivial example

UNIVERSITET
» Two steering magnets with drift between them
e T o (1L o (1 2L
g g (g ) (g )
&Xu,.&}{n' 02 01

 Response matrix
Aet ) TURE R2 )L, )7L 1 1)\ 6
 Knobs
6\ 1 (1 —L Axg 0 1 1 f
(92)[,(—1 2L )(A:rf}) - (QQ)L(_I)AJ?U

Almost common sense!
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w  REemark about Orthogonality

UNIVERSITET

* Knobs are orthogonal

* Optimize one parameter without screwing up
the other(s).

- Faster convergence

- Enables heuristic
optimization

- Deterministic

» Use physics rather
than hardware
parameters
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Optimality |} o

UNIVERSITET I 0, 2 0,

» How “good” are the knobs? ae. B
+ Position knob is ill-defined for L—0. (=) 7s("1)>

» Matrix inversion can fail — condition number 2
- &=1: All parameters controlled equally well

* Consider beamline with betas equal and a=0 at
steerers and observation point

A.I?() o R?i R[l)g 91
A;'176 a R% Rg% 92

Ax//B\ [ sin2u sinp V0,
VBAZ )\ cos2u cos VB0

* Generally applicable

90°, common sense!
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UNIVERSITET

4-Bump

.............
-
-
-

______
b

» Use four steerers to adjust angle and position
at a center point and then flatten orbit
downstream of the last steerer.

Z0 R% R(l}f 0 0 01
% | | B RE o o0 0,
xp=0 ) - ( R{; R[5 Rl R, ) ( 0 )
d=0) \ Rl R} RE RE)\ 0

* |nvert matrix and express thetas as a function
of the constraints x, and x,’

« Gives the required steering excitations 6. as a
function of x, and x,/ — Multiknob

180923, CAS Constanta

- V Vv Vv Vv
8-’-1 83 &XD &XDI 82 81
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G _ _ , .
s Orbit Correction in Beamline #1
 Observe the orbit on beam-position monitors

* and correct with steering dipoles

 How much do we have to change the steering magnets in order
to compensate the observed orbit either to zero or some other
'‘golden orbit'.

 |[n beam line the effect of a corrector on the downstream orbit is
given by transfer matrix element R,,

* One-to-one steering
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wsan  Orbit correction in a Beamline #2

UNIVERSITET
E(B3=<-C1) E(B2<-0C1) E(Bl<-C1)
* —T1 R%é 0 0 04
_ 21 21

1 7 1 7 1 7 —l2 ) = R%f Rﬁ OH 02
\Y, \Y; / —I3 Ri3 R73 Ry3 03

T COR3 T COR2 T COR1

BPM3 BPM2 EPM1

« Observed beam positions x,, X,, and X,

* Only downstream BPM can be affected

* Linear algebra problem to invert matrix and find required
corrector excitations 6, to produce negative of observed x;

* Include BPM errors by left-multiplying the equation with

- 7 1~ This weigths each BPM measurement by its
= d“*g( ) inverse error. Good BPMs are trusted more!

e e

21 On
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“2 How to get the response matrix?

* With the computer (MADX or other code)

- tables of transfer matrix elements
- but it Is based on a model and somewhat idealized
- no BPM or COR scale errors known

* Experimentally by measuring difference orbits

- record reference orbit 7
- change steering magnet A0,

—
.J"l"

- record changed orbit ;

- Build response matrix one column at a time

o ”‘fl—f[} fz—fu . . .
A o ( AN Afy )
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UPPSALA
UNIVERSITET

e Ais an n x m matrix, n BPM and m correctors

Inversion Algorithms for -x=A6

 n=m and matrix A is non-degenerate:
f=—A"'7
 m<n: too few correctors, least squares = |- 44
§=—(A*A)"L AL

« MICADO: pick the most effective, fix orbit, the
next effective, fix residual orbit, the next...

- good for large rings with many BPM and COR
 m>n or degenerate: singular-value dec. (SVD)
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Digression on SVD

UPPSALA
UNIVERSITET

» Singular Value Decomposition A = OAU?

- may need to zero-pad

- U is orthogonal, a coordinate rotation

— A\is diagonal, it stretches the coordinates by A,
- O is orthogonal and rotates, but differently

 If Ais symmetric — eigenvalue decomposition
* |Inversion is trivial A1 = UATIO?

- Invert only in sub-space where you canif A #0

— and set projection onto degenerate subspace to zero
“1/0 = 0" (see Numerical Recipes for a discussion)

180923, CAS Constanta V. Ziemann: Imperfections and Correction
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“ Comment on Matrix Inversion

UNIVERSITET

* Many correction problems can be brought into a
generic form, if you

- pretend you know the excitation of all controllers
(think correctors)

- determine the response matrix (expt. or numerically)
C,;= dObservable/dController,

- to predict the changes of the observables
(think BPM)

* Then invert the response matrix to detemine the
controller values required to change the
observable by some value.

180923, CAS Constanta V. Ziemann: Imperfections and Correction



Effect of gradient errors

UPPSALA
UNIVERSITET

Eigth 90° FODO cells, first quad 10% too low

Unperturbed lattice

Nice and repetetive
beta functions

Repeats after
2 cells or 2 x 90°

Beta-function
“beats”

Injection into following
beam line or ring is
: ; : e ; : : g compromised
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Beamlines: Gradient errors

UPPSALA
UNIVERSITET

 Gradient errors cause the beam matrix or beta
functions [ to differ from their design values 7

e Downstream beam size
o2 =¢ef3 [Bmag + \/Bmag — 1cos(2u — p)]

- enlarged effective emittance, beta-beat oscillations
with twice the betatron phase advance p

* This is called mismatch and is quantified by

1|8 8 i\’
Bmag — 5 L(j + 3) +, 33 (,3 — 3) J
92

* For a single thin quad we have Brag =14 575
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Filamentation #1

UNIVERSITET

 What happens when we inject a mismatched beam

into a ring with chromaticity Q' ?

02 =B |Bpmao + /B2, —1 cos(dmn(Q + Q') — ¢
n g mag
L —52/202

- with momentum distribution W)= =t

* Averaging over 0 gives

02 =ef3 [Bmag + ¢~2(2mQ0s)"n” \/Bfmg — 1 cos(4mn @ — p)]

» 'Damps' with exp(-n2) and leaves an increased beam

size (by Bmag).

180923, CAS Constanta V. Ziemann: Imperfections and Correction
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UNIVERSITET

Matched beam
in the ring

Final distribution is
not Gaussian

180923, CAS Constanta

dN/dx

-------

nar

035

03F

0251

021

015

01r

0.05F

Injected

Smeared—-out
black spot

dN/dx
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Filamentation #2

Injecting with transverse

offset also leads to

filamentation

04r

0.35F

03

025

0.zf

015F

01

0.05F




o,
UPPSALA
UNIVERSITET

Measuring Beam Matrices

Vary quadrupole and observe changes on a
screen, usually one plane at a time

- Beam size on screen depends on quad setting

2 P2 2
0, = 011 = R{1011 + 2R11 R12012 + R{5099

- where R=R(f), use several measurement and solve
for the three sigma matrix elements

2 2 Qoo o
r — 011022 — 019 By = 011/5:1: Oy = —012/5;1:

180923, CAS Constanta V. Ziemann: Imperfections and Correction 46
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A worked example: Quad scan

UNIVERSITET quadrupole with 1/f [1/m] | 6, [mm]
heam size focal length £ 0.1 6.0
measurement 0.2 3.9 £ I\ //
E () 0 3
: L=51m 092 0.5 7.0
. 1 1 1 0 1—1 [
® TranSfer matI’IX R = ( 0 1 ) ( _1/f 1 ) — ( _1//ff 1 )
e Relate unknown beam matrix to measurements
o2 = R0+ 2R Rip010 + Riyoam
= (1- l/f)2011 +20(1 =1/ f)o12 + [* 090
2
[ [
= (?) 011 — (?) (2011 + 2lo13) + (011 + 2lo1g + Pog)

* Indeed a parabola in I/f
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Quad scan #2
* Build matrix of the type y=Ax

— and with error bars 2,=20 A0,
2 [ °

Q
B

T2 (1—1/f1)* 211 —1/f1) = \ ( (1—;/]&)2 20_Uf) 2
5%,2 (1 - l/fz)z 201 =1/fs) 52 o1 52, A-1/f2)2  2A0=UfH) 12 i
6'3:-3 = (1 —l/fg) 2[(1 —l/f'g) [ J12 _222 29 5 b)) )3} 11
- JSC . ]_—f 2! l—f -2
5§,4 (1 . l/f4)2 2[(1 . l/f4) 52 99 Ef — ( E/3f3) ( Eg/fl) é_ 019
o2 (L—1/fs)* 2A(1—1/f5) P a-yf? 20U E |\ oy
' >4 2y ) 2y 2y
72 \ A-t/fs)”  20A-U/fr) 12 )
V) VT S

» Solve by least-squares pseudo-inverse
x=(AA) Ay
» with the covariance matrix Cov=(A:A)-

- diagonal elements are square of error bars of fit parameter x

180923, CAS Constanta V. Ziemann: Imperfections and Correction 48



Or use several wire scanners

UPPSALA

UNIVERSITET
wire 3 wire 2 wire 1 gigma

o7 = (R)hon + 2B, R0 + (R)1,0n

J% = (RE)‘%IJH + QR%IR‘%EJIQ + (Rzﬁzﬂ'dd

o3 = (B)h0u + 2B By01 + (R) 300

A\ (R M, () (o

R * oy | = (B)1 2Bk, () || 0w

i o3 (R*)1, 2B RY,  (B)L 022

e (AtA)'At- gymnastics with error bar estimates

« Derive emittance in same way, once g; is found by inversion

e (Can use several more wire scanners which allows x2 calculation
for goodness-of-fit estimate
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Beam matrix a.k.a. Beta match

- 14a2

UNIVERSITET

_ B, —0y -
 Uncoupled beam matrix ¢ ( oy Y )
- need four quadrupoles to adjust oz, 8., oy, and [,

- non-linear optimizer (MADX matching module)

Control Reference
location location

ﬂ/// _“\\j Screen

-
Four matching quadrupoles Quadrupole scan
=, Bx emlttance
measurement
[I'F: BY
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UPPSALA WaISt knOb

UNIVERSITET

* Finding quad-excitations to match beta functions
(or sigma matrix) is a non-linear problem

* and depends on the incoming beam matrix.

* Tricky, but one sometimes can build knobs, based
on the design optics, to correct some observable

— conceptually: linearizing around a working point
 Example:

- |P-waist knob
- da,/dQ, , and da,/dQ, ,

180923, CAS Constanta V. Ziemann: Imperfections and Correction 51
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wsn  Beamlines: Skew-gradient errors

UNIVERSITET
0 0 0)
1 1/f 0
0 1 0
0

0 1

* Transfer matrix for a skew-quadrupole (/

f
 Vertical part of the sigma-matrix after skew quad
033 034 \ _ [ 033 034
034 044 034 044+ 011/ f?
* Projected emittance after skew quadrupole

A A
"2 2 , 011033 2 Ex By
gy = €y =&, (1
Y Y 2 Y 2
/ ey J

- Problem with flat beams. Increases with ratio 5:1:/53; and is
proportional to both beta functions.

* Problem in Final-Focus Systems with flat beams.
Solenoid fields needs compensation.
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o . . .
oprSALA Imperfections in a Ring

UNIVERSITET

o Effect of a localized kick on orbit

» Effect of a localized gradient error
» Effect of a skew gradient error
e Stop-bands and resonances
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Dipole errors in a Ring

UPPSALA
UNIVERSITET

 Beam bites its tail — periodic boundary Condltlons
— closed orbit *

Orbit perturbation

» Orbit after perturbation at j ot lochtion J
T = Rjj.fj + q;
= (1-R¥Y)™q
* Propagate to BPM i

7= R7%; = RY(1— R7)"\q = €Y,

« Response coefficients €Y =R7(1 - Rr7)™

- just like transfer matrix in beam line, but with built-in
closed-orbit constraint.
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Response coefficients

UNIVERSITET

* Express transfer-matrices through beta

functions - )
(2),-(Srds, "iema ) () +(5)
e Solve for closed orbit ( . ) ! ( By cot(mQ) )
i

 Transfer matrix to BPM i

pii _ VB 0 COS [4i;  SIN f1;; 1/+/B; 0
o\ —au/VBi 1//Bs —sinjui;  COS i 0 v/ B

* Response coefficient Divergencies
e at integer tunes
PilP;
A — : cos(i; —mQ)| 0 ;i  OBPM;(x)
2 SlIl(ﬂ'Q) (l . ):| Cp = O0COR;(2')
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Quadrupole alignment
s amplification factor

» Consider randomly displaced quadrupoles
0;=d;/f  (dj) =0  (djdy) = 030

* Incoherently (RMS) add all contributions

- [ Vs ][ VBB L
(@?) Qch%(,u QP | |2 g ng sl = T

2

12
B Z 2%11171’@) (OH( _WQ)f2

« Misalignment amplification factor V)~ N 5o

- large rings with large N, are sensitive
- such as LHC and FCC
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Response Coefficients with RF

* Radio-frequency system constrains the revolution time

AT AC Awv 1 )
— — —=la—-——1]9
T C v

* but a horizontal kick causes a horizontal closed orbit distortion
which causes the circumference to change by AC =D 6,

(6x6 TM is symplectic, and if uncoupled: R,s=R;,)

» Since RF fixes the revolution frequency the momentum of the
particle has to adjustto ¢ = —-D,0/nC

 ...and the particle moves on a dispersion trajectory

« Complete response coefficient between BPM. and dipole error
or COR; D, D,

nC

)
Crp =

2 sin(7(Q) cos(pyy = Q) -
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Orbit Correction in a Ring

UPPSALA
UNIVERSITET

* Every steering magnet affects every BPM
- orbit response coefficients and matrix CY” = R7(1—-RV)™"
Compensate measured positions x. by inverting

o 11 12 In
ISR B e AN
\ —.v;:m } \ Ci‘%l Ginﬁz Ci}%n } \ H.'n» )
e and also in the vertical plane
e left-multiply with diagonal BPM error matrix A = diag (Ollgl)

» use either calculated or measured response matrix
 inversion with pseudo-inverse, MICADO, or SVD
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“2  Example: orbit correction

UNIVERSITET

Vertlcal orblt |n LHC, before and after correction

: — orbit of ring 1
i 50 mm
i | ! |
2 E I '
20 [arLasg] S v ] ] ":"I'*“': —
° — ring 1 e
Hean s ibp = A g
50 mm
E
é B-M“H%JT N——vHLM._..T_. -
J. Wenninger
CAS, 2018 s le=

Monitor WV
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& Steering synchrotron beam lines

UNIVERSITET

» steer synchrotron light beam onto experiment
* fix angle at source point

* incorporate in orbit correction by +L,vBPM,-L

-
cloged Monochromator

orbit

Eeference
orbit
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:ii: _ _ .
UPPSALA DISperSIOn-free Steerlng

UNIVERSITET

» Steering magnets are small dipoles and also
affect the dispersion (in ring and linac) besides
the orbit.

» Take into account with dispersion response matrix
S;=dD/d6=d>x,/dodb, (D.=dx/d0)

- Either numerically or from measurments
» Simultaneously correct orbit and dispersion

- weight with =s ( s i |
- more constraints | = ( gjg ) ( 6, ]
- same number of correctors \ Di:/zi / 5
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!
UPPSALA
UNIVERSITET

* Add a gradient error (modelled as a thin quad)
to a ring with y=2mQ

1 0 cos it + asin p [ sin
(L 4 |

3 sinft  Cos . — asin ju

Gradient Errors in a Ring

B COS 4 + asin i Bsin
 \ —(cosp+asinp)/f+ysinpy cospy—asinpy— (B/f)sinpu

* Trace gives the perturbed tune @=0Q+AQ

p

5
2cos(2m(Q + AQ)) = 2cos(2mQ) — ?Si.‘[l(?ﬂ'@)

3
47 f

e and if B/f is small: the tune-shift is AQ =~

» Gradient errors change the tune!
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Changes of the beta function

s and stop bands
« From R, get the change in the beta function
= Bsin(2rQ) . AO cot (9
B= mamoT a0y ~° 1+ 27AQ cot(27Q)]
Af 8
’3 = 21 AQ cot(27Q) =~ g cot(2mQ)

* Divergencies at half-integer values of the tune
« Stability requires

5
cos(2mQ)) — g sin(?w@)l <1

- stop-band width
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Measuring the Tune

UPPSALA
UNIVERSITET

» Kick beam and look at BPM difference-signal
on spectrum analyzer

- and divide frequency by revolution frequency gives
fractional part of the tune

* Turn by turn BPM recordings and FFT

- isit Qor 1-Q? Ei?iﬁgm; “““““

x=sin{(2#pi%Qx#n) ;

- Change QF and plot(n/1024, abs (FFt(x))) ;

see which way the tune moves

« PLL in LHC: Beam is band-pass,

tickle it, and detect synchronously

180923, CAS Constanta V. Ziemann: Imperfections and Correction 64



o,
UPPSALA
UNIVERSITET

« Use a variable quadrupole with 1/f = Ak.|

Tune Correction

» Changes both Q,and Q, ac.= % wd aQ,=- "

N Am fy 4 fr
* Use two independent quadrupoles
e = n T ( AQ, ) B 1( Bio o ) ( 1/ fi )
AQ, = — ...311{ B '3234 AQy  Ar __.-Bly —_,.323, 1 / fz
Y Amf1 A7 fa

* Solve by inversion

1/f1 _ — 47 —:Bgy _,.82:c AQ:E
1 / f 2 I,Sl:c,SQy - ,.329: ,.Sly .-"Bly .-8111: A Qy

* Quads on same power supply — sum of betas
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il _ .
wsn  Measuring beta functions

UNIVERSITET

 Change quadrupole and observe tune variation

.4'31;1; 51
AQ, = - and AQ, = ——*
Q) I A1 Qy i fr

 Need independent power supplies

— or piggy-back boost supply
- or a shunt resistor

 May get sums of betas in quads-on-the-same-
power-supply.
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UPFSAL&

Model Calibration

« Compare measured C" orbit response matrix
to computer model C*

- enormous amount of data 2 x N, X N,

« and blame the difference on quad gradients g,
or other parameters p,

- much fewer fit-parameters N_ ., and N

Ny y 0CY 0CY
cv - v —Z dor Ag;ﬁ—i—z o Ap

* First used in SPEAR and Iater perfected in
NSLS — LOCO
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UPPSALA

Model Calibration #2

« Normally the parameters p, are BPM and
corrector scale errors

- fit for N, .4 gradients and 2 x (N, +N,) scales
CY7 —CY =Y ——Agr+ CYAzx' — C7Ay’
L DGk

» Determine derivatives 9C"/dgr numerically by
changing a gradient and re-calculating all
response coefficients, then taking differences

« BPM-cor degeneracy — SVD needed to invert
» Converges, if x4/DOF is close to unity
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micro-LOCO
« 2 Quads, 2 BPM, 2 COR, only horizontal “C..”

- ill-defined, but useful to see the structure of matrix
- gradient errors Ag, BPM scales Ax, corrector scales Ay

* Blame difference on Ag,Ax,Ay CY =RY(1—RV)™!
11 11 Ag
( C:‘” — o 88091 ar%I ctt o0 -ct 0 ) / Ag; \
C:Ql o 021 _ 85’?‘91 8%2 0 021 _021 0 A:I?l
C12 — "3 G- - c 0 0 —C" || Aw
\ (22 _ (22 } aac:'?? ag*?? 0 (22 0 _ (0?2 ) A1
91 92 \ Ays )
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&

UPPSALA

EXxperience

« SPEAR: could explain measured tunes to within 4x10-3
from quadrupole settings which had percent errors (J.
Corbett, M. Lee, VZ, PAC93).

« NSLS: LOCO, AB/B = 103, dispersion fixed, emittance
factor 2 improved (J. Safranek, NIMA 388, 1997)

d ot BPM del before LOCC

% measured a s meodel before
151 4 15r

: X meagsured ot BPMs .
— LOCQ madel
1.0F 1 1o a
z B

Fos5r . 1% 05¢ j

S lx K x S

X X "

| ¥ % 0
o %
XK x . o \g \ﬁf \f '»){‘ W v
0

120 60
Distance(m) Distance(m)

» and practically every light source since then uses it
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G . . .
UPPSALA SkeW'gradlent ErrOrS In a Rlng
UNIVERSITET
* Consider a single skew-quad in a ring
Reference \ Skew quadrupole
:point A\ with focal length f:
Ro [l 1L R.
2TQx, 2TQy Bxl’ BV
* with 4 x 4 transfer matrix (in NPS)
A 1, Q =
> = ( Q 1s ) <= )

 and move the perturbation to a reference point
R = RySR, = (RbS‘Rb_l) (RyR.)
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= Skew-gradient in Ring #2

* Transfer matrix in normalized phase space is
rotation, calculate the moved TM

oy [0, 0 1y O ot 0\ l;  0,Q0,"
mst= (50, ) (6 2) (T o) (og0n ™

3.8,
41

O:LC:)OLTI - ; (

SIN fLy COS [by,  — SIN [Ly SIN LUy,
COS [Ly COS [l  — COS [l SIN LUy,

f

_ BalBy [ sin(pe — py) +sin(pg + py)  — cos(pe — fy) + sin(pe + fy)
2f cos(fty — fby) + cos(fiy + piy) sin(pg — pty) — sin(pg + jiy)

 If many weak skew quads, combine their effect

fB:(1+ﬁ1)(1+f’2)---R(-}%(1+f’1+f’2+---)Ro

 Combinations of sines and cosines may add
coherently Fy = 3 BesBus itue

2ifs
J /s
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Skew-gradient stop bands

UNIVERSITET

 Why are skew-gradient errors bad?

- they also add stop bands along the diagonals
* Ring with single skew

— with strength
« Calculate the eigen-tunes

BoBy/f = 0.2

- Edwards-Teng algorithm -

« for each pair Q,,Q,

e make cross if unstable

- complex or NAN in Matlab
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Measuring Coupling

UPFS:"&L;‘\
UNIVERSITET
« BPM turn-by-turn data cross talk, beating

0.7 , ‘ ‘ .
0.6 ] W" .l \\M H " [ ‘| i
°5||‘|~|’||| }| |‘\‘ ‘\HM ‘MH‘! \“HL
05 ] N l\““‘\‘\\‘ ‘M\l \‘\‘\‘H\M\‘H‘]
~ M‘H‘,M. I H‘\M\M I ||‘ MM‘I\‘\J
Fo T ||J\'-H|' »JH‘\MN
o, | I TRA (iR HARHAA
o *-ww}w‘ il mumﬂ‘ VAR RAAEL,
02 ] ,M_M\‘HH‘\‘\ \\H“W‘H‘|'M‘\|\|“‘HI'H‘\L
A RANE R AN NN A A
|| —Dsf‘.““"‘\‘\‘f““‘\‘\‘ |‘\ 1
0.1 i 1 “‘\H‘f‘ IMH‘ H“H HH\‘. } ‘\‘\H\‘f‘“‘
IPAN | o | l; | V I

fractional tune

 Closest tune

try to make the tunes .
equal with an upright quad

* %
*
* * * ¥
*************
**********

*******
**********
* * *
* ¥ *
*
* * *
*****
* ¥ *
* %
*

- measure tunes

¥u
*
*?ﬁ
*

coupling 'repels' the tunes o T IO
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Coupling: mechanical analogy

UNIVERSITET = —
kx | % c

* Two weakly coupled oscillators: simple to find

equations of motion TJEQ;'SZ?Q for accelerator
0 = mi+ (ke +cJw —cy Pty o
L - Nar kX/m—>QX2
0 = mij+ (ky +cy—c
» and eigen-frequencies cim — coupling source
o ket hy 20 |k =k
2m 2m m2

L e - R e

 Minimum tune separation

 Excite one, get beating
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Coupling correction

UNIVERSITET

» Use a single skew-quad if that is all you have to
minimize the closest tune.

» Otherwise build knobs for the four resonance-driving
terms with normalized skew gradients

Re(F_) cos(ftpr — fby1) .. COS(fza — flya) K1
Im(F_) | osin(pgr — py1)  o.. sin(pea — fya) Ko
Re(FL) | cos(ppr + py1) oo cos(piga + fiya) K3
Im(F.) sin(pz1 + py1) .. sin(paa + pya) K4

* and empirically minimize each RDT,

- often F_ (if tunes are close) is sufficient

 Choose phases uto make the condition number of
the matrix as close to unity as possible.
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Measuring Chromaticity Q'

 Chromaticity is the momentum-dependence of
the tunes: Q = Q,+Q'd

* Force the momentum to change by changing
the RF frequency. The beam follows, because
synchrotron oscillations are stable.

Ay AT ( 1)5 N 5:_1Afrj’

— =m0 =|a— — —
fry /& ] i n Irs

 Plot tune change AQ versus Af /f.. The slope is

proportional to (1/chromaticity Q') [can also use
PLL] AQ AQ)

A N
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Chromaticity correction

UPPSALA
UNIVERSITET

* Need controllable and momentum-dependent
quadrupole to compensate or at least change the
natural chromaticity Q'=dQ/dd.

« Momentum dependent feed-down: Use sextupole
with dispersion, replace d, by D,¢
Ax' — iy = % [(.’I: + )% 4+ 2D,6(x + iy) + DE:(SZ)]
* Linear (quadrupolar) term with effective focal

length that is momentum dependent

1 eLD,s
Is
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UPPSALA
UNIVERSITET

« Momentum-dependent tune shifts

Chromaticity correction #2

ko LD, By ko LD, 3

N = — ia 25
4q7 : QU 41

» Build correction matrix in the same way as for
the tune correction for AQ'=AQ/d

/—\Q;; . 1 D151 D2y 524 (71?2L)1
( AQ; ) N E ( _Dla:_.-ﬁly —ng_ﬁgy ) ( (]ﬁ'fgL)g )
« Invert to find sextupole excitations k.,L that add
chromaticities to partially compensate the natural
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[ii]
UPPSALA BlOO pe 'S

UNIVERSITET

 _EP vacuum pipe soldering
 Beer bottle in LEP

« Stand-up metal-piece in magnet
e Shielding in SLC DR

* These non-standard 'imperfections' are very
difficult to identify, but it is good to keep in mind
that even such odd-balls occur.
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