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High photon brightness needs low electron beam emittance
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Low emittance is important for colliders

Luminosity is a key figure of merit for colliders. The luminosity
depends directly on the horizontal and vertical emittances.

. *2 *2
2y = \/%,y+ T Oz

Dynamical effects associated with the collisions mean that it is
sometimes helpful to increase the horizontal emittance; but
generally, reducing the vertical emittance as far as possible
helps to increase the luminosity.

Low Emittance Rings 3 Part 1: Beam Dynamics with SR




Low Emittance Rings

1. Beam dynamics with synchrotron radiation
e Effects of synchrotron radiation on particle motion.
e The synchrotron radiation integrals.
e Damping times of the beam emittances.
e Quantum excitation and equilibrium emittances.

2. Equilibrium emittance and storage ring lattice design
e Natural emittance in different lattice styles.
e Achromats and “quasi-achromats’ .

3. Vertical emittance and coupling
e Sources of vertical emittance.
e Emittance computation in coupled storage rings.
e Low emittance tuning.
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Lecture 1 objectives: linear dynamics with synchrotron radiation

In this lecture, we shall:

e define action-angle variables for describing symplectic
motion of a particle along a beam line;

e discuss the effect of synchrotron radiation on the (linear)
motion of particles in storage rings;

e derive expressions for the damping times of the vertical,
horizontal, and longitudinal emittances;

e discuss the effects of quantum excitation, and derive
expressions for the equilibrium horizontal and longitudinal
beam emittances in an electron storage ring.

Low Emittance Rings 5 Part 1: Beam Dynamics with SR




Coordinate system

We work in a Cartesian coordinate system, with a reference
trajectory that we define for our own convenience:

reference
trajectory

rajectory

In general, the reference trajectory can be curved. At any point
along the reference trajectory, the x and y coordinates are
perpendicular to the reference trajectory.
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Momenta

The transverse momenta are the canonical momenta,
normalised by a reference momentum, Py:

1 dx

Da Po(vmdt—l—q x) (1)
1 dy

Dy Po(vmdt—kq y); (2)

where m and ¢ are the mass and charge of the particle, v is the
relativistic factor, and A, and Ay are the transverse
components of the vector potential.

We can choose the reference momentum for our own
convenience; usually, we choose Py to be equal to the nominal
momentum for a particle moving along the beam line.

The transverse dynamics are described by giving the transverse
coordinates and momenta as functions of s (the distance along
the reference trajectory).
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Longitudinal coordinate

The longitudinal coordinate of a
particle is defined by: Vi

z = Boc(to — 1), (3) @\

where (g is the normalized ve- S e
locity of a particle with the ref- reference '
erence momentum Fg; tg is the particle
time at which the reference par-
ticle is at a location s, and t is
the time at which the particle of
interest arrives at this location.

reference
frajectory

z IS approximately the distance along the reference trajectory
that a particle is ahead of a reference particle travelling along
the reference trajectory with momentum Fj.
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Energy deviation

The final dynamical variable needed to describe the motion of a
particle is the energy of the particle.

Rather than use the absolute energy or momentum, we use the
energy deviation §, which measures the difference between the
energy of the particle and the energy of a particle with the
reference momentum Fy:

E 1 1

5:———:-(1—1>, (4)
Poc Bo  Bo \"n0

where E is the energy of the particle, and (g is the normalized

velocity of a particle with the reference momentum F;.

Note that for a particle whose momentum is equal to the
reference momentum, v = ~g, and hence § = 0.
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Canonical variables

Using the definitions on the previous slides, the coordinates and
momenta form canonical conjugate pairs:

(xapx)a (yapy)a (275) (5)

This means that if M represents the linear transfer matrix for a
beam line consisting of some sequence of drifts, solenoids,
dipoles, quadrupoles, RF cavities etc., so that:

x x
Px Pz
Yy . Yy
= M(s1;s0) - 6
Py (s1;50) Py (6)
z z
s=s1 s=sq

then, neglecting radiation from the particle, the matrix M is
symplectic.
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Symplectic matrices

Mathematically, a matrix M is symplectic if is satisfies the
relation:

MT.S8-M=S§, (7)
where S is the antisymmetric matrix:
O 1 0 0 0 O
-1 0 0 0 0 O
O 0 01 0 O
S=1 0 0 -10 0 o0 (8)
O 0 0 0 0 1
O 0 0 0 -1 0

Physically, symplectic matrices preserve areas in phase space.
For example, in one degree of freedom:

4 }).1’ 4

area= A  Px
) A
LV @
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Twiss parameters and the particle action

> S
‘S:O :SY'I :5'2
;px

. . — _ Ja
In an uncoupled periodic beam T - slope = —Z=
line, particles trace out ellipses WA slope = —
. . T B
in phase space with each pass 8
through a periodic cell. 51 .
The shape of the ellipse defines ! >

2By T

the Twiss parameters at the ob-
servation point.

The area of the ellipse defines

j i Area of the ellipse = 27/
the action J, of the particle. ca of the ellipse .
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Cartesian variables and action-angle variables

Applying simple geometry to the phase space ellipse, we find
that the action (for uncoupled motion) is related to the
Cartesian variables for the particle by:

2J, = ’yxa:Q + 2azxpr + Bmp%.. (9)

We also define the angle variable ¢, as follows:

tan ¢y = —Br— — ag. (10)
s

The action-angle variables provide an alternative to the
Cartesian variables for describing the dynamics of a particle
moving along a beam line. The advantage of action-angle
variables is that, under symplectic transport, the action of a
particle is constant.

It turns out that the action-angle variables form a canonically
conjugate pair.
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Action and emittance

The action J; is a variable that is used to describe the
amplitude of the motion of a single particle. In terms of the
action-angle variables, the Cartesian coordinate and momentum
can be written:

x =/ 2Bz Jx COS ¢y, pm:—,/%(sin%—k%cos%). (11)

The emittance e, is the average amplitude of all particles in a
bunch:

ex = (Jz). (12)

With this relationship between the emittance and the average
action, we can obtain (for uncoupled motion) the following
relationships for the second-order moments of the particle
distribution within the bunch:

(2) = Brea, (xpz) = —0zeg, (p2) = etz (13)
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Action and radiation

So far, we have considered only symplectic transport, i.e.
motion of a particle in the electromagnetic fields of drifts,
dipoles, quadrupoles, etc. without any radiation.

However, we know that a charged particle moving through an
electromagnetic field will (in general) undergo acceleration, and
a charged particle undergoing acceleration will radiate
electromagnetic waves.

What impact will the radiation have on the motion of a
particle?

In answering this question, we wil consider first the case of
uncoupled vertical motion: for a particle in a storage ring, this
turns out to be the simplest case.
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Radiation damping of vertical emittance

S

‘ S

The radiation emitted by a relativistic particle has an opening
angle of 1/~, where ~ is the relativistic factor for the particle.

For an ultra-relativistic particle, v > 1, and we can assume that
the radiation is emitted directly along the instantaneous
direction of motion of the particle.
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Radiation damping of vertical emittance

r

‘ | S

The momentum of the particle after emitting radiation is:

dp
p’=p—dp%p<1—3>, (14)
0
where dp is the momentum carried by the radiation, and we

assume that:
p = Po. (15)

Since there is no change in direction of the particle, we must
have:

p;%py <1__> : (16)
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Radiation damping of vertical emittance

After emission of radiation, the vertical momentum of the
particle is:

dp
p;zpy <1——) : (17)

Now we substitute this into the expression for the vertical
betatron action (valid for uncoupled motion):
2Jy = ,Yny + 2ayypy + Bypgy (18)

to find the change in the action resulting from the emission of
radiation:

d
_ 2\ ap
d.Jy = — (ayypy + Byp}) X (19)
Then, we average over all particles in the beam, to find:
d
(dJ)) = dey = —ey L (20)
Fo
where we have used.:
(ypy) = —ayey, <p§> = ey, and Byyy — ag =1. (21)
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Radiation damping of vertical emittance

For a particle moving round a storage ring, we can integrate
the loss in momentum around the ring, to find the total change
in momentum in one turn. The emittance is conserved under
symplectic transport, so if the non-symplectic (radiation)
effects are slow, we can write:

dp _ dey ey [dp N Uop
YRy @t To) Py EoTo
where Ty is the revolution period, and Ug is the energy loss in
one turn. The approximation is valid for an ultra-relativistic

particle, which has F = pc.

dsy == Sy, (22)

We define the damping time 7:

E
7y = 22Ty, (23)
Uo
so the evolution of the emittance is:
t
Ty
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Radiation damping of vertical emittance

Typically, in an electron storage ring, the damping time is of
order several tens of milliseconds, while the revolution period is
of order of a microsecond. Therefore, radiation effects are
indeed ‘“slow” compared to the revolution frequency.

But note that we made the assumption that the momentum of
the particle was close to the reference momentum, i.e. p = F;.

If the particle continues to radiate without any restoration of
energy, we will reach a point where this assumption is no longer
valid. However, electron storage rings contain RF cavities to
restore the energy lost through synchrotron radiation. But
then, we should consider the change in momentum of a particle
as it moves through an RF cavity.
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Radiation damping of vertical emittance

[
—>
e
>,

Fortunately, RF cavities are usually desighed to provide a
longitudinal electric field, so that particles experience a change
in longitudinal momentum as they pass through, without any
change in transverse momentum.

This means that we do not have to consider explicitly the
effects of RF cavities on the emittance of the beam.
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Synchrotron radiation energy loss

To complete our calculation of the the vertical damping time,
we need to find the energy lost by a particle through
synchrotron radiation on each turn through the storage ring.
We quote the (classical) result that the power radiated by a
particle of charge e and energy E in a magnetic field B is given
by:

Py = 325252 (25)

21

C~ is a physical constant given by:

2

e
Cy=—— ~8.846 x 10°°>m/GeV>. 26
77 3eg(me?) / (26)
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Synchrotron radiation energy loss

A charged particle with energy E in a magnetic field B follows

a circular trajectory with radius p, given by:
_P

Bp = (27)
q

For an ultra-relativistic electron, E = pc:

E
Bp ~ —. (28)

ec
Hence, the synchrotron radiation power can be written:
_Cy E*

Py~ —c—. 29
8 27_(_0102 ( )
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Synchrotron radiation energy loss

For a particle with the reference energy, travelling at (close to)
the speed of light along the reference trajectory, we can find the
energy loss by integrating the radiation power around the ring:

d
Uo = %Pydt = ]{P,Y—S. (30)
C

Using the previous expression for P,, we find:

C 1
Ug = 2—7E37§—2ds, (31)
0L p

where p is the radius of curvature of the reference trajectory.

Note that for these expressions to be valid, we require that the
reference trajectory be a real physical trajectory of a particle.
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The second synchrotron radiation integral

Following convention, we define the second synchrotron
radiation integral, I5:

1
I, = 7{—2ds. (32)
P

In terms of I, the energy loss per turn Up is written:

C
= 2R3 I,. (33)
21

Uo
Note that I, is a property of the lattice (actually, a property of
the reference trajectory), and does not depend on the
properties of the beam.

Conventionally, there are five synchrotron radiation integrals
defined, which are used to express in convenient form the effect
of radiation on the dynamics of ultra-relativistic particles in a
storage ring (or beam line).
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The first synchrotron radiation integral

The first synchrotron radiation integral is not, however, directly
related to the radiation effects. It is defined as:

I, = ¢y, (34)
p

where n; is the horizontal dispersion.

The change in length of the closed orbit with respect to
particle energy is expressed in terms of the momentum
compaction factor, ay:

AC

— = apd + 0(82). (35)
Co
The momentum compaction factor can be written:
1 dC 1 1 1
op = ——— =—f—ds=—[1. (36)
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Damping of horizontal emittance

Analysis of radiation effects on the vertical emittance was
relatively straightforward. When we consider the horizontal
emittance, there are three complications that we need to
address:

e The horizontal motion of a particle is often strongly
coupled to the longitudinal motion.

e Where the reference trajectory is curved (usually, in
dipoles), the path length taken by a particle depends on the
horizontal coordinate with respect to the reference
trajectory.

e Dipole magnets are sometimes built with a gradient, so
that the vertical field seen by a particle in a dipole depends
on the horizontal coordinate of the particle.
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Horizontal-longitudinal coupling

YA off-energy
betatron
trajectory

70 L off-energy
closed orbit

trajectory

Coupling between transverse and longitudinal planes in a beam
line is usually represented by the dispersion, n;. So, in terms of
the horizontal dispersion and betatron action, the horizontal
coordinate and momentum of a particle are given by:

2Jy , .
T
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Horizontal-longitudinal coupling

When a particle emits radiation, we have to take into account:
e the change in momentum of the particle;

e the change in coordinate x and momentum p,, resulting
from the change in the energy deviation §.

When we analysed the vertical motion, we ignored the second
effect, because we assumed that the vertical dispersion was
ZEero.
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Damping of horizontal emittance

Taking all the above effects into account, we can proceed
along the same lines as for the analysis of the vertical
emittance. That is:

e Write down the changes in coordinate x and momentum p, resulting
from an emission of radiation with momentum dp (taking into account
the additional effects of dispersion).

e Substitute expressions for the new coordinate and momentum into the
expression for the horizontal betatron action, to find the change in
action resulting from the radiation emission.

e Average over all particles in the beam, to find the change in the
emittance resulting from radiation emission from each particle.

e Integrate around the ring (taking account of changes in path length
and field strength with z in the bends) to find the change in emittance
over one turn.

The algebra gets somewhat cumbersome, and is not especially
enlightening. See Appendix A for more details. Here, we just
quote the result...
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Damping of horizontal emittance

The horizontal emittance decays exponentially:

d&:x 2
— = ——¢y, 39
where the horizontal damping time is given by:
2 F
e = 9T, (40)
Jz Ug

, I
jo=1--2, (41)
I
where the fourth synchrotron radiation integral is given by:
ne [ 1 e OBy
sz—-— Ok | ds,  ky = 22U 42
4 ; (p2 + 1) s 1= Py on (42)
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Damping of synchrotron oscillations

So far we have considered only the effects of synchrotron
radiation on the transverse motion. There are also effects on
the longitudinal motion.

Generally, synchrotron oscillations are treated differently from
betatron oscillations, because the synchrotron tune in a storage
ring is typically much less than 1, while the betatron tunes are
typically much greater than 1.
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Damping of synchrotron oscillations

To find the effects of radiation on synchrotron motion, we
proceed as follows:

e We write down the equations of motion (for the variables z
and ¢§) for a particle performing synchrotron motion,
including the radiation energy loss.

e \We express the energy loss per turn as a function of the
energy deviation of the particle. This introduces a
“damping term” into the equations of motion.

e Solving the equations of motion gives synchrotron
oscillations (as expected) with amplitude that decays
exponentially.

Low Emittance Rings 33 Part 1: Beam Dynamics with SR




Damping of synchrotron oscillations

The change in energy deviation § and longitudinal coordinate z
for a particle in one turn around a storage ring are given by:

V U

As = SURE sin<¢s—wRFz) - —, (43)
Eg c Eq

Az = —apCpl, (44)

where Vrp is the RF voltage, and wrp the RF frequency, Eg is
the reference energy of the beam, ¢s is the nominal RF phase,
and U (which may be different from Up) is the energy lost by
the particle through synchrotron radiation.

If the revolution period is Ty, then we can write the longitudinal
equations of motion for the particle:

do V; U

@ _ CYRE sin(qbs — wRFZ) — , (45)

dt EqTp c EqTp

dz

— = —qpco. 46

. b (46)
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Damping of synchrotron oscillations

Let us assume that z is small compared to the RF wavelength,
i.e. wppz/c K 1.

Also, the energy loss per turn is a function of the energy of the
particle (particles with higher energy radiate higher synchrotron
radiation power), so we can write (to first order in the energy
deviation):

dU

aUu
U=Upg+ AFE — = Up + Egd — : 47
0 dE|E=E, 0 O dE E=E, (47)

Further, we assume that the RF phase ¢;s is set so that for

z = 9 = 0, the RF cavity restores exactly the amount of energy
lost by synchrotron radiation. The equations of motion then
become:

do V. 1 dU

DO = BE oq(p) BE, - 250 (48)
dt EoTo To dE|p=p,

dz

= _aes. 49
dt ape (49)
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Damping of synchrotron oscillations

Combining these equations gives:

d25 ds
—5 +20p + w28 = 0. (50)

This is the equation for a damped harmonic oscillator, with
frequency ws and damping constant ag given by:

2 eVRE WRF
ws = — Ccos Qap, 51
S EO (QbS) TO p ( )
1 dU
ap = —— 2 . (52)
21p dE|E=E,
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Damping of synchrotron oscillations

If ap < ws, the energy deviation and longitudinal coordinate
damp as:

5(t) = Sexp(—agpt)sin(wst — 6), (53)
2(t) = O:fcsexp(—aEt) cos(wst — 6g). (54)

where ¢ is a constant (the amplitude of the oscillation at ¢t = 0).

To find the damping constant ag, we need to know how the
energy loss per turn U depends on the energy deviation §...
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Damping of synchrotron oscillations

We can find the total energy lost by integrating over one
revolution period:

U= ]{1% dt. (55)

To convert this to an integral over the circumference, we
should recall that the path length depends on the energy
deviation; so a particle with a higher energy takes longer to
travel around the lattice.

dC
AT ds 7 i
/-—_‘\7 reference
\ ",' trajectory dt — - (56)
c
T )
dC = |14+ —-|ds= |14+ —| ds
P P
(57)
1 Nzo
e U = ;7{137 (1 4 7) ds. (58)
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Damping of synchrotron oscillations
With the energy loss per turn given by:
1
U=—7§P7<1—|—n—x>ds, (59)
c P
and the synchrotron radiation power given by:
C C, E*
Py, = 1 3e?B?°E? = Yo, (60)
21 21 p2
we find, after some algebra:
dU . Up
—— =JE— > (61)
dE|E=E, Eq
where:
C _ 1
Up = LE§l,  jp=2+-" (62)
21 12

I> and I4 are the same synchrotron radiation integrals that we
saw before, in Egs. (32) and (42).
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Damping of synchrotron oscillations

Finally, we can write the longitudinal damping time:

= =207 (63)

Up is the energy loss per turn for a particle with the reference
energy Ejq, following the reference trajectory. It is given by:

_ & ESI. (64)

U
0 21

Jz is the longitudinal damping partition number, given by:
Iy

Jz =2+ —. (65)
I
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Damping of synchrotron oscillations

The longitudinal emittance can be given by a similar expression
to the horizontal and vertical emittance:

ee = /(22)(6%) - (26)2. (66)

Since the amplitudes of the synchrotron oscillations decay with
time constant 7, the damping of the longitudinal emittance
can be written:

e (1) = £,(0) exp (—zi) | (67)

Tz
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Summary: synchrotron radiation damping

The energy loss per turn is given by:

C
= B3I, Cy~8.846 x 107°m/GeV3.  (68)

U
0 27

The radiation damping times are given by:

o = ——1To, Ty=——To, 7z=—"Tp. (69)

Je=1——, jy:17 Jz =2+ —. (70)

The second and fourth synchrotron radiation integrals are:

1 1
Iy = 7{—2ds, Iy = f"—x (-2 4 2k1> ds. (71)
p p \p
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Quantum excitation

If radiation were a purely classical process, the emittances
would damp to nearly zero.

However radiation is emitted in discrete units (photons), which
induces some ‘“noise” on the beam. The effect of the noise is
to increase the emittance.

emitted
photon
oh-energy closed orbit
/ \ off-energy closed orbit
particle
bending trajectory
magnet

The beam eventually reaches an equilibrium distribution
determined by a balance between the radiation damping and
the quantum excitation.
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Quantum excitation of horizontal emittance

By considering the change in the phase-space variables when a
particle emits radiation carrying momentum dp, we find that
the associated change in the betatron action is:

dp dp 2
dJy = —w1— — , 72
2 w1p + w2 (Po> (72)

where wq and wo are functions of the Twiss parameters, the
dispersion, and the phase-space variables (see Appendix A).

The time evolution of the action can then be written:
dJ 1 dp dp dp

- “VRedr TRt

(73)
In the classical approximation, we can take dp — O in the limit
of small time interval, dt — 0. In this approximation, the second
term on the right hand side in the above equation vanishes,
and we are left only with damping. But since radiation is
quantized, it makes no real sense to take dp — O...
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Quantum excitation of horizontal emittance

To take account of the quantization of synchrotron radiation,
we write the time-evolution of the action as:

dJy 1 dp dp dp
. I 74
dt “poat T 22 a (74)
aJ; W), W)

T = N oy N 75
dt 1N e T 2N p2s (75)

where u is the photon energy, and N is the number of photons
emitted per unit time.

In Appendix B, we show that this leads to the equation for the
evolution of the emittance, including both radiation damping
and quantum excitation:

d 2 2 1
ﬁ = ——¢&x + . 2_57
dt Ty JoTx I

(76)

Low Emittance Rings 45 Part 1: Beam Dynamics with SR




Quantum excitation of horizontal emittance

The fifth synchrotron radiation integral Ig is given by:
Is=§ 7 s, 77
I
where the ‘“curly-H" function H is defined:

H = ’Ya:ng% + 20éx77m77px + angq; (78)

The “quantum constant” Cj is given by:

55 h
=~ ~3.832x 107 13m. (79)

C, =
1 32v/3mec
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Equilibrium horizontal emittance

Using Eqg. (76) we see that there is an equilibrium horizontal
emittance g, for which the damping and excitation rates are
equal:

deg _ 2 2 oI5

— o ——Coyc—. (80)
dt Ex=€Q Tx JxTx b IQ

The equilibrium horizontal emittance is given by:

27
g0 = Cyl=2, (81)
Jz 1o

Note that ¢g is determined by the beam energy, the lattice
functions (Twiss parameters and dispersion) in the dipoles, and
the bending radius in the dipoles.
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Natural emittance

eo IS sometimes called the “natural emittance” of the lattice,
since it includes only the most fundamental effects that
contribute to the emittance: radiation damping and quantum
excitation.

Typically, third generation synchrotron light sources have
natural emittances of order a few nanometres. With beta
functions of a few metres, this implies horizontal beam sizes of
tens of microns (in the absence of dispersion).

As the current is increased, interactions between particles in a
bunch can increase the emittance above the natural emittance.
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Quantum excitation of vertical emittance

In many storage rings, the vertical dispersion in the absence of alignment,
steering and coupling errors is zero, so ‘H, = 0.

However, the equilibrium vertical emittance is larger than zero, because the
vertical opening angle of the radiation excites some vertical betatron
oscillations.

The fundamental lower limit on the vertical emittance, from the opening
angle of the synchrotron radiation, is given by*:

13
ey = ]4 (82)
55j,02 ) |p°]

In most storage rings, this is an extremely small value, typically four orders
of magnitude smaller than the natural (horizontal) emittance.

In practice, the vertical emittance is dominated by magnet alignment errors.
Storage rings typically operate with a vertical emittance that is of order 1%
of the horizontal emittance, but many can achieve emittance ratios
somewhat smaller than this.

*T. Raubenheimer, SLAC Report 387, p.19 (1991).
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Quantum excitation of longitudinal oscillations

Quantum effects excite longitudinal emittance as well as
transverse emittance. Consider a particle with longitudinal
coordinate z and energy deviation §, which emits a photon of
energy u.

§ = §'sing =3sing — Ei (83)

- ™ -
- =~ 0
~

ot K\\ J = 2§ cos = 2PC5 coso.
1 — Ws Ws
. \ ] (84)
* 5 2
.. - 852 = 225 Y sing+ L. (85
) = + 2 (85)

sssss -___,d O O
Averaging over the bunch gives:
2
(u®) > 1,
Ac? =L where 2= =-(5%). 86
1) 2E8 0 2< > ( )
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Quantum excitation of longitudinal oscillations

Including the effects of radiation damping, the evolution of the
energy spread is:

do? 1 : 2
% — 20 7{N(u2) ds — —O'g. (87)

Tz

—2 =Cyy*——= — —05. (88)

osqg = Cq : (89)
60 q 215
The third synchrotron radiation integral I3 is given by:
1
I3 = 7{—3ds. (90)
Id
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Natural energy spread

The equilibrium energy spread determined by radiation effects
is:

> I3
szz'

2
50 = Cq7

(91)

This is often referred to as the “natural” energy spread, since
collective effects can often lead to an increase in the energy
spread with increasing bunch charge.

The natural energy spread is determined essentially by the
beam energy and by the bending radii of the dipoles. Note that
the natural energy spread does not depend on the RF
parameters (either voltage or frequency).
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Natural bunch length

The bunch length o, in @ matched distribution with energy
spread oy Is:

o5 (92)

We can increase the synchrotron frequency ws, and hence
reduce the bunch length, by increasing the RF voltage, or by
increasing the RF frequency.

Note: in a matched distribution, the shape of the distribution in phase space
is the same as the path mapped out by a particle in phase space when
observed on successive turns. Neglecting radiation effects, a matched
distribution stays the same on successive turns of the bunch around the ring.
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Summary: radiation damping

Including the effects of radiation damping and quantum
excitation, the emittances vary as:

t t
c(t) = £(0) exp (—2—) + (0) [1 —exp <—2—)} . (93)
T T
The damping times are given by:
E
Uo

The damping partition numbers are given by:

Jr=1——, jy=1> Jz =2+ —. (95)

The energy loss per turn is given by:

C
Up = Q—;ESIQ, C = 9.846 x 107° m/GeV?>. (96)
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Summary: equilibrium beam sizes

The natural emittance is:
Is
jx-’27

g0 = Cpy? Cy=3.832x10"13 m. (97)

The natural energy spread and bunch length are given by:
> I3 _aye

3 Oz —
]zIQ7 Ws

os. (98)

The momentum compaction factor is:

_h
Q{p —_—

= (99)

The synchrotron frequency and synchronous phase are given by:
Uo

2 eVRFWRF .
= — ——ap COS g, Singps = . 100
ws EO TO D Qbs Qbs GVRF ( )
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Summary: synchrotron radiation integrals

The synchrotron radiation integrals are:

I = ¢y (101)
P
1
I, = f—st, (102)
P
1
I3 = 74—3ds, (103)
i
I, = 7(— S 40k ) ds, k=Y 104
4 ; <p2 + 1> 1= B ow (104)
7'[:18 2 2
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Appendix A: Damping of horizontal emittance

In this Appendix, we derive the expression for radiation damping of the
horizontal emittance:

de, 2
e _ 2o, 106
dt Tu ( )
where:
2 F I
e = =227, je=1— -2 (107)
Jx UO 12

To derive these formulae, we proceed as follows:

1. We find an expression for the change of horizontal action of a single
particle when emitting radiation with momentum dp.

2. We integrate around the ring to find the change in action per revolution
period.

3. We average the action over all the particles in the bunch, to find the
change in emittance per revolution period.
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Appendix A: Damping of horizontal emittance

To begin, we note that, in the presence of dispersion, the action J, is
written:

2Jp = VuT? + 20, 8Ps + Bupo, (108)
where:
T = — 0, and Do = Dz — MpaO- (109)

After emission of radiation carrying momentum dp, the variables change by:

dp -~ dp - - dp dp
S 86— —, T oy Derr e (1= = ) + (1 — 8)—. 110
B :c+npo Pz D ( Po) Mpa( )Po (110)

We write the resulting change in the action as:

Jo = Jo + dJy. (111)
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Appendix A: Damping of horizontal emittance

The change in the horizontal action is:

2
where, in the limit § — O:
w1 = aeps + Bepy = Ne(ew + 0wpa) = Mpe(aw + Bops), (113)
and:
wo = % (vam2 + 20wn2mpe + Bartyy) — (e + Batps) po + %szi (114)

Treating radiation as a classical phenomenon, we can take the limit dp — 0O
in the limit of small time interval, dt — 0. In this approximation:
dJy 1 dp P,
N Wl ) w1/,
dt Py dt Pye
where P, is the rate of energy loss of the particle through synchrotron
radiation.

(115)
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Appendix A: Damping of horizontal emittance

To find the average rate of change of horizontal action, we integrate over
one revolution period:

dJ, 1 P

o
= —— —dt. 116
dt To wlPoC ( )
dC
We have to be careful changing the variable A ds _
of integration where the reference trajectory is

I‘—"‘_______————_____\h: FRlsrehEE

curved: .’f trajectory
dC d
dt =2 = (1+§) ) (117)
c p) ¢
So:
dJ. 1
T = _ 7{@0119v 1+%) ds, (118)
dt ToPoc? P
where the rate of energy loss is:
C ".I.‘I d9 ‘."I
P, = —'c3e?B?E°>. (119) e
27 \
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Appendix A: Damping of horizontal emittance

We have to take into account the fact that the field strength in a dipole can
vary with position. To first order in x we can write:

B = By + a—~. (120)
ox
Substituting Eq. (120) into (119), and with the use of (113), we find (after
some algebral!) that, averaging over all particles in the beam:

}§<wlp7 (1 + f>> ds = cUg (1 - 5) Ens (121)
P I>
C’Y

1 1
Uo = —LcE}Io, I, = ?{—st, Iy = 7{@ (—2 + 2k:1> ds, (122)
2 P p\p

s

where:

and k1 is the normalised quadrupole gradient in the dipole field:

ey _ € 0By

= -7, 123
Py Oz ( )
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Appendix A: Damping of horizontal emittance

Combining Eqgs. (118) and (121) we have:

d 10, I
L. N (I (124)
dt " To Eo I

Defining the horizontal damping time 7,:
2 Eo ) Iy

7o = ——10, Je=1——, (125)
]a: UO 12
the evolution of the horizontal emittance can be written:
dey 2
— = ——,. 126
dt 7'908;D ( )

The quantity j, is called the horizontal damping partition number. For most
synchrotron storage ring lattices, if there is no gradient in the dipoles then
J= iS very close to 1.
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Appendix B: Quantum excitation of horizontal emittance

In deriving the equation of motion (118) for the action of a particle emitting
synchrotron radiation, we made the classical approximation that in a time
interval dt, the momentum dp of the radiation emitted goes to zero as dt
goes to zero.

In reality, emission of radiation is quantized, so writing “dp — Q" actually
makes no sense.

Taking into account the quantization of radiation, the equation of motion
for the action (112) should be written:

dp dp dJy ) (u?)
dJy = —wy 2 =_ N (127
Wiy T2 (Po> dt Nopoe TN oz (127)

where N is the number of photons emitted per unit time.

The first term on the right hand side of Eq. (127) just gives the same
radiation damping as in the classical approximation. The second term on
the right hand side of Eq. (127) is an excitation term that we previously
neglected...
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Appendix B: Quantum excitation of horizontal emittance

Averaging around the circumference of the ring, the quantum excitation
term can be written:

(u?) o (u?)
wy NP202 ~ Co ngPgCst. (128)

Using Eq. (114) for ws, we find that (for x < n, and p, < m,:) the excitation
term can be written:

N ! %’H N(u?)d (129)
w ~ +IN{u“)ds,
> P22 T 2E2C,
where the “curly-H" function H, is given by:

He = %mf + 2aunanpe + angx- (130)
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Appendix B: Quantum excitation of horizontal emittance

Including both (classical) damping and (quantum) excitation terms, and
averaging over all particles in the bunch, we find that the horizontal
emittance evolves as:

de 2
— = N(u?)H, ds. 131
it 2E200]{ (U)o ds (131)
We quote the result (from quantum radiation theory):
: P.
N(u?) = 20y Eo—, (132)
P
where the “quantum constant” Cj is:
55 &
C, = — A~ 3.832x 107 ¥ m. (133)
323 mec
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Appendix B: Quantum excitation of horizontal emittance

Using Eq. (132), and Eq. (119) for P,, and the results:

E C
joTe = 2—2T, Up = —LcEL I, (134)
U 27
we find that Eq. (131) for the evolution of the emittance can be written:
de, 2 2 LI
— = —— Cyy — 135
dt Ta + JoTa 7 1> ( )
where the fifth synchrotron radiation integral Is is given by:
Is =7{ S ds. (136)
P3|

Note that the excitation term is independent of the emittance: it does not
simply modify the damping time, but leads to a non-zero equilibrium
emittance.
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