

CERN	Content
•	Introduction: Energy and Power
•	Beam losses
•	Continuous beam losses and Collimation
•	Accidental beam losses and Machine Protection
•	Example: LHC
•	Beam Cleaning
•	Machine protection
•	Outlook
	CAS Outshot 2011 D Schmidt 2

CÉRN	Energy deposition and temperature increase
•	There is no straightforward expression for the energy deposition
•	The energy deposition is a function of the particle type, its momentum, and the parameters of the material (atomic number, density, specific heat)
•	Programs such as FLUKA, MARS, GEANT and others are being used for the calculation of energy deposition and activation
•	Other programs are used to calculate the response of the material (deformation, melting,) to beam impact (mechanical codes such as ANSYS, hydrodynamic codes such as BIG2 and others)
Qu	uestion: what is dangerous (stored beam energy, beam ower)?

CERN	Collimation
•	For a circular accelerator, the transverse distribution of beams is in general Gaussian, or close to Gaussian (beams can have non-Gaussian tails)
•	 In general, particles in these tails cause problems when they might touch the aperture Background Quenches in magnets (for accelerators with sc magnets) For high intensity machines, possible damage of components
•	Nearly all particles that are in the centre go first through the tails before getting lost (except those that do a inelastic collision with gas molecules)
•	Tails are scraped away using collimators

CER	LHC: Strategy for machin	e protection
•	Definition of aperture by collimators.	Beam Cleaning System
•	Early detection of failures for equipment acting on beams generates dump request, possibly before the beam is affected.	Powering Interlocks Fast Magnet Current change Monitor
•	Active monitoring of the beams detects abnormal beam conditions and generates beam dump requests down to a single machine turn.	Beam Loss Monitors Other Beam Monitors
•	Reliable operation of beam dumping system for dump requests or internal faults, safely extract the beams onto the external dump blocks.	Beam Dumping System
•	Reliable transmission of beam dump requests to beam dumping system. Active signal required for operation, absence of signal is considered as beam dump request and injection inhibit.	Beam Interlock System
•	Passive protection by beam absorbers and collimators for specific failure cases.	Collimator and Beam Absorbers

CERN	Summary
Ma	achine protection
•	is not equal to equipment protection
•	requires the understanding of many different type of failures that could lead to beam loss
•	requires comprehensive understanding of all aspects of the accelerator (accelerator physics, operation, equipment, instrumentation, functional safety)
•	touches many aspects of accelerator construction and operation
•	includes many systems
•	is becoming increasingly important for future projects, with increased beam power / energy density (W/mm ² or J/mm ²) and increasingly complex machines

