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Outline 

•  Controls technology  
! the good old days 
! the intermediate period (the 1980’s…) 
! controls technology today 

•  What it needs before we can inject beams: 
A rapid walk through technical services 

•  Controling beam parameters…  
the central masterpiece of accelerator control 

•  Additional circuits to improve/protect the 
accelerator… magnet protection, beam abort, 
power abort, real time feedbacks, insertion 
alignment feedback 
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Controls technology 
•  …did barely exist in the 

« good old days ». 
Machines were small in 
size and all equipment 
control was routed via 
cables into a central 
control room.  

•  Switches, potentiometers 
and indicators (lampes, 
meters) were physically 
installed in the control 
room. 

•  Beam Diagnstics was 
done with instruments 
locally in the control 
room. 
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The intermediate period… 
•  Onset of computer control… 
•  No widely accepted industry standards existed for front-end 

computers and for console computers; low educational level of 
technical staff on computer technology 

•  Complete lack of standards for real time operating systems and 
systems intercommunication. 

•  Networking only in its beginning 
•  Performance limits of computers were significant. 

Still many systems ( beam instrumentation and RF) with direct 
high frequency cables to control room. 

•  In terms of controls: a total mess 

The$CERN$Control$Center$
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Some keywords for LHC controls technology 
 

•  Base the HW architecture on available 
commercial standards and COTS: 
→  VME64x standard pour complex embedded I/

O system with high performance demands 
commercial VME PPC processor 
boards(CES), including O/S integration and 
support (LynxOS)  

→  commercial cPIC Intel based processor boards 
(Concurrent Technology for the time being) 
and digital scopes  

→  commercial serial controller boards, ADCs, ...  
→  commercial industrial PC platform for non-

embedded systems (WorldFIP, PLC control)  
→  HP Proliant servers for application servers and 

file servers  
→  WorldFIP for applications requiring RT 

fieldbus features and radiation hardness  
→  GPS for time stamping and overall accelerator 

synchronization 
•  Apply whenever possible vertical 

industrial control system solutions: 
→  Siemens and Schnieder PLCs for industry-like 

process control (Cryo, vacuum, electrivity, RF 
power control, BT power control)  

→  Supervisory Control and Data Acquisition 
Systems (SCADA) for commands, graphical 
user interfcaes, alarms and logging 

•  Restrict home-made HW development 
to specific applications for which 
industrial solutions are not available: 
→  VME boards for BIC, BST, Timing 

 

•  distributed system architecture, 
modular,  

•  data centric, data driven, 
•   n-tier software architecture, 
•   Java 2 Enterprise Edition (J2EE) 

applications, Java technology, 
•   XML technology,  
•  client/server model, 
•   Enterprise Java beans technology, 
•   generic components,  
•  code generation, 
•   Aspect oriented programming (AOP) 

12 17/10/2007 LHC Software Architecture – ICALEPCS 2007 – Grzegorz Kruk 

Architecture - 3-tier approach 
 

• We wanted to deploy the system in 3 physical layers due to: 
"  Central access to the database and to the hardware 
"  Central security 
"  Caching 
"  Reduced network traffic 
"  Reduced load on client consoles 
"  Scalability 
"  Ease of web development 
 

• With a minimal cost of 3-tier architectures 
"  Complexity of programming 
"  Testing & debugging 
"  Deployment 
 

•  Plus we needed support for standard services 
"  Transactions, remote access,… 
 

tier, tire or tyre ?? 
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Applications 

Datastore Devices 

JAPC CMW/RDA 
JAPC 

Spring JDBC 
Data Access Object (DAO) 

LSA Client API 

LSA CORE 
(Settings, Trim, Trim History, Generation,  

Optics, Exploitation, Fidel) 

LSA Client implementation 

LSA Client API 
Spring RMI Remoting / Proxies 

Business Tier (Web Container) 

Client Tier 

CORBA IIOP JDBC 

RMI 

Architecture 

• Modular 

• Layered 

• Distributed 
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…and an uncountable number of application programs 
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Technical Services 

All we need even before thinking of injecting beam: 
•  Electrical supplies  
•  Uninterruptible Power Supplies (UPS),  

Arret Urgence Generale (AUG) 
•  Cooling & Ventilation 
•  Cryogenics systems 
•  Vacuum systems 
•  Access System (Personal Safety) 
•  Interlock Systems (Material Safety) 

i.e. powering interlocks, quench protection system 
•  General services  

(temperature monitoring, radiation monitoring) 
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The �look and feel� of all these systems 
example: vacuum system for LHC transfer line 

AT-VAC/IN Section 

Synoptic of the SPS Complex 

Pressure profile in LHC TI8 

Vacuum sectorisation of LHC TI8 
Vacuum layout of 

LHC TI8 

I.Laugier AT-VAC 
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A typical implementation 
Quantum 

Premium 
Ethernet 

Telefast 

Digital 

Phoenix 

Analog 

PMA 
Modbus 

DP
PA 

P
A

P
A

PLC 
Safety 

BUS X 

AT-ACR 

Gateway 
WFIP 

 
 

Gateway 
Siemens 

ET 200 
Boards 

WFIP  
Networks 

WFIP  
agents 

Central 
Data server 

Central & local control 
room 

Operator consoles 

Various front end interfaces 

Accelerator Controls CAS 2005 Hermann Schmickler (CERN - AB) 

 

Finally: Beam Control 
→ Transfer lines 
→ Injection and Extraction (beam dumping system) 
→ Beam optics controls 

i.e. all power converters 
→ Beam instrumentation  
→ RF 
→ Beam interlocks 
→ Collimation 
→ Real Time feedbacks 
→ Machine Protection 
→ Timing Systems 
→ Radiation monitors 

759.98

760.00

760.02

760.04

760.06

0 1 2 3 4
Seconds

Amps

Imeas
Iref

Static and dynamic control,  
We will discuss in detail the setting at 

injection and the ramping of the 
main dipole power converter 

2 ppm = 14 MeV 
of full current  
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Requested Functionality: 
•  Modern Graphical User Interfaces 
•  Settings Generation available on 3 levels:  ex: Tune  

a) Current in QF, QD: basic direct hardware level 
b) strength of QF, QD: independent of energy 
c) value of QH, QV: physics parameter; decomposition into QF, QD strength via 
optics model 

•  Function Generation for machine transitions (energy ramping, squeeze); viewing of 
functions; concept of breakpoints (stepping stones) 

•  Trimming of settings and functions 
•  Incorporation of  trims into functions!  

Very important: different models (constant value, constant strength…) 
•  Feed Forward of any acquired knowledge into functions: 

Cycle history, Beam Measurements on previous cycle 
•  Trim and incorporation history, Rollbacks… 

Tools for the control of beam parameters 
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Generic Equipment Control 



Accelerator Controls CAS 2005 Hermann Schmickler (CERN - AB) 

 

Generic Measurement 
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Measurement of power converters 
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Visualization of the settings 
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Trim 
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Trim history 
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Supporting Tools for Operation 

•  Beam Measurement – Inspection – Correction – Trim 
ex: Orbit Correction…The whole suite of beam diagnostics 

•  Sequencing 
•  Online Machine Models 
•  Archiving of measurements 
•  Automatic logging and data retrieval (correlation studies) 
•  Post Mortem Analysis Tools 
•  Fixed Displays (the 16 big screens in the CCC…) 
•  ELogBook 
•  Statistics 
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Orbit Steering 
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Optics Display 
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Logging & Monitoring 
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Statistics 

Data hauled from database automatically at end of fill 
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Retrieval of archived measurements 
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Browser & Viewer 
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With historical 
data on the 
database, 

reasonably easy to 
extract and 

analyze off-line 

DATA EXTRACTION # POST RUN ANALYSIS 
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Dedicated Video (FAST) Signals (LEP) 

Data 
sampled at 
slower rate 
# logging 
database  
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Fixed Displays 
Large screens in CCC) 
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Now we take a closer look: 
Injection Setting generation for a main dipole string: 

 
1) injection setting from requested beam momentum setting and 
calibration curve of Magnet 
2) Magnetic history of dipoles handled via specific hysteresis cycles 
before injection (called: degaussing…) 
3) Online Feedback to actual setting via reference magnet 
4) Requested beam momentum refined by measuring extraction 
energy of preinjector 
5) Other cycle history handled as trim and rollback utility (i.e. �cold 
machine after shutdown�, �warm machine after 1 day of permanent 
operation� 
- in case of the LHC the main dipoles are superconducting! 
the field model is more complicated then a simple look-up table 
….next slides 
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Available data for LHC magnets 
•  warm measurements on the 

production: 
→ all (superconducting) MB, MQ, 

MQM, MQY:  
•  main field integral strength  
•  higher order geometric 

harmonics 
→ all (superconducting) MBX, 

MBRx, MQXx 
→ warm measurement on MQTL 

so far at CERN 
→ most (superconducting) lattice 

corrector and spool pieces 
→ all (warm) MQW 
→ a sample (5 to 10) of other warm 

insertion magnets (MBXW, … 
measured at the manufacturer 
before delivery) 

•  cold measurements on: 
→ a high fraction of MB and MQ in 

standard conditions 
→  special tests (injection decay and 

snap-back, effect of long storage) 
on 15…20 MB 

→ a sample of MQM and MQY  
→ ≈ 75 % of MBX, MBRx 
→ 100 % of MQXx (Q1, Q2, Q3) 
→ a limited sample of lattice 

correctors and spool pieces 
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example of integral dipole field in an LHC dipole 
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The field model 
•  general decomposition in error sources, with given 

functional dependency on  
t, I, dI/dt, I(-t) geometric Cn

geom 
→ DC magnetization from persistent currents Cn

MDC 
→ iron saturation Cn

saturation 
→ decay at injection Cn

decay 
→ snap-back at acceleration Cn

SB 
→ coil deformation at high field Cn

def 
→ coupling currents Cn

MAC 
→ residual magnetization Cn

residual 

•  linear composition of contributions: 

smaller values 
smaller variability 

smaller uncertainty 

higher values 
higher variability 

higher uncertainty 
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Use of data 

•  The data will be used to: 
1.  set injection values 
2.  generate ramps 
3.  forecast corrections (in practice only for MB’s or IR 

quads) 
 on a magnet family basis 

•  Families are magnet groups powered in series, 
i.e. for which an integral transfer function (and, 
possibly, integral harmonics) information is 
needed. Example: the MB’s V1 line in a sector 
(154 magnets) 
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MB injection settings in sector 7/8 
•  From field model: 

 
TF = 10.117 (Tm/kA) 

•  Required integrated field strehngth in sector 78 for an injection at 450 
GeV from SPS  : 1189.2 T m 

!  I = 763.2(5) A 
= this corresponds to the first step in the discussed sequence  

The Control system receives and stores this setting and makes 
it available for trimming 
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…and now we have to ramp the whole lot 
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Typical turn-around: ~ 45 minutes 

All routine operation based on a Semi-automatic sequencer  

•  Reproducibility 

•  Reduced scope for error 
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Per aperture: 

154 MCS sextupole spool pieces 
powered in series. 

77 MCO & MCD spool pieces powered in 
series. 

Therefore we�re working on the average 
per sector per aperture 

Correction elements 
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( )tbn

▲

▲
▲

▲ ▲ ▲ ▲ ▲

Δbn applied as trim 

Decide to ramp  

▲

▲

▲

▲

▲

▲▲Per sector per aperture: 
magnitude of errors at t0 

and time evolution of bn(t) 
during decay has been 

measured 

Based on this 
corrections applied as 

a function of time 
during the injection 

plateau 

After time tinj a 
prediction of 

the snapback is 
required. 

Download. 

Start ramp 

( )tIMB

Dynamic effects - correction 
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Q� - control 
•  Extract  sextupole change in dipoles from slow Q� measurements & b3 

corrections during injection to give Δb3 and thus ΔI. 
•  Just before ramping: 

→ Extract total b3 correction 
→  Invoke fit for snapback prediction 
→ Convert to currents 
→  Incorporate into ramp functions & download 

•  Functions invoked at ramp start by standard timing event   
•  Occasionally follow chromaticity over ramp by measurements and verify that 

the incorporation of the trims is still valid. 
! Extract from measurements deviation from constant chromaticity 
! invert function and calculate corresponding correction function 
! make this function available in the control system as additional trim 
(experts only) 
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…and if all this is not enough:  
real time feedbacks on beam parameters 

•  Time resolved measurements 
- LHC orbit: minimum 10 Hz 
- LHC betatron tunes: some Hz 
- LHC chromaticties: Hz 

•  Data centralization and computation of corrections 
(including error handling, dynamic change of 
twiss parameters… 

•  Feedback of corrections to power converters 

Nice Problem for the 
instrumentation 

group 
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LHC Feedback Success has a long Pedigree:  
Years of Collaboration, Development and leveraged Experience 

1996 

1999 

2000 

2001 

2002 

Wide-Band-Time-Normaliser 
proposed for LHC BPM system 

Radiation testing showed digital 
acq. needs to be out of tunnel 

RT control specification, mostly decay-/snap-
back and nominal performance (no MP yet) 

BPM design and capabilities "inspired" specs. 
Moving digital processing out of the tunnel 

Orbit-FB prototype tests at the SPS 

Recognition that collimation will 
rely on real-time Orbit-FBs 

IWBS'04: SLS, ALS, Diamond, Soleil and 
others → affirmed Orbit-FB strategy 

Orbit(-FB) and MP entanglement recognised 
→ FB: "nice to have" to "necessary" 

2009 – the year we established collisions: Q/Q'- & Orbit FBs operational 

2003 

2004 

2005 

2006 

BNL & CERN collaboration on Q/Q'(-FB) 
initially BNL's 200MHz resonant BPM 

Tune-FB included in original US-LARP  
TWC-based Schottky monitor proposed 

" Direct-Diode-Detection → Base-Band-Tune 
(BBQ), prototyped at RHIC/SPS,    
robust Q-meas. & unprecedented sensitivity 

" 1.7 GHz Schottky prototype at SPS  

FFT-based Q tracking op. deployed at SPS  
PLL-studies at RHIC 
FNAL-LARP involvement in Schottky design 
and front-end electronics 

Q & Coupling-FB demonstrated at RHIC 
PLL-Q and Q'(t) tracker demononstrated at SPS 
FNAL-design/CERN-built 4.8GHz TWC Schottky 
Tune Feedback Final Design Review (BNL) 

Joint CARE workshop on Q/Q' diagnostics 
(BNL, FNAL, Desy, PSI, GSI, …)         
→ affirmed Q/Q' strategy 

2007 
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To avoid inherent Cross-Talk between FBs... 
… Cascading between individual Feedbacks 
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Orbit Feedback Performance 

"   Orbit feedback used routinely and mandatory for nominal beam 

 

 

 

 

 

 

 

 

 

 

 

 

"   Typical stability:  80 (20) µm rms. globally (arcs) 

" Most perturbations due to Orbit-FB reference changes around experiments 
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Typical Q/Q'(t) Control Room View 
2010 Statistics: Out of 191 Ramps... 

"   … 155 ramps with > 99% transmission, 178 ramps with > 97% transmission 
"   … only 12 ramps lost with beam (6 with Tune-FB during initial 3.5 TeV comm.) 
"   … “if without FBs”: 83 crossings of 3rd, 4th or C- resonance, 157 exceeded |ΔQ|>0.01 
" Impressive performance for the first year of operation and low-ish intensities: 

Beam 1 

Beam 2 

Q(t) 

Q'(t) energy 

Available trim functions for Qh’ 
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Available trim functions for Qv’ 
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Summary 

•  Accelerator Controls is a vast activity 
•  Controls Hardware mainly based on commercially 

available products (COTS) 
•  Controls of beam parameters makes the link 

between: 
 - accelerator physics 
- beam observation 
- equipment control 

•  …is fun to work on… 


