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Summary of the first part

What is a beam instability?
— A beam becomes unstable when a moment of its distribution exhibits an
exponential growth (e.g. mean positions <x>, <y>, <z>, standard deviations o,
0,, 0,, etc.) — resulting into beam loss or emittance growth!
Instabilities are caused by the electro-magnetic fields trailing behind
charged particles moving at the speed of light
— Origin: discontinuities, finite conductivity
— Described through wake functions and impedances

Longitudinal plane
— Energy loss and potential well distortion

— Synchronous phase shift

— Bunch lengthening/shortening, synchrotron tune shift
— Instabilities

* Robinson instability (dipole mode)

* Coupled bunch instabilities

« Single bunch instabilities
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Transverse wake function: definition

O Source, g,

Q@  Witness, q,

— In an axisymmetric structure (or simply with a top-bottom and left-right symmetry) a
source particle traveling on axis cannot induce net transverse forces on a witness
particle also following on axis

— At the zero-th order, there is no transverse effect

— We need to introduce a breaking of the symmetry to drive transverse effect, but at
the first order there are two possibilities, i.e. offset the source or the witness
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Transverse dipolar wake function: definition

o Source, q,
QO  Witness, q,
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@AV Transverse quadrupolar wake function: 7

definition
o Source, g,
Q@  Witness, q,
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Transverse dipolar wake function

EO A.’L'/Q z—0

q192 Aml g2 — q1

— The value of the transverse wake functions in O, Wx'y(O), must vanish because the
source has only longitudinal momentum and thus cannot lose energy in the
transverse plane

- ny((r')<0 since trailing particles are deflected toward the source particle (Ax, and
Ax’2 have the same sign)

— W, [(z) has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the
ultra-relativistic approximation

N\

W, ,(z)

@ 2

Transverse quadrupolar wake function

EQ AZE’IQ
Wor(z) = ———
Qs (2) q1q2 Az

270 Weo.(0) =0

g2 — q1

— The value of the transverse quadrupolar wake functions in 0, W, ,(0), must vanish
because dipolar and quadrupolar wake functions should exhibit the same behavior
when the witness tends to source

— Wpg,,(07) can be of either sign since trailing particles can be either attracted or
deflected even more off axis (depends on geometry and boundary conditions)

— W, (z) has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the
ultra-relativistic approximation

WQx,v(Z)

9/21/11



9/21/11

& 5

Transverse impedance

— The transverse wake function of an accelerator component is basically its Green
function in time domain (i.e., its response to a pulse excitation)
= Very useful for macroparticle models and simulations, because it relates
source perturbations to the associated kicks on trailing particles!

— We can also describe it as a transfer function in frequency domain

— This is the definition of transverse beam coupling impedance of the element
under study

2" @)= | |
/

Q o ;
T [ [T (-2) £

Wi(z) - | —

_; / ~ iwz [Q/m/s]

" m refers then to a transverse offset and does not represent a
normalization per unit length of the structure 9
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Transverse impedance

— Shape of wake function can be similar to that in longitudinal plane, determined by
the oscillations of the trailing electromagnetic fields
— Contrary to longitudinal impedances, Re[Z, ] is an odd function of frequency,

while Im[Z,  ]is an even function 10
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— An example: magnetic kickers are
usually large contributors to the
transverse impedance of a machine

— Itis a broad band contribution
— No trapped modes

— Losses both in vacuum chamber
and ferrite (kicker heating and

outgassing)
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— An example: magnetic kickers are
usually large contributors to the
transverse impedance of a machine

— Itis a broad band contribution

— No trapped modes

— Losses both in vacuum chamber
and ferrite (kicker heating and
outgassing)
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Haterial

Type  E-Field

Component
Plane at x
Maximum-2D
Sample
Time

Transverse impedance

— Evolution of the electromagnetic fields (E,)
in the kicker while and after the beam has
passed

dB

-12.2
-19.7
-27.2

e-field (t=8..end(8.1);x=8) [pb]

-‘\
Y
0 z

93414 U/m (= 8 dB) at 8 / 0 / 08.615054
17137
]
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Type
Monitor
Component
Plane at x
Maximum-2D
Sample
Time

Transverse impedance

— Evolution of the electromagnetic fields
(H,) in the kicker while and after the beam
has passed

h-field (t=0..end(8.1);x=8) [pb]
X

: s

247 .844 A/m (= O dB) at 8 / -08.15 / -5.85581
1/ 137
L]
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Transverse impedance

)

) o

pipe (e.g. Cu, b=4mm)
of frequencies

by-pass effect

— Another interesting example: a conductive
— Its impedance extends over a very wide range
— At low frequencies there is an inductive
— At high frequencies there is a small peak
due to the ac conductivity

— Atintermediate frequencies there is a
“classical” behavior
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— Another interesting example: a conductive
pipe (e.g. Cu, b=4mm)
— Corresponding to the different frequency
ranges, the wake field has
— A medium range behavior (coupled
bunch) following the classical shape
— Along range behavior (multi-turn)
dominated by the inductive by-pass
— Ashort range behavior (single bunch)
dominated by the ac conductivity peak
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-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

z (ns)

= 0.5
"
0
N |
E .05
g \
a
=
> -1
- |
T~
Short range \/
2
o 06 -05 -04 03 -02 -0
_ z (ps)

9/21/11



E@ Single particle equations of the transverse

motion in presence of dipolar wake fields

\(z)dz

— The single particle in the witness slice
Mz)dz will feel the external focusing forces
and that associated to the wake in s

— Space charge here neglected

— The wake contribution can extend to
several turns

Bunch tail

J

External Focusing Y

Wake fields

17
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The Rigid Bunch Instability

— To illustrate the rigid bunch instability we will use some simplifications:

= The bunch is point-like and feels an external linear force (i.e. it would
execute linear betatron oscillations in absence of the wake forces)
= Longitudinal motion is neglected

= Smooth approximation = constant focusing + distributed wake

— Inasimilar fashion as was done for the Robinson instability in the longitudinal
plane we want to

= Calculate the betatron tune shift due to the wake
= Derive possible conditions for the excitation of an unstable motion

18

9/21/11



@ﬂ 2

The Rigid Bunch Instability

— Toillustrate the rigid bunch instability we will use some simplifications:
= The bunch is point-like and feels an external linear force (i.e. it would
execute linear betatron oscillations in absence of the wake forces)
= Longitudinal motion is neglected
= Smooth approximation = constant focusing + distributed wake

d?y wg\? e? N &
— —- = — — —k k
o ( ; > y <m0c2) e kz y(s — kC)W, (kC)

=—
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02— w2 = Ne? Z exp (1kQT
5= p (ikQ2To) Wy (kC)

—iQ)s moyC oo
Y o exp ( . > I:>

oo
Ne?

- 0YCTo Z Zy(pwo + )

p=—0o0

Comes from the definition of Z, 19
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The Rigid Bunch Instability

= We assume a small deviation from the betatron tune

= Re(Q - wy) = Betatron tune shift

= Im(Q - ;) > Growth/damping rate, if it is positive there is an
instability!

Q2—w[23 ~ 2wg - (2 —wp)
1 elyIm(ZgT)
4 |V E

1
= E}{ﬁy(s)Ak(s)ds

Re (2 —wg) | Nesy >
wo = Ay~ 4rmoycC p; Im [Z, (pwo + wp)]

20

9/21/11

10



9

Ty

The Rigid Bunch Instability

Im (Q —wp) =7,

-1

__NeBy
T 2moyC?

> RelZ,(pwo +wp)]

p=—00

-1

= We assume the impedance to be peaked at a frequency , close to
hwy (e.g. RF cavity fundamental mode or HOM)

= Defining the tune v,=n, + Aﬁy with -O.5<Aﬁy<0.5, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate
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The Rigid Bunch Instability

1 Nezﬁy
v 2m0’yC'2

(Re [Zy (hwo + Apywo)] — Re [Zy (hwo — Agywo)])

Tune above integer
(Ag,>0)

unstable

)

, < ha, o, > hw,

©d

stable

Tune below integer
(A,<0)

stable

unstable

22
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The Rigid Bunch Instability

1 Ne?B,
Im (Q —wp) =7, =~ g C? Z Re [Z,(pwo + wg)]

p=—00

= We assume the impedance to be of resistive wall type, i.e. strongly
peaked in the very low frequency range (= 0)

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

6
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0.0 05 1.0 15 20 25 30

23
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The Rigid Bunch Instability

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

Agy>0

Ny NeQBy

Ty & _2mo’yC2 (Re [Zy(Agywo)] — Re [Z,((1 = Agy)wo)]) <0

Re[Z,]

Always stable |

1

— Im(z,]
oF, L_

0.0 05

10 15 i
Agywg (1= Agywo

b
L
il el il N
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The Rigid Bunch Instability

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

A5y<0

Ne?
.y NeB,

v " omecz RelZy((L+ Agy)wo)] — Re[Zy(=Agywo)]) > 0

i Always unstable |

Re[Z,]

i

And this is the reason why most of the running 4 \
machines are usually made to operate with a }\
fractional part of the tune below 0.5! :
However, tunes above the half integer can be |
used, if the resistive wall instability is Landau 1
damped or efficiently suppressed with a 1 1
1
1

feedback system — quf[zv]
oF, 1 ]
0.0 05 1.0 15 20 25 30 5
—Agywo (1+ Agy)wo

@ The Strong Head Tail Instability Y

(aka Transverse Mode Coupling Instability)

— Toillustrate TMCI we will need to make use of some simplifications:
= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing).

= Zero chromaticity (Q',,=0)
= Constant transverse wake left behind by the leading particle
= Smooth approximation = constant focusing + distributed wake

— We will
= Calculate a stability condition (threshold) for the transverse motion
= Have a look at the excited oscillation modes of the centroid

26
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@ The Strong Head Tail Instability \'

(aka Transverse Mode Coupling Instability)

— Toillustrate TMCI we will need to make use of some simplifications:
= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing)

= Zero chromaticity (@, ,=0)
= Constant transverse wake left behind by the leading particle
= Smooth approximation = constant focusing + distributed wake

dp/p, O Particle 1 (+Ne/2)

@© Particle 2 (+Ne/2)

27

@AV The Strong Head Tail Instability Y

Equations of motion

= During the first half of the synchrotron motion, particle 1 is leading
and executes free betatron oscillations, while particle 2 is trailing
and feels the defocusing wake of particle 1

ds? ¢ 0<s< <
2 2 s
d“yo w5>2 B e NW,
ds? + < c) 2T moc? ) 2vC v ()
28
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@AV The Strong Head Tail Instability @ j
Equations of motion
= During the first half of the synchrotron motion, particle 1 is leading
and executes free betatron oscillations, while particle 2 is trailing
and feels the defocusing wake of particle 1
= During the second half of the synchrotron period, the situation is
reversed
2 2
o (wﬁ)Qy = (<) 2y
- 1 — o~y Y2
ds? c moc? ) 2~C e 27e
— <s<
Ws Ws
2
"y + (wﬁ ) i y2 =0
= 5 =
ds? c
29
@AV The Strong Head Tail Instability @ .j

Equations of motion

= We solve with respect to the complex variables defined below (k=1,2)
during the first half of synchrotron period

= y,(s) will be trivially a free betatron oscillation

= y,(s) will be the sum of a free betatron oscillation plus a driven
oscillation with y,(s) being its driving term

~ . C
Uk (s) = yr(s) +i—uy,
wp

<

Free oscillation term Driven oscillation term

30
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The Strong Head Tail Instability

Transfer map

) = e (-72)

(2) -simen(-22)-

Ne2W, i
4o ig* e 71(0) me exp _mYs
dmyycCwg We Wg

= Second term in RHS equation for y,(s) negligible if w,<<w;
= We can now transform these equations into linear mapping

across half synchrotron period
=exp | — . T o . "

s=me/ws Ws ! b2 s=0

7TN€2 WO

B dmoyCuwgws

9

The Strong Head Tail Instability

Transfer map

= In the second half of synchrotron period, particles 1 and 2

exchange their roles

= We can therefore find the transfer matrix over the full
synchrotron period for both particles

= Stability will require that its eigenvalues be smaller than 1

VRS
NS
[V =

o 12Twg 1 47 1 0

= X —_ . . .

L 0 1 T 1
s=2mc/ws

- 7TN€2 WO
 4moyCwsws

(n).

<

1-72 35Y

( 71 ) < i27rw5> (
- =exp | — : ~ 1
Y2 s=2mc/ws Ws t

)

32
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@AV The Strong Head Tail Instability Y

Stability condition

= Since the product of the eigenvalues is 1, the only condition for
stability is that they both be purely imaginary

= From the second equation for the eigenvalues, it is clear that
this is true only when sin(¢/2)<1

= This translates into a condition on the beam/wake parameters

)\1 . )\2 =1 = )\1,2 = exp(iiq§)

T
MFl=2-T2 = sin(?):Q
2
_ mNe*Wy <9
dmoyCwpws —

33

@AV The Strong Head Tail Instability Y
Stability condition

8
Nt < —[ 2%
e\ By

= Proportional to p, = obviously bunches with higher
energy tend to be more stable

= Proportional to o, = the quicker is the longitudinal
motion within the bunch, the more stable is the bunch

= Inversely proportional to B, = the effect of the
impedance is enhanced if the kick is given at a location
with large beta function

= Inversely proportional to the wake per unit length
along the ring, W,/C - obviously a large integrated
wake (impedance) lowers the instability threshold

34
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@ The Strong Head Tail Instability Y
‘Why TMCI?

= A careful analysis of the centre of charge (centroid) motion, shows that
the (y,+y,)(s) signal is the combination of an infinite number of modes

= The frequency of each of these modes is intensity dependent and can be

expressed as function of ¢ :
: T
® g + 20 Q=2 : :
+ mode: wg +lo,~ —w,, leven \ 1
2 C - ]
Wg+ 0 == 7T = 1
— mode: wg t+lo, + —o, [ odd. H ]
27 i 1 B
o, Q=0 (-
i :\ ]
R -7 ]
g - g [~ {=- 1]
When ¢=m, all odd and even modes _/:_’/———"’: ]
merge by pairs, and above this g - 20 [~ i=-2 : ]
threshold the system is unstable r 1
F e —— - 1
mﬁ-ams:-“" Q|=—3 ’:
That's the reason why this type of instability is called 0 1 2
Transverse Mode Coupling Instability! r i

@ The Strong Head Tail Instability \’
Why TMCI?

= For a real bunch, modes exhibit a more complicated shift pattern

= The shift of the modes can be calculated via Vlasov equation or
can be found through macroparticle simulations

2 =)
Simplified calculation
for a short bunch

-2

I, (mA)

Full calculation for a relatively long SPS bunch (red
lines) + macroparticle simulation (white traces) 36
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The Head Tail Instability

To illustrate the head-tail instability we will need to make use of some simplifications:
= The bunch is represented through two particles carrying half the total bunch charge and

placed in opposite phase in the longitudinal phase space

4

They both feel external linear focusing in all three directions (i.e. linear betatron focusing +

linear synchrotron focusing).

148

Chromaticity is different from zero (Q’x,yato)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

— We will

= Show that this system is intrinsically unstable
= Calculate the growth time of the excited oscillation modes

37

9

The Head Tail Instability

Equations of motion

= As for the TMCI, during the first half of the synchrotron motion,
particle 1 is leading and executes free betatron oscillations, while
particle 2 is trailing and feels the defocusing wake of particle 1

= During the second half of the synchrotron period, the situation is

reversed

O D)

2 1 2

| [es+ 65607 _

ds? c

Pyp [+ 806D _ (€ ) NWo
ds? c v2 = moc? ) 27C

is modulated by the momentum spread, d(s)

Difference! = now the frequency of free oscillation

0<s< T
wS

y1(s)
38
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The Head Tail Instability
Equations of motion

= Let’s first write the solution without wake field assuming a linear
synchrotron motion and particles in opposite phase (z,=-z,)

= It is already clear that head and tail of the bunch exhibit a phase
difference given by the chromatic term

71(0) exp —iwgf + igyw’gésin (wss>
c en

_ s Euwg . . [wss\]
92(0) exp | —iwg— — ny_,@z sin (i)
L c cn c /|
wgZz
gy—ﬁ is the head-tail phase shift
cn

39

9

2
~/ —~ € NWy .gywﬁA .
) 95(s) ~ (—moc) 130wy 1O e {21 ) Esin

The Head Tail Instability

Equations of motion

= The free oscillation is the correct solution for y,(s) in the first half
synchrotron period

= For y,(s) we assume a similar type of solution, allowing for a slowly
time varying coefficient

= Substituting into the equation of motion this yields

71(0) exp —iwgf + igywﬁésin (wss>
c cn

I s w WsS
J2(s) exp | —iwg— —I—igy ﬁésin( 2 )
c cn c

WS

(

C

)

40
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The Head Tail Instability

Transfer map

= For small head-tail shifts, we can expand the exponential in Taylor

series and find an expression for y,(s)
= We can write a transfer map over the first half of synchrotron period in

the same form as was done for the study of the TMCI
= This time Y is a complex parameter!

() = 72(0) + <moc

e\ NW, 28,ws2 wss
i (0 . 4Gy 1— s
> 4vCuwg 5.(0) [S t Nws ( BT )]

i NENANE?
Y2 s=mc/ws AN Y2 s=0

_ TNe2Wy 14 Z,4§yw5:2
AmoyCwaws men
41

@AV The Head Tail Instability

(

Oscillation modes

= For weak beam intensities (| Y|<<1), we have simple expressions for

the eigenvalues of the transfer matrix
= With Y complex, even for low bunch intensities there is no possible

stable solution

TNe?W, (1 N i4§yw5,§>

- AmoyCwaws men
P )G U ) ()
Y2 s=2mc/ws 1 0 Y2 s=mc/ws 28 1 Y2 s=0

At =~ exp(£iY)

|T| <1 :> + mode is “in-phase” mode - the two
particles oscillate in phase ((JJB)

= mode is “out-phase” mode = the two
particles oscillate in opposition of phase
42

(0= 0)
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@ The Head Tail Instability
Growth/damping time

energy tend to be less affected by impedances
sensitive it is

= Proportional to bunch length - this depends on the chosen
shape of the wake

tail effect

synchrotron motion is an essential mechanism

= Inversely proportional to p, > obviously bunches with higher

= Proportional to N = the more intense is the bunch, the more

= Proportional to gy - higher chromaticity enhances the head-

= Inversely proportional to | > the head-tail exchange through

stronger effect

= Proportional to the wake per unit length along the ring, W,/C
- obviously a large integrated wake (impedance) gives a

43

@ The Head Tail Instability
Growth/damping time

771 =Im (:ET-;U—S> = F—

> N&z (W

T 2m pon C
Mode O (+)
E>0 E,<0
Above transition (n>0) damped unstable
Below transition (n<0) unstable damped
Mode 1 (—)
E>0 E,<0
Above transition (n>0) unstable damped
Below transition (n<0) damped unstable

a4
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The Head Tail Instability

* The head-tail instability is unavoidable in the two-particle model
— Either mode 0 or mode 1 is unstable

— Growth/damping times are in all cases identical

* Fortunately, the situation is less dramatic in reality
— The number of modes increases with the number of particles we consider in
the model (and becomes infinite in the limit of a continuous bunch)
— The instability conditions for mode 0 remain unchanged, but all the other
modes become unstable with much longer rise times when mode 0 is stable

Mode 0

E>0 E <0 00 1

Above transition (1>0) damped unstable Z — = O
Below transition (n<0) unstable damped [=—o00 T

All modes >0
E>0 <0
Above transition (n>0) unstable damped
Below transition (n<0) damped unstable

9

AV The Head Tail Instability —

* The head-tail instability is unavoidable in the two-particle model
— Either mode 0 or mode 1 is unstable

— Growth/damping times are in all cases identical

* Fortunately, the situation is less dramatic in reality
— The number of modes increases with the number of particles we consider in
the model (and becomes infinite in the limit of a continuous bunch)
— The instability conditions for mode 0 remain unchanged, but all the other
modes become unstable with much longer rise times when mode 0 is stable
— Therefore, the bunch can be in practice stabilized by using the settings that

make mode 0 stable (E<0 below transition and £>0 above transition) and relying
on feedback or Landau damping for the other modes

* To be able to study these effects we would need to resort to a more
detailed description of the bunch

— Vlasov equation (kinetic model)
— Macroparticle simulations

9/21/11
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A glance into the head-tail modes

Different transverse head-tail modes correspond to different parts of the
bunch oscillating with relative phase differences. E.g.

— Mode Qs a rigid bunch mode

— Mode 1 has head and tail oscillating in counter-phase
— Mode 2 has head and tail oscillating in phase and the bunch center in

opposition

o [ ]

-

I e~

-~

="

= R = FF= <=
-2 RN == [P a> -

47

A glance into the head-tail modes
(as seen at a wide-band BPM)

€

€

€
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¢ \ 24
L
>
>

Q’#0

48
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@ A glance into the head-tail modes Y

(experimental observations)

Observation in the CERN PSB in ~1974

(J. Gareyte and F. Sacherer) Observation in the CERN PS in 1999

* The mode that gets first excited in the machine depends on
— The spectrum of the exciting impedance
— The chromaticity setting
* Head-tail instabilities are a good diagnostics tool to identify and quantify the main
impedance sources in a machine

49

Macroparticle simulation

* We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

* We have used parameters at injection (below transition!) and three
different chromaticity values: §, = +0.15, -0.3

6 i -

3 \ ‘n[zx y}

— |

PS ring: ) i
Transverse = 1-turn map M
with chromaticity ! | i
ml[Z 3

Longitudinal = kick from ol [ "'Y] \\“:

sinusoidal voltage 00 03 10 15 20 25 30

50

9/21/11

25



o

Macroparticle simulation

We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

We have used parameters at injection (below transition!) a chromaticity

values: §,,=0.15
Signal: - Number of Protons: 1.60e+12

1.0

0.5

0.0

NPR*<x> [mm]

lel2

Horizontal offset signal

NPR*<y> [mm]

0.5

0.0

lel6

Vertical offset signal

—0.5
-1.0

0 20 40 60 80 100120140160180

0 20 40 60 80 100120140160180
dz [ns]

dz [ns]
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Macroparticle simulation

We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

We have used parameters at injection (below transition!) a chromaticity

values: §,,=-0.15

Signal: - Chromaticities: -1.00e+00

leg  Horizontal offset signal lel0
1.0
0.5
0.5
= E
E E
£ 00 4 0.0
v Vv
3 N
o o [-4
o - =3
= - =
= A
- B -0.5
. S
—0.5 . 3
- -
L R
nns -1.0

dz [ns]

0 20 40 60 80100120140160180

Vertical offset signal

0 20 40 60 80 100120140160180

dz [ns]
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Macroparticle simulation

We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

We have used parameters at injection (below transition!) a chromaticity
values: §,,=-0.3
Signal: - Chromaticities: -2.00e+00

le9  Horizontal offset signal le10  Vertical offset signal

0.5

0.0

NPR*<x> [mm]
o
NPR*<y> [mm]

0 20 40 60 80 100120140160180 0 20 40 60 80 100120140160180
dz [ns] dz [ns]
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