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Landau damping is a physical effect
named after his discoverer, the
Russian physicist Lev Davidovich
Landau, who studied in 1946 the
wave propagation in a plasma.

According to Landau theory, an initial
perturbation of longitudinal charge
density in plasma waves is prevented
from developing because of a natural
stabilizing mechanism.

1. Plasma oscillation

* A cold plasma of ionized gas consists of ions and free
electrons distributed over a region in space. The
positive ions are very much heavier than the
electrons, so that we can neglect their motion in
comparison to that of electrons.

* The plasma at the equilibrium, being neutral, is
characterized by the same local density n, [1/m?] for
both electrons and ions.
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* If, for some reason, electrons are displaced from
their equilibrium position, the local density changes
producing electrical forces that tend to restore the
equilibrium.

* As in any classical harmonic oscillator, the electrons
gain kinetic energy, and instead of coming to rest,
they start oscillating back and forth, at a frequency
called “plasma frequency”.
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2. Dispersion relation for plasma waves

We consider now the more general case of a charge
density with a distibution function depending on the
position and velocity such that:

ff(x,vx,t)dxdvx =N

If the charges are not in a state of equilibrium, we will
observe a time evolution of the distribution under the
effect of the self electric field.

Such a system can be studied by means of the methods
developed by Boltzmann to describe the behavior of
systems far from the thermodynamical equilibrium.

We have to study the motion of an ensemble of N
particles characterized by a distribution function f(x,v,,t)
under the action of self forces.

The fundamental equation which describes the
kinematics of this ensemble is the continuity equation
for the density of the particles in the phase space.
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It states the conservation of the number particles in
any phase space volume during the motion.

Vi

A(t+dt)

Phase trajectory

The phase space area enclosing a number of particle at
time t can be distorted at time t+dt but it remanins
constant. For an infinitesimal area dA=dx dv, we have:

dN = f(x,vx,t)dxdvx =f(x+ vxdt, v+ axdt, t+ dt)dxdvx
F

m

e

where a =

If we expand at the first order the RHS term, simplifying
the common terms, we get:

%+v %+E‘i=0
ot " ox m, ov_

(Boltzmann Equation)
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An important contribution to the comprehension of
plasma waves came first from the work of the russian
physicist Anatoly Alexandrovich Vlasov.

* In 1937, Vlasov showed that
Boltzmann equation is suitable for a
decription of plasma dynamics only if
we consider the long range collective
forces existing in the plasma.

* Thus, a system of equations, known
today as Vlasov-Poisson equation, was
suggested for the correct description
to take into account the collective
forces through a self-consistent field.

The electric field is derived from the scalar potential

__9¢
Bo=—o

which in turns is related to the net local density:

0%¢ 0 e
gt = L=t (o [ )

We assume now that for the system of charges there is an
equilibrium state f,(v,) with a proper velocity distribution,
and we consider a smal perturbation f,(x, v, t) around that
equilibrium:

f(xavxat):::fb(vx)'%efl(xavxat)

22/09/11



22/09/11

Since f, doesn’t depend on time and position, neglecting the
second order terms, from the Bolzmann equation we have:

df1 ofi € dfo _

or m.  O0vy

ot
2
0 ¢ = E/vfldvac
=)

dx?

Vlasov-Poisson
Equations

These two coupled equations tell us that a density
perturbation produces an electric field which acts back on

the perturbation, both evolve in the time.

This mechanism can sustain plasma vaves propagating in
the medium. In order to find a self consistent solution,
Vlasov expanded the unknown functions f; and ¢ through
the double Fourier transforms:

1 T i( k-t
fl(xﬂ’x,l‘)=%:{;fl(k,vx,w)e”“ 'dkdw

P(x,v ,t)=quB(k,v L0 )e' ™" dkdw
x 2.77:_00 x

which applied to the Bolzmann-Poisson equation produce
the well known Dispersion Relation for plasma waves:

2
L+ e /0f0/8vxdvx _0

gomek ) w — kv,




A. A. Vlasov (1937): "On Vibration Properties of Electron Gas" (in Russian).
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dE dy df = 1.

2
14+ —< /afo/a”“”dur—o

comek ) w— kv,

It provides a relationship between the wave number
k=2m/A and the frequency w of the wave in the plasma

It depends on the slope of the equilibrium
distribution w.r.t. the velocity.

Mathematically, the integral shows a singular point
(zero of the denominator) at w=kv,. Vlasov overcame

this difficulty calculating the Principal Value of the
integral.
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Example
Maxwell distribution of a warm plasma at temperature T

Y Qe —— L
) = kT /me) 2 “P\ " 2kpT

kg= is the Boltzmann constant

2
_nge

Note that for T— 0, f,(v,) = n, (cold plasma) |@pusna e

e

For a given wavelength, the frequency of the plasma
wave depends on the “plasma frequency” w, and on
the average kinetic energy of the electrons (T)

wyp = wp (1 + 3k ka>

WpMe

According to Vlasov results, plasma waves can be excited
and can persist forever in a interplay between pertubation
and self-fields. Vlasov theory doesn’t predict any damping
effect.

In a very original paper of 1946 Landau proposed a new
method of solution of Vlasov-Poisson equations putting
the basis of the theory of plasma oscillations and
instabilities.

He demonstrated that the problem had to be considered as
an initial value or Cauchy problem, with a perturbation
fi(x, v, t) known at t = 0.

To this end he adopted the Laplace transform for the time
domain and used the Fourier transform only for the space
domain.
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Accordingly, the perturbation and the electric field are first
Fourier-transformed (space x) as follows:

f~1 (kavxat) :/ fl (l’,Ux,t) eiikxd'x

oo

B, (k1) = / E, (2,1) e *dy

o0

And then Laplace-transformed (time t):
Fi(vg, k,p) = / fi(vg, k, t)e Pt
0

£.(k.p) = / B (k. t)e Pt
0

Applying the properties of the Laplace transforms, Vlasov-
Poisson equation become:

f  z

p./_"1 + ik:vx}"l = igm + f] (t = 0)

me OV

ikE, (k,p) = —;/Edvx

where we note the presence of the initial condition.

Solution of the above coupled equations gives the general
expression of the transformed (k,p) electric field:

e/eo fl(t:())dv

£ (kp) = Tike(k,p) ] p+ikv, "
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which depends on g(k,p), the plasma dielectric funcion.

2
e(k,p) =1+ ‘ / 0fo/0vs dv,

comek 1p — kv,

Landau showed that the asymptotic time behaviour of the
electric field depends on the solutions of g(k,p)=0. He also
pointed out that this condition corresponds to the
Vlasov’s dispersion relation when p=-iw. He could also
overcome the “divergence” problem applying the
integration theory in the complex plane, getting:

2 ) ) )
W — k"/U.’I: k a’l/’;p vz=w/k

If we consider the generic harmonic of the field:
~ wt i(ke-wt)
Ex(k,vx,a))e e

The imaginary term w, produces (Landau) damping or
antidampig effect, depending on the sign of the slope
of the distribution function.

The propagation constants k and w, are still derived by
the real part of the Dispersion Relation (Vlasov).

22/09/11
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For the Maxwell distribution discussed before, we
have:

T, (v) kT
\"}
0 wfgw§(1+3k2 L )
WM,
p
T e (0f
" 2g9mek? \ Ou, "
-V
0 Von
w

7

k
is the phase velocity of the wave is derived by the

solutions of the dispersion relation.

The phase velocity of the plasma waveis v, =

fo(v) Consider a perturbation in
slower electrons the electron distribution
faster electrons such that a plasma wave
propagates with a phase
velocity W

Let us imagine plasma waves
as waves in the sea, and the
electrons as surfers trying to
catch the wave, all moving in
the same direction.

22/09/11
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Electrons slightly faster than v,
Afo(V) are decelerated by the wave
slower electrons electric field and yield energy to
faster electrons the wave. Electrons slightly slower
than v, are accelerated by the
g > v wave electric field and gain energy
Ph from the wave.

Since v,, is in the negative slope of the velocity
distribution function, the number of “faster” electrons is
less than the number of “slower” ones. Hence, there are
more particles gaining energy from the wave than losing
to the wave. The balance is a net energy loss which leads
to wave damping.

3. Mechanical System Model

The demonstration given by Landau was purely
mathematical, an experimental behaviour was observed
only 18 years later. The basic physical mechanism behind
was not well understood, and still today several papers are
devoted to a better comprehension of Landau Damping.

We wonder how is it possible that for a collisionless,
lossless system there exists a physical solution for the
oscillations characterized by an exponential decay
corresponding to a damping.

22/09/11
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To this end we consider a system of N uncoupled ideal linear
oscillators, with a normalized frequency distribution G(w).

Ps 4
\\ -, Shaking force ég g lJ'
\\QT at frequency Q

SN

Ny
SN

™~
N = g/l;

G(w) = (dN/dw)/N [j |
Rl

G(w) = (dN/dw)/N

L5 driving force
|—, central frequency w =(Q+w)/2

resonator frequency

x(t=0)=0
x(t=0)=0

¥+w’x = AcosQt
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A

G(w) = (dN/dw)/N

)

<>

x(t>0)=

92

2
-

(cos wt — cosQt )

8-

1
L
Q

o

1
T
w

Define now |Q — w|=5,, and assume that § <<,

x(t>0)=

A ) I}
cos a)0+—"’ t—cos a)o——“’ t
2w06w 2 2

x(t>0)= 5

wOw

Aé Sin (a)ot) Sin (

o)

=t
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d=1Q=w|=0
dw=|Q - w|=0
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The amplitude of “on resonance”
oscillator with 6,=0, blue curve,
growths linearly with time. The
oscillator with 6,20, red curve,
reaches a maximum amplitude
after a time t=n/§ , after which

it goes "out of resonance”, and it loses the phase
synchronism with the external driving force.

We can say that at any time t*, only those oscillators with
a frequency w, such that § < m/t* maintain a phase
relation with the external force, and keep absorbing
energy from the shaking force.

The longer we wait, the narrower the frequency
bandwidth &, of synchronous oscillators, the less the
number of oscillator absorbing energy.

The center mass (CM) of the oscillator’s system, initially
at rest, will start oscillating with growthing amplitude
which, however, will remain bounded. The CM position
is given by the average displacement obtained weighting
X(t) with the normalized distribution G(w):

X, ()= —fG(w)ﬁ(coswt—coth)dw

22/09/11
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Since 6w =Q-w<< o,

2 2
and Q - o, sZa)O(Sw

We get:
X, (1)= AN 2G(Q)s5inQt - cosQt PV, ) G(@) 44,
20 OEY

0

The average oscillation amplitude of the system does
not increase with time, il remains limited as time goes
to infinity.

The masses oscillate inchoerently, the center of mass
motion will be bounded.

7 Shaking force

+ £
atlicyuciic

G(w) = (dN/dw)/N

22/09/11
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G(w)
CM(t)_ JrG(Q)SmQt+COSQtPVf Qa’

0

Dispersion relation? Let us assume that the shaking force is
proportional to the displacement of the center of mass.

AcosQt = 8‘%(}? e‘igt)
AsinQt = _’Q’)

//;A

PVfG( ) dor- inG(Q)

Example - Uniform distribution

G(w)
1 . O <0<,
Glw)=1 w,-o,
0, elsewhere
W, )
— A .
X, ()= T sinQt + In cos Qt
20,(w,-w,) Q-w,

22/09/11
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Looking at the energy absorbed by the system of
oscillators:

A2 . 25w
U x wg(Sfj sin Et

A% [ sin? det
UtotocNF/ GO — 0,) 2 db,

0 J—oo w

A%
N——=G(Q
Utot XX wg 2G( )t

We find that it growths with time !!!!

4. Beams in particle accelerators

We consider a beam circulating inside an
accelerator, and assume that for this system
there exists an equilibrium state.

We wander whether a small perturbation
around the equilibrium state will grow
(instability) or decay (stability).

22/09/11
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BEAM
perturbation

Beam-Fields

Beam-Wall
interaction

interaction

Longitudinal Instabilities in coasting Beams

I(s,t) = Io + AIe'*s=+1

1(s,t=0)

The wavelength of the perturbation is a submultiple of the machine
length L, such that k=2n/A=2nn/L,= n/R,

In the LHS picture the number of perturbation wavelengths in the ring
is n=4, therefore k=4/R,

22/09/11
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Coherent instabilities are caused by the electromagnetic
interaction of the beam perturbation current with the
walls of the vacuum chamber.

The field generates by the beam perturbation is modified
by the walls and causes e.m. forces, proportional to the
current, that acts back on the beam. They can lead to a
coherent instability.

The average e.m. force over one turn is:

(F(8) = [ Fas

In order to calculate the rate of energy variation of a
single particle in one turn due to the beam-wall
interaction, we introduce the longitudinal wake function
defined as the average energy gain/loss per unit charge.

F(Az)) L
I/VH(AZ) _ _< H( Z)> 0
aqm
A t ) /
% ~ Ki = —E:TO / W) (ct’ — ct) Ale'*s=<1) gt/
z=ct Oe e\ Jeilks—wt)
= 7

22/09/11
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Oz eAJeiks—wt)

Impedance

a - EOTO ZH(W)

1) Perfectly conducting circular beal pipe of radius b

. ng b
A =i1Jy——In—
H(W) t 00(57)2 nr

o

2) Resistive wall circular beal pipe of radius b

Bo 20l 1y ign(w)]

2 (w) = b 2co,

3) RF Resonator mode

R
Z)|(w) = 0 (% - wi)

Consider now a particle with nominal energy E, which
moves in the circular machine with velocity Bc on a
closed orbit, called the reference orbit, of length

L, = 21R,,.

A particle with a small energy deviation AE, with
AE = BcAp, travels along a different path with a different
speed. The change Aw of its revolution frequency is due
to a combination of two effects: the speed and the

dispersion in the magnet field.

U)O—(Do Aw
= = — = — |0 —

Wo Wo

1)Ap
v?) Po

22/09/11
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wo—@o_Aw nAE_ n

Wo Wo p% Ejy B _ﬁg

When n > 0 the machine works above the transition
energy, a positive deviation € causes a longer trajectory
which produces a reduction in the revolution frequency.

The change in the revolution frequency influences the
longitudinal position of a particle. We use the quantity z
to define the longitudinal coordinate of a particle with
respect to the reference one, which has a nominal energy
E,.

We observe that a revolution frequency different from
w, produces a change in the longitudinal position z in
one turn given by the relation:

Az  Aw
== 2% AwR,

L_O - @O T()
For example, the longitudinal effect of the space charge

in a perfectly conducting pipe is a force proportional to
-0l/0s. I(5,=0)

22/09/11

25



Particles that on the front slope experience a positive
force, and, in one turn, their energy will increase.

The contrary will happen to the rear slope of the
perturbation.

I(s,t=0)

Above transition, an increase of energy implies a
decrease of the revolution frequency. Therefore the
particle in the front slope will delay and those in the
back crest will anticipate, giving, as a net result, an
increase of the height of the crest.

The initial perturbation is thus increased leading to
instability, known as negative mass instability.

I(s,t=0)

22/09/11
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Dispersion Relation for coasting beams

The dynamics of a coasting (unbunched) beam can be
formalized by means of the Vlasov equation. The
formalism is very similar to that we have used for the
waves in a perturbed plasma. Here we use f(z,¢;t) for the
beam distribution function such that:

//f(z,s;t)dzdz—::]\f ff(X,Vx,t)dxdvx=N

F
%+V %+ xi=0
or " ox m, v

of  0f0=  0f0= _

o Tasa Tacar Y

The beam current can be obtained from the beam
distribution function as:

I(z;t) = ec/f(z,s;t)ds
f(ze5t) = fole) + fule)eth=wmmao]

I(z,t) = 1o + AJetlkz—(w—n@0)t]

27
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Coasting Beams

27N (Ey/e)n

nwon

w—niog +e

0fo
Oe ) ._nag-w)

nwon

Plasma waves

62

1+

P.V./—afo/avmdv _m <%

comek w—Fkv, ©  k \Ou,

)
ve=w/k

Monochromatic beam

o(e)

- v

Jole) I
1oL Ny [ B 1. .
2m(Ey/e)n ) w=rwo) 4 o 2m(Ey/e)n Oe

nwon

:/7<2|/n)lo< o )2

2n(Ey/e) \w — niy
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PUCAVAORE
2r(Ey/e)

w = ny £ Ny

‘Sign(ﬂ)z i .
w=0 increasing w,

stability
~

N/ s

(arbitrary units)

If the machine coupling impedance has a real part, that is
a resistive component, w will always have an imaginary
part and therefore the beam will be unstable.

For a pure imaginary impedance stability or instability
depends on the sign of n and Z.

Above transition energy (n>0), the beam is unstable if
Z>0 (capacitive impedance) and stable if Z<0 (inductive
impedance).

22/09/11
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Parabolic energy distribution

The relative energy deviation ranges between -¢_ and €,

o= 1= (2)]

-sign(n)Z ,,;

increpsing w;

’ STABILITY REGION

-
-
-
-
-
-
-
-
-
-
-
-

w;i=0

N\
(arbitrary units)

A.G. Ruggero, V.G. Vaccaro, CERN Report ISR-TH/68-33 (1968)

tri-elliptical energy distribution

increpsing w;

o= o[- (2)]

k -// sign(m)Z.,
(arbitrary units)

Kheil-Shnell Stability Criterion (F=0.68)

Z)

n

_ oEo/Olnlel
- IoB?

3/2
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Bunched Beam (Longitudinal)

The effect of Landau damping on bunched beam
dynamics is a complex problem. However, a simplified and
approximated expression, similar to the Keil-Schnell
stability criterion for the coasting beam, has been
proposed by D. Boussard in case of short range wake fields
(acting on the sigle bunch) at high frequencies.

The idea is that for high frequency fields generated by the
beam, a bunched beam can be considered as a coasting
one, provided we use the bunched beam peak current in
the threshold criterion.

Thus, considering a Gaussian energy distribution, we
end up with the Boussard criterion

24
n

27T(Eo/f€)|77|052

The Boussard criterion can be used to get a first
evaluation of the threshold current of a ring for a given
impedance Z/n. It depends on the particle energy, the
energy spread, and on the factor 1.

32



The threshold corersponds to the maximum single
bunch current one can store in a storage ring, keeping
the beam stable. Above the threshold current, we enter
in the regime of the “microwave instability”, however
the beam is not lost.

The microwave instabilities will heat the beam,
increasing the energy spread such to restore the
threshold condition.

2
n

2 (Eo/e)|n|o?
I
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