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Landau	
  damping	
   is	
  a	
  physical	
  effect	
  
named	
   aGer	
   his	
   discoverer,	
   the	
  
Russian	
   physicist	
   Lev	
   Davidovich	
  
Landau,	
   who	
   studied	
   in	
   1946	
   the	
  
wave	
  propaga/on	
  in	
  a	
  plasma.	
  	
  

According	
   to	
   Landau	
   theory,	
   an	
   ini/al	
  
perturba/on	
   of	
   longitudinal	
   charge	
  
density	
   in	
   plasma	
   waves	
   is	
   prevented	
  
from	
   developing	
   because	
   of	
   a	
   natural	
  
stabilizing	
  mechanism.	
  
	
  

1.	
  Plasma	
  oscillaHon	
  

•  A	
  cold	
  plasma	
  of	
  ionized	
  gas	
  consists	
  of	
  ions	
  and	
  free	
  
electrons	
   distributed	
   over	
   a	
   region	
   in	
   space.	
   The	
  
posi/ve	
   ions	
   are	
   very	
   much	
   heavier	
   than	
   the	
  
electrons,	
   so	
   that	
   we	
   can	
   neglect	
   their	
   mo/on	
   in	
  
comparison	
  to	
  that	
  of	
  electrons.	
  

	
  
•  The	
   plasma	
   at	
   the	
   equilibrium,	
   being	
   neutral,	
   is	
  
characterized	
  by	
  the	
  same	
  local	
  density	
  n0	
  [1/m3]	
  for	
  
both	
  electrons	
  and	
  ions.	
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•  If,	
   for	
   some	
   reason,	
   electrons	
   are	
   displaced	
   from	
  
their	
  equilibrium	
  posi/on,	
   the	
   local	
  density	
   changes	
  
producing	
   electrical	
   forces	
   that	
   tend	
   to	
   restore	
   the	
  
equilibrium.	
  	
  

	
  
•  As	
   in	
  any	
   classical	
  harmonic	
  oscillator,	
   the	
  electrons	
  
gain	
   kine/c	
   energy,	
   and	
   instead	
   of	
   coming	
   to	
   rest,	
  
they	
   start	
   oscilla/ng	
   back	
   and	
   forth,	
   at	
   a	
   frequency	
  
called	
  ”plasma	
  frequency”.	
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2.	
  Dispersion	
  relaHon	
  for	
  plasma	
  waves	
  
	
  
We	
   consider	
   now	
   the	
   more	
   general	
   case	
   of	
   a	
   charge	
  
density	
   with	
   a	
   dis/bu/on	
   func/on	
   depending	
   on	
   the	
  
posi/on	
  and	
  velocity	
  such	
  that:	
  

If	
   the	
   charges	
   are	
   not	
   in	
   a	
   state	
   of	
   equilibrium,	
   we	
   will	
  
observe	
   a	
   /me	
   evolu/on	
   of	
   the	
   distribu/on	
   under	
   the	
  
effect	
  of	
  the	
  self	
  electric	
  field.	
  

f ( x,vx ,t )dx dvx! = N

Such	
  a	
  system	
  can	
  be	
  studied	
  by	
  means	
  of	
  the	
  methods	
  
developed	
   by	
   Boltzmann	
   to	
   describe	
   the	
   behavior	
   of	
  
systems	
  far	
  from	
  the	
  thermodynamical	
  equilibrium.	
  
	
  
	
  We	
   have	
   to	
   study	
   the	
   mo/on	
   of	
   an	
   ensemble	
   of	
   N	
  
par/cles	
  characterized	
  by	
  a	
  distribu/on	
  func/on	
  f(x,vx,t)	
  	
  
under	
  the	
  ac/on	
  of	
  self	
  forces.	
  
	
  
The	
   fundamental	
   equa/on	
   which	
   describes	
   the	
  
kinema/cs	
   of	
   this	
   ensemble	
   is	
   the	
   con/nuity	
   equa/on	
  
for	
  the	
  density	
  of	
  the	
  par/cles	
  in	
  the	
  phase	
  space.	
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A(t)	
  

A(t+dt)	
  

vx	
  

x	
  

Phase	
  trajectory	
  

It	
   states	
   the	
  conserva/on	
  of	
   the	
  number	
  par/cles	
   in	
  
any	
  phase	
  space	
  volume	
  during	
  the	
  mo/on.	
  

The	
  phase	
  space	
  area	
  enclosing	
  a	
  number	
  of	
  par/cle	
  at	
  
/me	
   t	
   can	
   be	
   distorted	
   at	
   /me	
   t+dt	
   but	
   it	
   remanins	
  
constant.	
  For	
  an	
  infinitesimal	
  area	
  dA=dx	
  dvx	
  we	
  have:	
  

dN = f ( x,vx ,t )dxdvx = f ( x + vxdt , vx + axdt , t + dt )dxdvx

ax =
Fx
me

where	
  

If	
  we	
  expand	
  at	
  the	
  first	
  order	
  the	
  RHS	
  term,	
  simplifying	
  
the	
  common	
  terms,	
  we	
  get:	
  

!f
!t
+ vx

!f
!x

+
Fx
me

!f
!vx

= 0 (Boltzmann	
  Equa.on)	
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An	
   important	
   contribu/on	
   to	
   the	
   comprehension	
   of	
  
plasma	
   waves	
   came	
   first	
   from	
   the	
   work	
   of	
   the	
   russian	
  
physicist	
  Anatoly	
  Alexandrovich	
  Vlasov.	
  	
  
•  In	
   1937,	
   Vlasov	
   showed	
   that	
  
Boltzmann	
   equa/on	
   is	
   suitable	
   for	
   a	
  
decrip/on	
  of	
   plasma	
  dynamics	
  only	
   if	
  
we	
  consider	
   the	
   long	
   range	
  collecHve	
  
forces	
  exis/ng	
  in	
  the	
  plasma.	
  	
  

•  Thus,	
   a	
   system	
   of	
   equa/ons,	
   known	
  
today	
  as	
  Vlasov-­‐Poisson	
  equa/on,	
  was	
  
suggested	
   for	
   the	
   correct	
   descrip/on	
  
to	
   take	
   into	
   account	
   the	
   collec/ve	
  
forces	
  through	
  a	
  self-­‐consistent	
  field.	
  

	
  

2.2.2 Vlasov-Poisson equations and the dispersion relation

In 1938 Vlasov showed[10] that Boltzmann equation is not suitable for a

description of plasma dynamics due to the existence in plasma of long range

collective forces. Instead, a system of equations, known today as Vlasov

equation, was suggested for the correct description to take into account the

long range collective forces through a self-consistent field.

Let us assume then that the collisionless system is formed by neutral

warm plasma characterized by a non-relativistic motion3, in a region with

zero-magnetic field. Assuming the case of heavy ions (”frozen” motion),

from equation (14), we derive here the kinetic equation for the evolution of

a density perturbation in the plasma, the so-called Vlasov equation[11]. To

simplify the study, we assume the motion only in one dimension, that we

indicate with x, the corresponding velocity being vx.

In this case, the density function f (x, vx, t) represents the electrons dis-

tribution function in the plasma. The electric forces generated by the charge

distribution will act on the charges and modify the distribution. In this case

equation (14) can be written as4

∂f

∂t
+ vx

∂f

∂x
− e

me
Ex

∂f

∂vx
= 0 (15)

where Ex is the electric field satisfying

Ex = −∂φ

∂x
(16)

φ being the electric field potential given by the Poisson equation

∂2φ

∂x2
= − ρ

ε0
= − e

ε0

�
n0 −

�
fdvx

�
(17)

Equations (15) - (17) are also known as Vlasov-Poisson equations.

3
Here we have already considered non-relativistic particles. For relativistic particles we

had to use the momentum instead of the velocity v.
4
For our convenience we invert the scalar products.
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We can get an approximate solution of the Vlasov-Poisson equations by

using a perturbation technique, assuming that the electronic distribution

function f(x, vx, t) is given by the sum of the unperturbed density function

f0(vx) and a perturbation
5 f1 (x, vx, t)

f(x, vx, t) = f0(vx) + f1 (x, vx, t) (18)

Since the equilibrium state is neutral, we have that
�
f0dvx = n0 and

�
f1dxdvx = 0. Moreover, f0 does not depend on time and position, thus it

results:

∂f0
∂t

= 0 (19)

∂f0
∂x

= 0 (20)

For what concern the electric field, we know that it vanishes in the un-

perturbed neutral state, and its value is related to the amplitude of the

perturbation f1 only. If we consider now the last term of the LHS of eq. (15),

we can write

Ex
∂f

∂vx
= Ex

∂

∂vx
(f0 + f1) = Ex

∂f0
∂vx

(21)

where we have neglected Ex∂f1/∂vx, being of second order in the perturba-

tion. By using equations (19) - (21) into eq. (15), we get

∂f1
∂t

+ vx
∂f1
∂x

− e

me
Ex

∂f0
∂vx

= 0 (22)

and

∂2φ

∂x2
=

e

ε0

�
f1dvx (23)

A solution of equations (22) and (23) was first derived by Vlasov who

applied the double Fourier transforms from the domain (x, t) to the domain

(k,ω), getting for the perturbation and the potential

f̃1(vx, k,ω) =

� ∞

−∞

� ∞

−∞
f1(x, vx, t)e

i(ωt−kx)dxdt (24)

5The perturbation is characterized by small amplitude and slope.

8

We	
  assume	
  now	
  that	
  for	
  the	
  system	
  of	
  charges	
  there	
  is	
  an	
  
equilibrium	
  state	
  fo(vx)	
  with	
  a	
  proper	
  velocity	
  distribu/on,	
  
and	
  we	
  consider	
  a	
  smal	
  perturba/on	
  f1(x,	
  vx,t)	
  around	
  that	
  
equilibrium:	
  

The	
  electric	
  field	
  is	
  derived	
  from	
  the	
  scalar	
  poten/al	
  

which	
  in	
  turns	
  is	
  related	
  to	
  the	
  net	
  local	
  density:	
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Since	
  fo	
  doesn’t	
  depend	
  on	
  /me	
  and	
  posi/on,	
  neglec/ng	
  the	
  
second	
  order	
  terms,	
  from	
  the	
  Bolzmann	
  equa/on	
  we	
  have:	
  

Vlasov-­‐Poisson	
  
Equa/ons	
  

These	
   two	
   coupled	
   equa/ons	
   tell	
   us	
   that	
   a	
   density	
  
perturba/on	
  produces	
  an	
  electric	
  	
  field	
  which	
  acts	
  back	
  on	
  
the	
  perturba/on,	
  both	
  evolve	
  in	
  the	
  /me.	
  	
  

This	
  mechanism	
  can	
  sustain	
  plasma	
  vaves	
  propaga/ng	
  in	
  
the	
  medium.	
   In	
   order	
   to	
   find	
   a	
   self	
   consistent	
   solu/on,	
  
Vlasov	
  expanded	
  the	
  unknown	
  func/ons	
  f1	
  and	
  φ	
  through	
  
the	
  double	
  Fourier	
  transforms:	
  

φ̃(k,ω) =

� ∞

−∞

� ∞

−∞
φ(x, t)ei(ωt−kx)dxdt (25)

and for the differential equation (22)

i(kvx − ω)f̃1 + i
e

me
kφ̃

∂f0
∂vx

= 0 (26)

Accordingly, eq. (23) becomes:

−k2φ̃ =
e

ε0

�
f̃1dvx (27)

If we take f̃1 from (26) and substitute into (27), we obtain the following

dispersion relation

1 +
e2

ε0mek

�
∂f0/∂vx
ω − kvx

dvx = 0 (28)

Integration of (28) over vx provides a relation between k and ω which de-

pends only on the slope of the unperturbed distribution function f0(vx). The

dispersion relation contains a divergent integral, because of the singularity

at ω = kvx. To overcome this difficulty, without giving a solid explanation,

Vlasov calculated the principal value of the integral, getting, as result, only

a frequency shift without any kind of damping.

2.2.3 Landau solution of the Vlasov equation

In a very original paper of 1946 Landau proposed a new method of solu-

tion of Vlasov-Poisson equations putting the basis of the theory of plasma

oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.

Accordingly, the perturbation and the electric field are first transformed as

f̃1 (vx, k, t) =

� ∞

−∞
f1 (x, vx, t) e

−ikx
(29)

Ẽx (k, t) =

� ∞

−∞
Ex (x, t) e

−ikx
(30)

9

which	
  applied	
  to	
  the	
  Bolzmann-­‐Poisson	
  equa/on	
  produce	
  
the	
  well	
  known	
  Dispersion	
  RelaHon	
  for	
  plasma	
  waves:	
  

f1( x,vx ,t )=
1
2!

!f1( k ,vx ," )e
i( kx!"t )

!"

"

# dkd"

#( x,vx ,t )=
1
2!

!#( k ,vx ," )e
i( kx!"t )

!"

"

# dkd"
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oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.
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9

•  It	
   depends	
   on	
   the	
   slope	
   of	
   the	
   equilibrium	
  
distribu/on	
  w.r.t.	
  the	
  velocity.	
  

•  Mathema/cally,	
   the	
   integral	
   shows	
   a	
   singular	
   point	
  
(zero	
  of	
  the	
  denominator)	
  at	
  ω=kvx.	
  Vlasov	
  overcame	
  
this	
   difficulty	
   calcula/ng	
   the	
   Principal	
   Value	
   of	
   the	
  
integral.	
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Figure 2: Path of integration for Landau damping.

Accordingly, the dispersion function becomes:

1 +
e2

ε0mek

�
P.V.

�
∂f0/∂vx
ω − kvx

dvx −
iπ

k

�
∂f0
∂vx

�

vx=ω/k

�
= 0 (43)

The imaginary term of the above equation produces the damping/antidamping

effect predicted by Landau, depending on the slope of the distribution func-

tion. With this procedure, we obtain straightforwardly the correct dispersion

relations via Fourier transformation of the Vlasov equation.

Example: Plasma with a Maxwellian velocity distribution

As an example to clarify the use of the dispersion relation for the analysis

of the plasma stability, we consider a plasma with a velocity Maxwellian

distribution function

f0(vx) =
n0

(2πkBT/me)1/2
exp

�
−mev2x
2kBT

�
(44)

where kB is the Boltzmann constant. We can integrate by parts the principal

value of equation (43) obtaining

P.V.

�
∂f0/∂vx
ω − kvx

dvx =
f0(vx)

ω − kvx

����
∞

−∞
− k

�
f0(vx)

(ω − kvx)
2dvx (45)

12

Example	
  	
  
Maxwell	
  distribu/on	
  of	
  a	
  warm	
  plasma	
  at	
  temperature	
  T	
  

kB=	
  	
  is	
  the	
  Boltzmann	
  constant	
  	
  

Note	
  that	
  for	
  T	
  	
  	
  	
  	
  	
  0,	
  fo(vx)	
  	
  	
  	
  	
  	
  no	
  (cold	
  plasma)	
  

equation (43) can be written as

�
∂f0/∂vx
ω − kvx

dvx = −kn0

ω2
− 3

k3n0

ω4

kBT

me
− iπ

k

�
∂f0
∂vx

�

vx=ω/k

(48)

By using the above results, the dispersion relation (28) becomes

1−
ω2
p

ω2
− 3k2ω

2
p

ω4

kBT

me
− i

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= 0 (49)

namely

ω2 = ω2
p

�
1 + 3k2 kBT

ω2me

�
+ iω2 πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(50)

with ωp the plasma frequency defined by equation (10). In case of a cold

plasma, with T → 0, we recover the same results of section 2.1.

If we assume T �= 0, such to produce a small perturbation of the plasma

frequency ωp, we can write ω = ωr + iδωi, with ωr − ωp � ωp and δωi � ωp,

and approximate the above expression as

ω2 � ω2
r + 2iωpδωi � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
+ iω2

p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(51)

The real part of the above expression is

ω2
r � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
= ω2

p

�
1 + 3k2λ2

D

�
(52)

where we λD =
�
kBT/meω2

p is the Debye length, having assumed kλD � 1.

This result is the dispersion relation for waves [12] in warm plasma obtained

by Vlasov in his paper[10].

For the imaginary part, that was not predicted by Vlasov, we have that

2ωpδωi � ω2
p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(53)

so that

δωi �
π

2

ωpe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= − i

2

�
π

2

ωp

(kλd)
3 exp

�
− 1

(kλD)
2

�
(54)
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For	
   a	
   given	
   wavelength,	
   the	
   frequency	
   of	
   the	
   plasma	
  
wave	
   depends	
   on	
   the	
   “plasma	
   frequency”	
  ωp	
   and	
   on	
  
the	
  average	
  kine/c	
  energy	
  of	
  the	
  electrons	
  (T)	
  

! plasma =
n0e

2

me"0

According	
  to	
  Vlasov	
  results,	
  plasma	
  waves	
  can	
  be	
  excited	
  
and	
  can	
  persist	
  forever	
  in	
  a	
  interplay	
  between	
  pertuba/on	
  
and	
  self-­‐fields.	
  Vlasov	
  theory	
  doesn’t	
  predict	
  any	
  damping	
  
effect.	
  

In	
  a	
  very	
  original	
  paper	
  of	
  1946	
  Landau	
  proposed	
  a	
  new	
  
method	
   of	
   soluHon	
   of	
   Vlasov-­‐Poisson	
   equaHons	
   pu[ng	
  
the	
   basis	
   of	
   the	
   theory	
   of	
   plasma	
   oscillaHons	
   and	
  
instabiliHes.	
  	
  
He	
  demonstrated	
  that	
  the	
  problem	
  had	
  to	
  be	
  considered	
  as	
  
an	
   ini/al	
   value	
   or	
   Cauchy	
   problem,	
   with	
   a	
   perturba/on	
  	
  	
  	
  	
  	
  
f1(x,	
  vx,	
  t)	
  known	
  at	
  t	
  =	
  0.	
  	
  
To	
  this	
  end	
  he	
  adopted	
  the	
  Laplace	
  transform	
  for	
  the	
  /me	
  
domain	
  and	
  used	
  the	
  Fourier	
  transform	
  only	
  for	
  the	
  space	
  
domain.	
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Accordingly,	
  the	
  perturba/on	
  and	
  the	
  electric	
  field	
  are	
  first	
  
Fourier-­‐transformed	
  (space	
  x)	
  as	
  follows:	
  
	
  

so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

And	
  then	
  Laplace-­‐transformed	
  (/me	
  t):	
  	
  
	
  

and

φ̃(k,ω) =

� ∞

−∞

� ∞

−∞
φ(x, t)ei(ωt−kx)dxdt (25)

and for the differential equation (22)

i(kvx − ω)f̃1 + i
e

me
kφ̃

∂f0
∂vx

= 0 (26)

Accordingly, eq. (23) becomes:

−k2φ̃ =
e

ε0

�
f̃1dvx (27)

If we take f̃1 from (26) and substitute into (27), we obtain the following

dispersion relation

1 +
e2

ε0mek

�
∂f0/∂vx
ω − kvx

dvx = 0 (28)

Integration of (28) over vx provides a relation between k and ω which de-

pends only on the slope of the unperturbed distribution function f0(vx). The

dispersion relation contains a divergent integral, because of the singularity

at ω = kvx. To overcome this difficulty, without giving a solid explanation,

Vlasov calculated the principal value of the integral, getting, as result, only

a frequency shift without any kind of damping.

2.2.3 Landau solution of the Vlasov equation

In a very original paper of 1946 Landau proposed a new method of solu-

tion of Vlasov-Poisson equations putting the basis of the theory of plasma

oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.

Accordingly, the perturbation and the electric field are first transformed as

f̃1 (k, vx, t) =

� ∞

−∞
f1 (x, vx, t) e

−ikxdx (29)

10
Ẽx (k, t) =

� ∞

−∞
Ex (x, t) e

−ikxdx (30)

so that eqs. (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(k, vx, p) =

� ∞

0

f̃1(k, vx, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for eqs. (31) and (32), reminding that the Laplace transform of the

time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from eq. (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

11

Applying	
  the	
  proper/es	
  of	
  the	
  Laplace	
  transforms,	
  Vlasov-­‐
Poisson	
  equa/on	
  become:	
  
	
  

where	
  we	
  note	
  the	
  presence	
  of	
  the	
  ini/al	
  condi/on.	
  

so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

Solu/on	
  of	
  the	
  above	
  coupled	
  equa/ons	
  gives	
  the	
  general	
  
expression	
  of	
  the	
  transformed	
  (k,p)	
  electric	
  field:	
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so that equations (22) and (23) become

∂f̃1
∂t

+ ikvxf̃1 −
e

me
Ẽx

∂f0
∂vx

= 0 (31)

ikẼx = − e

ε0

�
f̃1dvx (32)

Applying the Laplace transform to (29) and (30), we get

F1(vx, k, p) =

� ∞

0

f̃1(vx, k, t)e
−ptdt (33)

Ex(k, p) =
� ∞

0

Ẽx(k, t)e
−ptdt (34)

while for equations (31) and (32), reminding that the Laplace transform of

the time derivative is pF1 − f̃1(t = 0), we obtain

pF1 + ikvxF1 =
e

me
Ex

∂f0
∂vx

+ f̃1(t = 0) (35)

and

ikEx (k, p) = − e

ε0

�
F1dvx (36)

Taking F1 from equation (35) and substituting it in (36), we get

ikEx (k, p) = − e

ε0

� �
e

me
Ex

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx

�
dvx (37)

Since Ex does not depend on vx, we find the following expression of the

electric field:

Ex (k, p) = − e/ε0
ik�(k, p)

�
f̃1(t = 0)

p+ ikvx
dvx (38)

where �(k, p) is the plasma dielectric function defined as

�(k, p) = 1 +
e2

ε0mek

�
∂f0/∂vx
ip− kvx

dvx (39)

It is worth noting that equation (39), putting �(k, p) = 0 with p = −iω,

gives the dispersion integral (28). From the Laplace transform of the electric

field Ex (k, p) we can then obtain the perturbation function F1 as

F1(vx, k, p) =
e

me
Ex (k, p)

∂f0/∂vx
p+ ikvx

+
f̃1(t = 0)

p+ ikvx
(40)

10

Landau	
  showed	
  that	
  the	
  asympto/c	
  /me	
  behaviour	
  of	
  the	
  
electric	
  field	
  depends	
  on	
  the	
  solu/ons	
  of	
  ε(k,p)=0.	
  He	
  also	
  
pointed	
   out	
   that	
   this	
   condi/on	
   corresponds	
   to	
   the	
  
Vlasov’s	
   dispersion	
   rela/on	
   when	
   p=-­‐iω.  He	
   could	
   also	
  
overcome	
   the	
   “divergence”	
   problem	
   applying	
   the	
  
integra/on	
  theory	
  in	
  the	
  complex	
  plane,	
  geing:	
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Figure 2: Path of integration for Landau damping.

Accordingly, the dispersion function becomes:

1 +
e2

ε0mek

�
P.V.

�
∂f0/∂vx
ω − kvx

dvx −
iπ

k

�
∂f0
∂vx

�

vx=ω/k

�
= 0 (43)

The imaginary term of the above equation produces the damping/antidamping

effect predicted by Landau, depending on the slope of the distribution func-

tion. With this procedure, we obtain straightforwardly the correct dispersion

relations via Fourier transformation of the Vlasov equation.

Example: Plasma with a Maxwellian velocity distribution

As an example to clarify the use of the dispersion relation for the analysis

of the plasma stability, we consider a plasma with a velocity Maxwellian

distribution function

f0(vx) =
n0

(2πkBT/me)1/2
exp

�
−mev2x
2kBT

�
(44)

where kB is the Boltzmann constant. We can integrate by parts the principal

value of equation (43) obtaining

P.V.

�
∂f0/∂vx
ω − kvx

dvx =
f0(vx)

ω − kvx

����
∞

−∞
− k

�
f0(vx)

(ω − kvx)
2dvx (45)

12

VLASOV	
   LANDAU	
  

which	
  depends	
  on	
  ε(k,p),	
  the	
  plasma	
  dielectric	
  funcion.	
  

!Ex( k ,vx ,! )e
!itei( kx!!rt )

The	
   imaginary	
   term	
  ωi	
  produces	
   (Landau)	
  damping	
  or	
  
an/dampig	
  effect,	
  depending	
  on	
  the	
  sign	
  of	
   the	
  slope	
  
of	
  the	
  distribu/on	
  func/on.	
  
	
  
The	
  propaga/on	
  constants	
  k	
  and	
  ωr	
  are	
  s/ll	
  derived	
  by	
  
the	
  real	
  part	
  of	
  the	
  Dispersion	
  Rela/on	
  (Vlasov).	
  

If	
  we	
  consider	
  the	
  generic	
  harmonic	
  of	
  the	
  field:	
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equation (43) can be written as

�
∂f0/∂vx
ω − kvx

dvx = −kn0

ω2
− 3

k3n0

ω4

kBT

me
− iπ

k

�
∂f0
∂vx

�

vx=ω/k

(48)

By using the above results, the dispersion relation (28) becomes

1−
ω2
p

ω2
− 3k2ω

2
p

ω4

kBT

me
− i

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= 0 (49)

namely

ω2 = ω2
p

�
1 + 3k2 kBT

ω2me

�
+ iω2 πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(50)

with ωp the plasma frequency defined by equation (10). In case of a cold

plasma, with T → 0, we recover the same results of section 2.1.

If we assume T �= 0, such to produce a small perturbation of the plasma

frequency ωp, we can write ω = ωr + iδωi, with ωr − ωp � ωp and δωi � ωp,

and approximate the above expression as

ω2 � ω2
r + 2iωpδωi � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
+ iω2

p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(51)

The real part of the above expression is

ω2
r � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
= ω2

p

�
1 + 3k2λ2

D

�
(52)

where we λD =
�
kBT/meω2

p is the Debye length, having assumed kλD � 1.

This result is the dispersion relation for waves [12] in warm plasma obtained

by Vlasov in his paper[10].

For the imaginary part, that was not predicted by Vlasov, we have that

2ωpδωi � ω2
p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(53)

so that

δωi �
π

2

ωpe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= − i

2

�
π

2

ωp

(kλd)
3 exp

�
− 1

(kλD)
2

�
(54)
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equation (43) can be written as

�
∂f0/∂vx
ω − kvx

dvx = −kn0

ω2
− 3

k3n0

ω4

kBT

me
− iπ

k

�
∂f0
∂vx

�

vx=ω/k

(48)

By using the above results, the dispersion relation (28) becomes

1−
ω2
p

ω2
− 3k2ω

2
p

ω4

kBT

me
− i

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= 0 (49)

namely

ω2 = ω2
p

�
1 + 3k2 kBT

ω2me

�
+ iω2 πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(50)

with ωp the plasma frequency defined by equation (10). In case of a cold

plasma, with T → 0, we recover the same results of section 2.1.

If we assume T �= 0, such to produce a small perturbation of the plasma

frequency ωp, we can write ω = ωr + iδωi, with ωr − ωp � ωp and δωi � ωp,

and approximate the above expression as

ω2 � ω2
r + 2iωpδωi � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
+ iω2

p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(51)

The real part of the above expression is

ω2
r � ω2

p

�
1 + 3k2 kBT

ω2
pme

�
= ω2

p

�
1 + 3k2λ2

D

�
(52)

where we λD =
�

kBT/meω2
p is the Debye length, having assumed kλD � 1.

This result is the dispersion relation for waves [12] in warm plasma obtained

by Vlasov in his paper[10].

For the imaginary part, that was not predicted by Vlasov, we have that

2ωpδωi � ω2
p

πe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

(53)

so that

δωi �
π

2

ωpe2

ε0mek2

�
∂f0
∂vx

�

vx=ω/k

= − i

2

�
π

2

ωp

(kλd)
3 exp

�
− 1

(kλD)
2

�
(54)
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For	
   the	
   Maxwell	
   distribu/on	
   discussed	
   before,	
   we	
  
have:	
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Figure 14: Maxwellian velocity distribution function.
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is	
   the	
   phase	
   velocity	
   of	
   the	
   wave	
   is	
   derived	
   by	
   the	
  
solu/ons	
  of	
  the	
  dispersion	
  rela/on.	
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Let	
  us	
  imagine	
  plasma	
  waves	
  
as	
  waves	
  in	
  the	
  sea,	
  and	
  the	
  
electrons	
  as	
  surfers	
  trying	
  to	
  
catch	
  the	
  wave,	
  all	
  moving	
  in	
  
the	
  same	
  direc/on.	
  	
  

Consider	
   a	
   perturba/on	
   in	
  
the	
   electron	
   distribu/on	
  
such	
   that	
   a	
   plasma	
   wave	
  
propagates	
   with	
   a	
   phase	
  
velocity	
  

vph =
!r

k
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Since	
   vph	
   is	
   in	
   the	
   nega/ve	
   slope	
   of	
   the	
   velocity	
  
distribu/on	
  func/on,	
  the	
  number	
  of	
  “faster”	
  electrons	
  is	
  
less	
  than	
  the	
  number	
  of	
  “slower”	
  ones.	
  Hence,	
  there	
  are	
  
more	
  par/cles	
  gaining	
  energy	
  from	
  the	
  wave	
  than	
  losing	
  
to	
  the	
  wave.	
  The	
  balance	
  is	
  a	
  net	
  energy	
  loss	
  which	
  leads	
  
to	
  wave	
  damping.	
  

Electrons	
   slightly	
   faster	
   than	
   vph	
  
are	
   decelerated	
   by	
   the	
   wave	
  
electric	
   field	
   and	
   yield	
   energy	
   to	
  
the	
  wave.	
  Electrons	
  slightly	
  slower	
  
than	
   vph	
   are	
   accelerated	
   by	
   the	
  
wave	
  electric	
  field	
  and	
  gain	
  energy	
  	
  
from	
  the	
  wave.	
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We	
   wonder	
   how	
   is	
   it	
   possible	
   that	
   for	
   a	
   collisionless,	
  
lossless	
   system	
   there	
   exists	
   a	
   physical	
   solu/on	
   for	
   the	
  
oscilla/ons	
   characterized	
   by	
   an	
   exponen/al	
   decay	
  
corresponding	
  to	
  a	
  damping.	
  

3.	
  Mechanical	
  System	
  Model	
  

The	
   demonstra/on	
   given	
   by	
   Landau	
   was	
   purely	
  
mathema/cal,	
   an	
   experimental	
   behaviour	
   was	
   observed	
  
only	
  18	
  years	
   later.	
  The	
  basic	
  physical	
  mechanism	
  behind	
  
was	
  not	
  well	
  understood,	
  and	
  s/ll	
  today	
  several	
  papers	
  are	
  
devoted	
  to	
  a	
  beker	
  comprehension	
  of	
  Landau	
  Damping.	
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To	
  this	
  end	
  we	
  consider	
  a	
  system	
  of	
  N	
  uncoupled	
  ideal	
  linear	
  
oscillators,	
  with	
  a	
  normalized	
  frequency	
  distribu/on	
  G(ω).	
  

lj	
  

ωj=√g/lj	


	



Shaking	
  force	
  
at	
  frequency	
  Ω	
  

G(ω)	
  =	
  (dN/dω)/N	
  

ω	
  Ω	



• Può essere il tipo di accoppiamento tra il singolo oscillatore ed il sistema

a produrre una instabilità che cresce esponenzialmente nel tempo (con

accoppiamento di tipo capacitivo o induttivo con il giusto segno)

• fissato il tipo di accoppiamento, e quindi la crescita esponenziale dell’instabilità,

e lo spettro, e quindi il termine di damping di Landau, si può deter-

minare il limite di instabilità

4 A simple mechanical model

The Landau damping effect has been derived from a pure mathematical ap-

proach, and there are several aspects of its physics that are still surprising.

We wonder, in fact, how it is possible that a collisionless, lossless system,

perturbed from the equilibrium, can show such a behavior.

In order to get a physical insight in the mechanism which is responsible

of the damping, despite the free loss nature of the system, we analyze now

a simple model consisting of an infinite set of harmonic oscillators, with

frequency distribution G (ω), such that
� ∞

−∞
G(ω)dω = 1 (55)

and with an average value ω0.

We assume that the system is driven by an external sinusoidal force of

frequency Ω, and that the oscillators do not interact each other.

For a single oscillator the differential equation of motion is

x�� + ω2x = A cosΩt (56)

With the starting conditions x(t = 0) = 0 and x�(t = 0) = 0, its solution

is

x(t > 0) = − A

Ω2 − ω2
(cosΩt− cosωt) (57)

16

G(ω)	
  =	
  (dN/dω)/N	
  

ω	
  
Ω	

ωο	

ω	



driving	
  force	
  
central	
  frequency	
  ωο=(Ω+ω)/2	
  	
  	
  
resonator	
  frequency	
  

!!x +! 2x = Acos!t
x( t = 0 )= 0
!x( t = 0 )= 0

!
"
#
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Define	
  now	
  |Ω –	
  ω|=δω, and	
  assume	
  that	
  δω<<ωο	
  

G(ω)	
  =	
  (dN/dω)/N	
  

ω	
  
Ω	

 ωο	

ω	



x( t > 0 )= A
!2 "! 2

(cos!t " cos!t )

x( t > 0 )! A
2!0!"

cos "0 +
!"
2

"

#
$

%

&
't ( cos !0 (

!"
2

"
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%

&
't

)

*
+
+

,

-
.
.

x( t > 0 )! A
2!0!"

sin "0t( ) sin !"
2
t

"

#
$

%

&
'

δω	
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Figure 4: Particle oscillations due to a sinusoidal external force ... .

contribute to absorb energy from the force, but their frequency bandwidth,

and thus their number, decreases with time. The net effect is an absorption

of energy by the system while the average amplitude of oscillation remains

constant.

To demonstrate that, let us calculate the average of the particle displace-

ments, given by

< x > (t) = −
� ∞

−∞
G(ω)

A

Ω2 − ω2
(cosΩt− cosωt) dω (60)

Since Ω− ω � ω0, we can justify the approximation

< x > (t) � − A

2ω0

� ∞

−∞

G(ω)

Ω− ω
(cosΩt− cosωt) dω (61)

If we make a change of variable from ω to δω, we get

< x > (t) � A

2ω0

�
sinΩt

� ∞

−∞
G(Ω− δω)

sin δωt

δω
dδω

− cosΩt

� ∞

−∞
G(Ω− δω)

1− cos δωt

δω
dδω

�
(62)
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δω=|Ω –	
  ω|=0	
  

δω=|Ω –	
  ω|≠0	
  

We also assume that all the oscillator frequencies are sufficiently close each

other and that Ω lies within the oscillator frequency spectrum. Moreover,

we define the difference between the resonance frequency Ω and a resonator

frequency ω as δω = Ω− ω � ω0, such that Ω+ ω � 2ω0.

Under these assumptions, equation (57) becomes

x(t > 0) � − A

2ω0δω

�
cos

�
ω0 +

δω
2

�
t− cos

�
ω0 −

δω
2

�
t

�
=

A

ω0δω
sinω0t sin

δω
2
t (58)

that can be seen as an oscillation at frequency ω0 with an amplitude mod-

ulated at the lower frequency δω/2. It is convenient to wrire equation (58)

as

x(t > 0) =
At

2ω0

sin δω
2 t�

δω
2 t

� sinω0t (59)

Let’s observe now the motion of two oscillators, the former with δω = 0,

and the latter with δω �= 0, as shown in Fig. 4 with blue and red curves

respectively. Both are at rest at t = 0, and they start to oscillate due to the

action of the same external force. While the amplitude of the ”on resonance”

oscillator growths linearly with time, the other reaches a maximum amplitude

(beating of two close frequency) after a time t = π/δω, (when sin(δωt/2) =

1), after which this oscillator is ”out of resonance”, and loses the phase

synchronism with the external driving force. We can reverse this argument

by saying that at a time t∗, only those oscillators with a frequency ω, such

that δω < π/t∗ maintain a phase relation with the external force. The longer

we wait, the narrower the frequency bandwidth δω of synchronous oscillators.

Therefore, at any instant t∗ we can divide the oscillators into two groups:

the oscillators having frequencies such that δω < π/t∗ which keep their initial

phase synchronism and their amplitude grow linearly with time; the oscilla-

tors with δω > π/t∗, which are no longer in resonance with the external force.

The ”on resonance” oscillators are in phase with the external force and they

17

t=π/δω	
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We	
  can	
  say	
  that	
  at	
  any	
  /me	
  t∗,	
  only	
  those	
  oscillators	
  with	
  
a	
   frequency	
   ω,	
   such	
   that	
   δω<	
   π/t∗	
   maintain	
   a	
   phase	
  
rela/on	
   with	
   the	
   external	
   force,	
   and	
   keep	
   absorbing	
  
energy	
  from	
  the	
  shaking	
  force.	
  	
  

The	
  amplitude	
  of	
  ”on	
  resonance”	
  
oscillator	
   with	
   δω=0,	
   blue	
   curve,	
  
growths	
   linearly	
   with	
   /me.	
   The	
  
oscillator	
   with	
   δω≠0,	
   red	
   curve,	
  
reaches	
   a	
   maximum	
   amplitude	
  
aGer	
  a	
  /me	
  t=π/δω,	
  aGer	
  which	
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Figure 4: Particle oscillations due to a sinusoidal external force ... .

contribute to absorb energy from the force, but their frequency bandwidth,

and thus their number, decreases with time. The net effect is an absorption

of energy by the system while the average amplitude of oscillation remains

constant.

To demonstrate that, let us calculate the average of the particle displace-

ments, given by

< x > (t) = −
� ∞

−∞
G(ω)

A

Ω2 − ω2
(cosΩt− cosωt) dω (60)

Since Ω− ω � ω0, we can justify the approximation

< x > (t) � − A

2ω0

� ∞

−∞

G(ω)

Ω− ω
(cosΩt− cosωt) dω (61)

If we make a change of variable from ω to δω, we get

< x > (t) � A

2ω0

�
sinΩt

� ∞

−∞
G(Ω− δω)

sin δωt

δω
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� ∞

−∞
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it	
   goes	
   ”out	
   of	
   resonance”,	
   and	
   it	
   loses	
   the	
   phase	
  
synchronism	
  with	
  the	
  external	
  driving	
  force.	
  

The	
   longer	
   we	
   wait,	
   the	
   narrower	
   the	
   frequency	
  
bandwidth	
   δω	
   of	
   synchronous	
   oscillators,	
   the	
   less	
   the	
  
number	
  of	
  oscillator	
  absorbing	
  energy.	
  	
  

The	
  center	
  mass	
   (CM)	
  of	
   the	
  oscillator’s	
   system,	
   ini/ally	
  
at	
   rest,	
   will	
   start	
   oscilla/ng	
   with	
   growthing	
   amplitude	
  
which,	
  however,	
  will	
   remain	
  bounded.	
   	
  The	
  CM	
  posi/on	
  
is	
  given	
  by	
  the	
  average	
  displacement	
  obtained	
  weigh/ng	
  
x(t)	
  with	
  the	
  normalized	
  distribu/on	
  G(ω):	
  

xCM ( t )= ! G(! ) A
"2 !! 2

!"

"

# cos!t ! cos$t( )d!
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xCM ( t )!
A
2!0

!G(" )sin"t # cos"t  P.V. G(! )
! #"#$

$

% d!
&

'
(

)

*
+

The	
  average	
  oscilla/on	
  amplitude	
  of	
  the	
  system	
  does	
  
not	
  increase	
  with	
  /me,	
  il	
  remains	
  limited	
  as	
  /me	
  goes	
  
to	
  infinity.	
  

!" =!"" <<"0

!2 !"0
2 ! 2"0!"

Since	
  

and	
  

We	
  get:	
  

The	
   masses	
   oscillate	
   inchoerently,	
   the	
   center	
   of	
   mass	
  
mo/on	
  will	
  be	
  bounded.	
  

G(ω)	
  =	
  (dN/dω)/N	
  

ω	
  Ω	



Shaking	
  force	
  
at	
  frequency	
  Ω	
  

Shaking	
  force	
  
at	
  frequency	
  Ω	
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Dispersion	
  rela/on?	
  Let	
  us	
  assume	
  that	
  the	
  shaking	
  force	
  is	
  
propor/onal	
  to	
  the	
  displacement	
  of	
  the	
  center	
  of	
  mass.	
  

xCM ( t )!
A
2!0

!G(" )sin"t + cos"t  P.V. G(! )
! #"#$

$

% d!
&

'
(

)

*
+

Acos!t =" xCMe
#i!t( )

Asin!t =$ xCMe
#i!t( )

xCMe
#i!t %

xCMe
#i!t

2!0

P.V. G(! )
! #!#&

&

' d! # i"G(! ) 
(

)
*

+

,
-

Example	
  -­‐	
  Uniform	
  distribu/on	
  

G(! )=
1

!2 !!1

,   !1 <! <!2

  0;        elsewhere
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that represents an oscillation at frequency Ω with time independent ampli-

tude. It is worth noting that the ”sine” term is responsible of the power

absorption, because, by doing the time derivative of equation (67), we get

the velocity of the average particle displacement, whose ”cosine” term is

in phase with the external force producing an absorption of energy by the

system.

This statement can be demonstrated by reminding that the energy U of an

harmonic oscillator is proportional to the square of the oscillation amplitude.

From equation (58) we get

U ∝ A2

ω2
0δ

2
ω

sin
2 δω
2
t (68)

which leads to the total energy of the system Utot

Utot ∝ N
A2

ω2
0

� ∞

−∞
G(Ω− δω)

sin
2 δω

2 t

δ2ω
dδω (69)

where N is the total number of particles of the system. As time increases, the

function sin
2
(xt/2)/x2 becomes peaked around x = 0 and tends to a Dirac

delta function

lim
t→∞

sin
2 xt/2

x2
=

πt

2
δ(x) (70)

that, substituted in the integral of equation (69) gives

Utot ∝ N
A2

ω2
0

π

2
G(Ω)t (71)

Equation (71) shows that the energy of the system increases linearly with

time. This energy cannot be regarded as thermal energy of the system be-

cause is not distributed over al particles, but it is stored in a time narrowing

range of frequencies around the driving frequency. Only the particles with

frequency such that |x− Ω| < 1/t contribute to the ”sine” response and are

in resonance with the external force, but since their number decreases with

time, the net contribution to the average displacement remains constant.
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where N is the total number of particles of the system. As time increases, the

function sin
2
(xt/2)/x2 becomes peaked around x = 0 and tends to a Dirac

delta function

lim
t→∞

sin
2 xt/2

x2
=

πt

2
δ(x) (70)

that, substituted in the integral of equation (69) gives

Utot ∝ N
A2

ω2
0

π

2
G(Ω)t (71)

Equation (71) shows that the energy of the system increases linearly with

time. This energy cannot be regarded as thermal energy of the system be-

cause is not distributed over al particles, but it is stored in a time narrowing

range of frequencies around the driving frequency. Only the particles with

frequency such that |x− Ω| < 1/t contribute to the ”sine” response and are

in resonance with the external force, but since their number decreases with

time, the net contribution to the average displacement remains constant.
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Looking	
   at	
   the	
   energy	
   absorbed	
   by	
   the	
   system	
   of	
  
oscillators:	
  

We	
  find	
  that	
  it	
  growths	
  with	
  /me	
  !!!!	
  

	
  
	
  

We	
   consider	
   a	
   beam	
   circula/ng	
   inside	
   an	
  
accelerator,	
   and	
   assume	
   that	
   for	
   this	
   system	
  
there	
  exists	
  an	
  equilibrium	
  state.	
  	
  
	
  
We	
   wander	
   whether	
   a	
   small	
   perturba/on	
  
around	
   the	
   equilibrium	
   state	
   will	
   grow	
  
(instability)	
  or	
  decay	
  (stability).	
  
	
  

4.	
  Beams	
  in	
  parHcle	
  accelerators	
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BEAM	
  	
  
perturbaHon	
  

e.m.	
  fields	
  

Beam-­‐Wall	
  	
  
interacHon	
  

Beam-­‐Fields	
  
interacHon	
  

Longitudinal	
  InstabiliHes	
  in	
  coasHng	
  Beams	
  

as a first example, we consider the longitudinal beam dynamics of a coast-

ing beam subjected to the space charge and smooth wall interaction forces

only. Additionally, we assume that the beam current is given by a stationary

constant current I0 plus a sinusoidal perturbation ∆I of the kind

I(s, t) = I0 +∆Iei(ks−ωt) (74)

As shown in figure 4.1, the perturbation behaves like a wave traveling

along the ring moving with the same velocity of the charges. According to

the notation adopted in particle accelerators, the longitudinal coordinate s

represents the azimuthal position of the charge along its orbit of radius R0.

The wavelength of the perturbation is a submultiple of the machine length

s

I(s,t=0)

ΔI
F Fscsc

Figure 6: Longitudinal beam distribution for a coasting beam.

L0, such that:

k =
2π

λ
=

2πn

L0
=

n

R0
(75)

Following from equation (74), also the electromagnetic fields produced

by the beam can be seen as a sum of those of the stationary distribution,
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λ
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2πn

L0
=

n

R0
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Following from equation (74), also the electromagnetic fields produced

by the beam can be seen as a sum of those of the stationary distribution,
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The	
  wavelength	
  of	
  the	
  perturba/on	
  is	
  a	
  submul/ple	
  of	
  the	
  machine	
  
length	
  L0	
  	
  such	
  that	
  	
  k=2π/λ=2πn/L0=	
  n/R0	
  
In	
  the	
  LHS	
  picture	
  the	
  number	
  of	
  perturba/on	
  wavelengths	
  in	
  the	
  ring	
  
is	
  n=4,	
  therefore	
  	
  k=4/R0	
  
	
  
	
  

R0	
  
L0=2πR0	
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Coherent	
  instabili/es	
  are	
  caused	
  by	
  the	
  electromagne/c	
  
interac/on	
   of	
   the	
   beam	
   perturba/on	
   current	
   with	
   the	
  
walls	
  of	
  the	
  vacuum	
  chamber.	
  	
  
	
  
The	
  field	
  generates	
  by	
  the	
  beam	
  perturba/on	
  is	
  modified	
  
by	
  the	
  walls	
  and	
  causes	
  e.m.	
  forces,	
  propor/onal	
  to	
  the	
  
current,	
  that	
  acts	
  back	
  on	
  the	
  beam.	
  They	
  can	
  lead	
  to	
  a	
  
coherent	
  instability.	
  
	
  
The	
  average	
  e.m.	
  force	
  over	
  one	
  turn	
  is:	
  

that we do not examine here because they modify the stationary distribution

but do not lead to instabilities, plus those of the perturbation on which we

focus our attention. These fields, acting back to the beam, cause an energy

variation which can be positive in case of energy gain or negative in case

of energy loss. Due to the phase relationship between perturbation current

and perturbation electromagnetic forces, we may have also a pure ”reactive”

interaction, in which the net exchange of energy is zero.

In order to calculate the rate of energy variation of a single particle in

one turn due to the beam-wall electromagnetic interaction, we introduce the

longitudinal wake function W||(∆z), defined as:

W||(∆z) = −
�
F||(∆z)

�
L0

qq1
(76)

where
�
F||(∆z)

�
is the electromagnetic force averaged along the accelerator

�
F||(∆z)

�
=

1

L0

� L0

0

F||ds (77)

acting on the charge q1, q is the charge producing the electromagnetic fields,

∆z is the distance between q and q1.

Equation (76) represents the energy lost (in J/C) in one turn by q1 due

to the electromagnetic fields produced by q leading the motion and passing

through a machine device at an earlier time t� such that ∆z = c(t� − t).

If we indicate with E0 the beam nominal energy, and with ε = ∆E/E0

its relative variation, and if we take into account the effects of the fields

generated by all the particles belonging to the longitudinal perturbation, the

rate of relative energy variation ε can be written in terms of wake function

as
∂ε

∂t
� ∆ε

∆t
= − e

E0T0

� t

−∞
W|| (ct

� − ct)∆Iei(ks−ωt�)dt� (78)

that is, by changing the integration variable,

∂ε

∂t
= −e∆Iei(ks−ωt)

cE0T0

� 0

−∞
W|| (y) e

−iωc ydy (79)
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In	
   order	
   to	
   calculate	
   the	
   rate	
   of	
   energy	
   varia/on	
   of	
   a	
  
single	
   par/cle	
   in	
   one	
   turn	
   due	
   to	
   the	
   beam-­‐wall	
  
interac/on,	
  we	
  introduce	
  the	
  longitudinal	
  wake	
  func/on	
  
defined	
  as	
  the	
  average	
  energy	
  gain/loss	
  per	
  unit	
  charge.	
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q1	
  q	
  
	
  

Z’ Z 

z=ct	
  

If we indicate with E0 the beam nominal energy, and with ε = ∆E/E0

its relative variation, and if we take into account the effects of the fields

generated by all the particles belonging to the longitudinal perturbation, the

rate of relative energy variation ε can be written in terms of wake function

as

∂ε

∂t
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= − e
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W|| (ct
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� 0
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W|| (y) e

−iωc ydy (79)

Here T0 represents the beam revolution time given by T0 = L0/c.

For ultra-relativistic charges, due to the causality principle, the wake

function is zero ahead of the test particle so that the integral becomes c

times the Fourier transform of the wake field which, by definition, is the

longitudinal coupling impedance[15]; we then get

∂ε

∂t
= −e∆Iei(ks−ωt)

E0T0
Z||(ω) (80)

Before concluding this section we show some common longitudinal cou-

pling impedances that are generally found in a particle accelerator[10, 15].

For a perfectly conducting smooth and circular vacuum chamber of radius b,

also the space charge effect due to the non relativistic velocity of the charges

can be written in terms of coupling impedance, and it gives

Z||(ω) = iZ0
R0ω

c(βγ)2
ln

b

r
(81)

with Z0 the impedance of the free space, and r the transverse position of the

test charge q1.

In case of the resistive wall of the circular pipe with beam at center and

high conductivity σc, such that c2/(ω2b) and b are much bigger that the skin

depth, we have

Z||(ω) =
R0

b

�
Z0|ω|
2cσc

[1− i sign(ω)] (82)

25
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For a resonating mode of a cavity, the longitudinal coupling impedance

can be written as

Z||(ω) =
Rs

1 + iQ
�

ωr
ω − ω

ωr

� (83)

with Rs the shunt resistance, Q the quality factor, and ωr the resonant

frequency.

Note that the sign of the imaginary part of the coupling impedance de-

pends on the notations that has been used (j or i to indicate the imaginary

term).

4.2 Longitudinal beam dynamics of coasting beams

A particle with nominal energy E0 moves in the circular machine with ve-

locity βc on a closed orbit, called the reference orbit, of length L0 = 2πR0.

A particle with a small energy deviation ∆E, with ∆E = βc∆p, travels

along a different path with a different speed. The change ∆ω of its revolu-

tion frequency is due to a combination of two effects[16]: the speed and the

dispersion, so that

ω0 − ω̄0

ω̄0
=

∆ω

ω̄0
= −

�
αc −

1

γ2

�
∆p

p0
=

= −
�
αc −

1

γ2

�
1

β2

∆E

E0
= − η

β2

∆E

E0
= − η

β2
ε (84)

with ω̄0 the revolution frequency of a particle with nominal energy E0, αc the

momentum compaction (a property of the guide fields) and γ the relativistic

factor. When η > 0 the machine works above the transition energy and a

positive deviation ε causes a longer trajectory which produces a reduction in

the revolution frequency.

The change in the revolution frequency influences the longitudinal posi-

tion of a particle. If we use the quantity z to define the longitudinal coor-

dinate of a particle with respect to the reference one, which has a nominal
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Impedance	
  	
  

1)	
  Perfectly	
  conduc/ng	
  circular	
  beal	
  pipe	
  of	
  radius	
  b	
  

2)	
  Resis/ve	
  wall	
  circular	
  beal	
  pipe	
  of	
  radius	
  b	
  

3)	
  RF	
  Resonator	
  mode	
  	
  

If we indicate with E0 the beam nominal energy, and with ε = ∆E/E0
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Consider	
   now	
   a	
   par/cle	
   with	
   nominal	
   energy	
   E0	
   which	
  
moves	
   in	
   the	
   circular	
   machine	
   with	
   velocity	
   βc	
   on	
   a	
  
closed	
   orbit,	
   called	
   the	
   reference	
   orbit,	
   of	
   length	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
L0	
  =	
  2πR0.	
  	
  
	
  
A	
   par/cle	
   with	
   a	
   small	
   energy	
   devia/on	
   ∆E,	
   with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
∆E	
  =	
  βc∆p,	
  travels	
  along	
  a	
  different	
  path	
  with	
  a	
  different	
  
speed.	
  The	
  change	
  ∆ω	
  of	
  its	
  revolu/on	
  frequency	
  is	
  due	
  
to	
   a	
   combina/on	
   of	
   two	
   effects:	
   the	
   speed	
   and	
   the	
  
dispersion	
  in	
  the	
  magnet	
  field.	
  
:	
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Note that the sign of the imaginary part of the coupling impedance de-
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term).
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along a different path with a different speed. The change ∆ω of its revolu-
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with ω̄0 the revolution frequency of a particle with nominal energy E0, αc the

momentum compaction (a property of the guide fields) and γ the relativistic

factor. When η > 0 the machine works above the transition energy and a

positive deviation ε causes a longer trajectory which produces a reduction in

the revolution frequency.

The change in the revolution frequency influences the longitudinal posi-

tion of a particle. If we use the quantity z to define the longitudinal coor-

dinate of a particle with respect to the reference one, which has a nominal
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When	
   η	
   >	
   0	
   the	
   machine	
   works	
   above	
   the	
   transi/on	
  
energy,	
   a	
   posi/ve	
   devia/on	
   ε	
   causes	
   a	
   longer	
   trajectory	
  
which	
  produces	
  a	
  reduc/on	
  in	
  the	
  revolu/on	
  frequency.	
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The change in the revolution frequency influences the longitudinal posi-

tion of a particle. If we use the quantity z to define the longitudinal coor-

dinate of a particle with respect to the reference one, which has a nominal
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For a resonating mode of a cavity, the longitudinal coupling impedance

can be written as

Z||(ω) =
Rs

1 + iQ
�

ωr
ω − ω

ωr

� (83)

with Rs the shunt resistance, Q the quality factor, and ωr the resonant

frequency.
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energy E0, we observe that a revolution frequency different from ω̄0 produces

a change in the longitudinal position z in one turn given by the relation

∆z

L0
=

∆ω

ω̄0
(85)

from which
∆z

T0
= ∆ωR0 (86)

In the above relations we have assumed z > 0 ahead of the reference

particle.

Even though we start with a monochromatic beam, all the particles hav-

ing the same energy E0, space charge and beam-wall interaction will produce

electromagnetic forces that, interacting back on the beam, modify the parti-

cle energy.

For example, the longitudinal effect of the space charge in a perfectly

conducting pipe is a force proportional to −∂I/∂s[17]. As a consequence,

the particles that are on the front slope of the sinusoidal perturbation will

experience a positive force, and, in one turn, their energy will increase. The

contrary will happen to the rear slope of the perturbation. If we are above

transition, from equation (84), an increase of energy implies a decrease of

the revolution frequency. Therefore the particle in the front slope will delay

and those in the back crest will anticipate, giving, as a net result, an increase

of the height of the crest. The initial perturbation is thus increased leading

to instability, known as negative mass instability. On the contrary, below

transition, the longitudinal space charge forces stabilize the beam.

4.3 Dispersion relation of longitudinal coasting beam

This dynamics of the coasting beam can be formalized and generalized by

treating the motion of the particles by means of the Vlasov equation. The

formalism is very similar to that we have used for the waves in a perturbed

plasma. Here we use f(z, ε; t) for the beam distribution function such that
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as a first example, we consider the longitudinal beam dynamics of a coast-

ing beam subjected to the space charge and smooth wall interaction forces

only. Additionally, we assume that the beam current is given by a stationary

constant current I0 plus a sinusoidal perturbation ∆I of the kind

I(s, t) = I0 +∆Iei(ks−ωt) (74)

As shown in figure 4.1, the perturbation behaves like a wave traveling

along the ring moving with the same velocity of the charges. According to

the notation adopted in particle accelerators, the longitudinal coordinate s

represents the azimuthal position of the charge along its orbit of radius R0.

The wavelength of the perturbation is a submultiple of the machine length

s

I(s,t=0)

ΔI
F Fscsc

Figure 6: Longitudinal beam distribution for a coasting beam.

L0, such that:

k =
2π

λ
=

2πn

L0
=

n

R0
(75)

Following from equation (74), also the electromagnetic fields produced

by the beam can be seen as a sum of those of the stationary distribution,
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electromagnetic forces that, interacting back on the beam, modify the parti-

cle energy.

For example, the longitudinal effect of the space charge in a perfectly

conducting pipe is a force proportional to −∂I/∂s[17]. As a consequence,

the particles that are on the front slope of the sinusoidal perturbation will

experience a positive force, and, in one turn, their energy will increase. The

contrary will happen to the rear slope of the perturbation. If we are above

transition, from equation (84), an increase of energy implies a decrease of

the revolution frequency. Therefore the particle in the front slope will delay

and those in the back crest will anticipate, giving, as a net result, an increase

of the height of the crest. The initial perturbation is thus increased leading

to instability, known as negative mass instability. On the contrary, below

transition, the longitudinal space charge forces stabilize the beam.

4.3 Dispersion relation of longitudinal coasting beam

This dynamics of the coasting beam can be formalized and generalized by

treating the motion of the particles by means of the Vlasov equation. The

formalism is very similar to that we have used for the waves in a perturbed

plasma. Here we use f(z, ε; t) for the beam distribution function such that

its integration over longitudinal space and energy gives the total number of

particles N in the beam
� �

f(z, ε; t)dzdε = N (87)

The beam current I, defined by equation (74), can be obtained from the

beam distribution function as

I(z; t) = ec

�
f(z, ε; t)dε (88)

Here we have performed a change of variable from s to z = s−ct assuming,

from now on, ultra-relativistic velocities with β = 1.
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By using equation (75) into (74), we can write

I(z, t) = I0 +∆Iei[kz−(ω−nω̄0)t] (89)

and also the beam distribution function can then be written as

f(z, ε; t) = f0(ε) + f1(ε)e
i[kz−(ω−nω̄0)t] (90)

In writing the above equations we have considered that the stationary

distribution does not depend either on time or on z being the circular machine

azimuthally symmetric.

The beam distribution function satisfies the Vlasov equation[3] that we

write here in the form

∂f

∂t
+

∂f

∂z

∂z

∂t
+

∂f

∂ε

∂ε

∂t
= 0 (91)

The terms ∂z/∂t and ∂ε/∂t represent the rate of change of the longitudi-

nal position and energy of the particle. The characteristic time in which all

the involved variables have significant changes, also in presence of instability,

is generally much longer than the revolution time T0; therefore we may as-

sume T0 to be the minimum time deviation. Under this assumption we can

write
∂z

∂t
� ∆z

T0
= ∆ωR0 (92)

where the last identity has been obtained by using equation (86).

The relative energy variation in one turn arises from the longitudinal

forces produced by the interaction of the beam with the surroundings and

by the space charge. These forces vanish if the longitudinal distribution is

uniform along the accelerator and, as we have shown, they can be expressed

by means of the longitudinal wake function[15].

As a matter of facts, by applying equation (88), the instantaneous current

can also be written as

I(z; t) =
ecN

L0
+ ecei[kz−(ω−nω̄0)t]

�
f1(ε)dε (93)
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As we have shown in section (4.1), the rate of energy variation is then

∂ε

∂t
= −e∆Iei(ks−ωt)

E0T0
Z||(ω) = −ce2ei[kz−(ω−nω̄0)t]

E0T0
Z||(ω)

�
f1(ε)dε (94)

We now linearize the Vlasov equation by substituting equation (90) into

(91) and ignoring second order terms in the perturbation, that is the term

that contains (∂f1/∂ε)
�
f1(ε)dε, with the use of the equations (75), (92),

and (94), and obtain

− i (ω − nω̄0 − n∆ω) f1e
i[kz−(ω−nω̄0)t] =

=
∂f0
∂ε

e2cZ||(nω̄0)

E0T0
ei[kz−(ω−nω̄0)t]

�
f1dε (95)

To first order of perturbation the coupling impedance has been evaluated

at the unperturbed frequency nω̄0.

By using now equation (84) the above equation can be written as

f1 = i
∂f0/∂ε

ω − nω̄0 + nω̄0ηε

e2c2Z||(nω̄0)

E0L0

�
f1dε (96)

If we integrate both the members by ε, and use the definition of the

average current of equation (93) then we obtain the dispersion integral

1 = i
(Z||/n)I0L0

2πN(E0/e)η

�
∂f0/∂ε

(ω−nω̄0)
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Observe that the above dispersion integral, derived from the Vlasov equa-

tion, has a very close similarity to the equation (28) obtained for the plasma

oscillations. As in that case, we now know that we must execute the above

integral in the complex ε-plane by deforming the contour of the integration,

in order to avoid the singularity8. If we do that, by using the same rule of

equation (43), we get
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(Z||/n)I0L0

2πN(E0/e)η

�
P.V.
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∂f0/∂ε

(ω−nω̄0)
nω̄0η

+ ε
dε− iπ

�
∂f0
∂ε
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ε=
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nω̄0η

�
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8Observe that the singularity exists only if the frequency shift ω−nω̄0 due to the cou-

pling impedance lies within the frequency spread due to the energy distribution. Outside

this frequency range there is no Landau damping.
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8Observe that the singularity exists only if the frequency shift ω−nω̄0 due to the cou-

pling impedance lies within the frequency spread due to the energy distribution. Outside
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φ̃(k,ω) =

� ∞

−∞

� ∞

−∞
φ(x, t)ei(ωt−kx)dxdt (25)

and for the differential equation (22)

i(kvx − ω)f̃1 + i
e

me
kφ̃

∂f0
∂vx

= 0 (26)

Accordingly, eq. (23) becomes:

−k2φ̃ =
e

ε0

�
f̃1dvx (27)

If we take f̃1 from (26) and substitute into (27), we obtain the following

dispersion relation

1 +
e2

ε0mek

�
∂f0/∂vx
ω − kvx

dvx = 0 (28)

Integration of (28) over vx provides a relation between k and ω which de-

pends only on the slope of the unperturbed distribution function f0(vx). The

dispersion relation contains a divergent integral, because of the singularity

at ω = kvx. To overcome this difficulty, without giving a solid explanation,

Vlasov calculated the principal value of the integral, getting, as result, only

a frequency shift without any kind of damping.

2.2.3 Landau solution of the Vlasov equation

In a very original paper of 1946 Landau proposed a new method of solu-

tion of Vlasov-Poisson equations putting the basis of the theory of plasma

oscillations and instabilities[1]. He demonstrated that the problem had to

be considered as an initial value or Cauchy problem, with a perturbation

f1(x, vx, t) known at t = 0. To this end he adopted the Laplace transform for

the time domain and used the Fourier transform only for the space domain.

Accordingly, the perturbation and the electric field are first transformed as

f̃1 (vx, k, t) =

� ∞

−∞
f1 (x, vx, t) e

−ikx
(29)

Ẽx (k, t) =

� ∞

−∞
Ex (x, t) e

−ikx
(30)
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Figure 2: Path of integration for Landau damping.

Accordingly, the dispersion function becomes:

1 +
e2

ε0mek

�
P.V.

�
∂f0/∂vx
ω − kvx

dvx −
iπ

k

�
∂f0
∂vx

�

vx=ω/k

�
= 0 (43)

The imaginary term of the above equation produces the damping/antidamping

effect predicted by Landau, depending on the slope of the distribution func-

tion. With this procedure, we obtain straightforwardly the correct dispersion

relations via Fourier transformation of the Vlasov equation.

Example: Plasma with a Maxwellian velocity distribution

As an example to clarify the use of the dispersion relation for the analysis

of the plasma stability, we consider a plasma with a velocity Maxwellian

distribution function

f0(vx) =
n0

(2πkBT/me)1/2
exp

�
−mev2x
2kBT

�
(44)

where kB is the Boltzmann constant. We can integrate by parts the principal

value of equation (43) obtaining

P.V.

�
∂f0/∂vx
ω − kvx

dvx =
f0(vx)

ω − kvx

����
∞

−∞
− k

�
f0(vx)

(ω − kvx)
2dvx (45)
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4.4 Monocromatic beam

Let us use the dispersion integral to discuss the stability of a monochromatic

beam, namely a beam without energy spread. In this case the stationary

distribution can be written as

f0(ε) = N
δ(ε)

L0
(99)

with δ the Dirac delta function. Since in this case there is no energy spread,

the dispersion integral does not diverge, and we can use directly equation

(97). With the above relation, we get

1 = i
(Z||/n)I0
2π(E0/e)η

�
δ�(ε)

(ω−nω̄0)
nω̄0η

+ ε
dε = −i

(Z||/n)I0
2π(E0/e)η

∂

∂ε

�
1

(ω−nω̄0)
nω̄0η

+ ε

������
ε=0
(100)

that is

1 = i
η(Z||/n)I0
2π(E0/e)

�
nω̄0

ω − nω̄0

�2

(101)

so that the frequency is

ω = nω̄0 ± nω̄0

�

i
η(Z||/n)I0
2π(E0/e)

(102)

When ω has an imaginary part ωi, we obtain a perturbation with a time

exponential growing amplitude that leads to instability (actually in the above

equation there is a second solution that produces an exponential decay) . The

real part of ω, ωr, gives the frequency of the perturbed current term. If we

ignore the machine coupling impedance Z|| this frequency is nω̄0.

If the machine coupling impedance Z|| has a real part, that is a resistive

component, ω will always have an imaginary part and therefore the beam

will be unstable. For a pure imaginary impedance Z|| = iZ||,i, stability or

instability will depend on the sign of η and Z||,i. Above transition energy

(η > 0), if Z||,i > 0 (a capacitive impedance due to the space charge as in the

previous example) we find the negative mass instability. The overall behavior

can be summarized by saying that when ηZ||,i < 0, the beam is stable.
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The equation (102) can also be used to determine the instability growth

rate once we know the machine coupling impedance. For example, if we plot

− sign(η)Z||,i as a function of sign(η)Z||,r at constant values of ωi, we obtain

the figure (7) that represents the stability diagram for zero energy spread.

Observe that ωi is related to the instability rise time by the relation:

ωi =
1

τ
(103)

Positive value of τ produce instability and the curves allow to evaluate

the rise time once the coupling impedance is known.

-sign(η)Z 

sign(η)Z

ω =0
||,i

||,r

i iincreasing ω

(arbitrary units)

stability

Figure 7: Stability diagram relating growth rate and impedance for zero

energy spread (in arbitrary units).

4.5 Beam with energy spread

Till now we have seen that a monochromatic beam is stable only when the

machine impedance is purely imaginary with a proper sign. This, however,

30
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Figure 8: Stability diagram relating growth rate and impedance for a

parabolic energy distribution (in arbitrary units).

If the coupling impedance Z is inside the stable area, then the coherent

oscillation energy of the beam is transferred to the incoherent kinetic energy

of a smaller and smaller number of particles inside the beam, thus stabilizing

the perturbation. This is the Landau damping effect for the longitudinal

instability of coasting beams[19].

The curves of figure 8 and the shape of the stability limit depend on the

energy distribution and in particularly on its edges. Sharp edge distributions,

as the parabolic one, are less stable than the ones with long tails, such as the

Gaussian distribution[18].

If we consider, as another example, a tri-elliptical energy distribution of

the kind[20]

f0(ε) =
8N

3πL0εm

�
1−

�
ε

εm

�2
�3/2

(109)
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Figure 7: Stability diagram relating growth rate and impedance for zero

energy spread (in arbitrary units).

a stationary parabolic energy distribution of the kind[18]

f0(ε) =
3N

4L0εm

�
1−

�
ε

εm

�2
�

(104)

such that the relative energy deviation ranges between −εm and εm. Due to

the fact that the frequency ω must lie within the frequency spread produced

by the energy distribution, if the real part of frequency ωr lies within the

frequency spread given by the above energy distribution, by using eq. (98),

we can write

1 = −i
3(Z||/n)I0

4π(E0/e)ηε2m

�
P.V.

� 1

−1

x

y + x
dx+ iπy

�
(105)

with

y =
ω − nω̄0

nω̄0ηεm
(106)

We remind that the imaginary term in eq. (105) exists only if

−1 < Re(y) < 1 (107)
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Figure 8: Stability diagram relating growth rate and impedance for a

parabolic energy distribution (in arbitrary units).

If the coupling impedance Z is inside the stable area, then the coherent

oscillation energy of the beam is transferred to the incoherent kinetic energy

of a smaller and smaller number of particles inside the beam, thus stabilizing

the perturbation. This is the Landau damping effect for the longitudinal

instability of coasting beams[19].

The curves of figure 8 and the shape of the stability limit depend on the

energy distribution and in particularly on its edges. Sharp edge distributions,

as the parabolic one, are less stable than the ones with long tails, such as the

Gaussian distribution[18].

If we consider, as another example, a tri-elliptical energy distribution of

the kind[20]

f0(ε) =
8N

3πL0εm

�
1−

�
ε

εm

�2
�3/2

(109)
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Figure 9: Stability diagram relating growth rate and impedance for a tri-

elliptical energy distribution (in arbitrary units).

with the form factor F , of the order of unity, that determines the radius of

the approximating circle.

5 Longitudinal dynamics and Landau damp-

ing in bunched beams

The longitudinal beam dynamics of bunched beams, as for the coasting beam

case, is described by the Vlasov equation (91), but with different equations

of motion. Actually the rate of change of the longitudinal coordinate z is still

given by equation (92), but due to the presence of the longitudinal focusing

force of RF cavities, which is responsible of the synchrotron oscillations, the

rate of change of energy is given by the contribution of two terms, one due to

the RF and the other due to the wake field, such that, for small synchrotron

34

we obtain the dispersion relation

1 = −i
4(Z||/n)I0β2

π2(E0/e)ηε2m

�
P.V.

� 1

−1

x (1− x2)1/2

y + x
dx+ iπy

�
1− y2

�1/2
�

(110)

with y given by equation (106). The P.V. of the integral can be easily done,

and we get

1 =
4(Z||/n)I0β2

π(E0/e)ηε2m

�
y
�
1− y2

�1/2 − i

�
1

2
− y2

��
(111)

The real and imaginary part of the impedance are represented in figure

9 as a function of ω with constant ωi > 0. The curves are similar to those of

figure 8 except that in this case the stable area is a circle the radius of which

can be found by the condition that y be real, from which we get

Z||,r/n = −π(E0/e)ηε2m
4I0β2

4y
�
1− y2

�1/2
(112)

and

Z||,i/n = −π(E0/e)ηε2m
4I0β2

�
4y2 − 2

�
(113)

that is ����
Z||

n

���� =
π(E0/e)|η|ε2m

2I0β2
(114)

If we substitute εm with the half width at half maximum ε1/2, that for

the tri-elliptical distribution is

εm = ε1/2
�
1− 2−2/3

�−1/2
= 1.64ε1/2 (115)

we obtain ����
Z||

n

���� = 0.68
2π(E0/e)|η|ε21/2

I0β2
(116)

that is known as Kheil - Schnell stability criterion[21, 22].

We can generalize the above equation for other energy distributions by

writing a simplified stability criterion
����
Z||

n

���� ≤ F
(E0/e)|η|ε21/2

I0β2
(117)
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   The	
   effect	
   of	
   Landau	
   damping	
   on	
   bunched	
   beam	
  
dynamics	
  is	
  a	
  complex	
  problem.	
  However,	
  a	
  simplified	
  and	
  
approximated	
   expression,	
   similar	
   to	
   the	
   Keil-­‐Schnell	
  
stability	
   criterion	
   for	
   the	
   coas/ng	
   beam,	
   has	
   been	
  
proposed	
  by	
  D.	
  Boussard	
  in	
  case	
  of	
  short	
  range	
  wake	
  fields	
  
(ac/ng	
  on	
  the	
  sigle	
  bunch)	
  at	
  high	
  frequencies.	
  
The	
  idea	
  is	
  that	
  for	
  high	
  frequency	
  fields	
  generated	
  by	
  the	
  
beam,	
   a	
   bunched	
   beam	
   can	
   be	
   considered	
   as	
   a	
   coas/ng	
  
one,	
  provided	
  we	
  use	
  the	
  bunched	
  beam	
  peak	
  current	
   in	
  
the	
  threshold	
  criterion.	
  	
  

Bunched	
  Beam	
  (Longitudinal)	
  

Thus,	
   considering	
   a	
   Gaussian	
   energy	
   distribu/on,	
   we	
  
end	
  up	
  with	
  the	
  Boussard	
  criterion	
  

The	
   Boussard	
   criterion	
   can	
   be	
   used	
   to	
   get	
   a	
   first	
  
evalua/on	
  of	
  the	
  threshold	
  current	
  of	
  a	
  ring	
  for	
  a	
  given	
  
impedance	
  Z/n.	
   It	
  depends	
  on	
   the	
  par/cle	
  energy,	
   the	
  
energy	
  spread,	
  and	
  on	
  the	
  factor	
  η.	
  

The effect of Landau damping on bunched beam dynamics is a complex

problem. However, a simplified and approximated expression, similar to the

Keil-Schnell stability criterion for the coasting beam, has been proposed by D.

Boussard[29] in case of short range wake field and broad band impedance[15].

The idea is that at the high frequency of the signals emitted by the bunch in

the instability regime, a bunched beam can be considered as a coasting beam

with a current equal to the bunched beam peak current. As a consequence,

we can use eq. (116) by substituting I0 with Î, ε21/2 with 2 ln 2σ2
ε (we consider

a Gaussian energy distribution), and, since 0.68× 2 ln 2 = 0.94 � 1, then we

end up with the Boussard criterion

����
Z||

n

���� =
2π(E0/e)|η|σ2

ε

Î
(119)

The Boussard criterion can be used to give a first evaluation of the thresh-

old single bunch current in a storage ring before the microwave instability

occurs[30].

Let us now evaluate the effects of the Landau damping for a more simple

case, by considering an instability of Nb equally spaced bunches in a storage

ring, produced by a single high order resonant mode at the frequency pω̄0

(long range wake field), and by supposing that this resonant mode drives the

instability of a single azimuthal beam oscillation mode m. We omit here the

details of the calculations, but it is possible to obtain a dispersion integral

similar to eq. (97), which assumes now the form[31]

1 = −i
mcItot
(E0/e)

Z||(pω̄0)

p

� ∞

0

∂f0
∂ẑ

J2
m

�
pω̄0ẑ

c

�
1

ω −mωs(ẑ)
dẑ (120)

with Itot = ceNNb/L0 the total beam current, Jm the Bessel function of

the first kind and m-th order, ωs(ẑ) the amplitude dependent synchrotron

frequency, and f0(ẑ) the unperturbed distribution function expressed in terms

of the synchrotron oscillation amplitude ẑ. If the beam particles have all

the same synchrotron frequency, that means ωs(ẑ) is constant, there is no
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The	
   threshold	
   corersponds	
   to	
   the	
   maximum	
   single	
  
bunch	
  current	
  one	
  can	
  store	
   in	
  a	
  storage	
  ring,	
  keeping	
  
the	
  beam	
  stable.	
  Above	
  the	
  threshold	
  current,	
  we	
  enter	
  
in	
   the	
   regime	
   of	
   the	
   “microwave	
   instability”,	
   however	
  
the	
  beam	
  is	
  not	
  lost.	
  	
  
	
  
The	
   microwave	
   instabili/es	
   will	
   heat	
   the	
   beam,	
  
increasing	
   the	
   energy	
   spread	
   such	
   to	
   restore	
   the	
  
threshold	
  condi/on.	
  

The effect of Landau damping on bunched beam dynamics is a complex

problem. However, a simplified and approximated expression, similar to the

Keil-Schnell stability criterion for the coasting beam, has been proposed by D.

Boussard[29] in case of short range wake field and broad band impedance[15].

The idea is that at the high frequency of the signals emitted by the bunch in

the instability regime, a bunched beam can be considered as a coasting beam

with a current equal to the bunched beam peak current. As a consequence,

we can use eq. (116) by substituting I0 with Î, ε21/2 with 2 ln 2σ2
ε (we consider

a Gaussian energy distribution), and, since 0.68× 2 ln 2 = 0.94 � 1, then we

end up with the Boussard criterion

����
Z||

n

���� =
2π(E0/e)|η|σ2

ε

Î
(119)

The Boussard criterion can be used to give a first evaluation of the thresh-

old single bunch current in a storage ring before the microwave instability

occurs[30].

Let us now evaluate the effects of the Landau damping for a more simple

case, by considering an instability of Nb equally spaced bunches in a storage

ring, produced by a single high order resonant mode at the frequency pω̄0

(long range wake field), and by supposing that this resonant mode drives the

instability of a single azimuthal beam oscillation mode m. We omit here the

details of the calculations, but it is possible to obtain a dispersion integral

similar to eq. (97), which assumes now the form[31]

1 = −i
mcItot
(E0/e)

Z||(pω̄0)

p

� ∞

0

∂f0
∂ẑ

J2
m

�
pω̄0ẑ

c

�
1

ω −mωs(ẑ)
dẑ (120)

with Itot = ceNNb/L0 the total beam current, Jm the Bessel function of

the first kind and m-th order, ωs(ẑ) the amplitude dependent synchrotron

frequency, and f0(ẑ) the unperturbed distribution function expressed in terms

of the synchrotron oscillation amplitude ẑ. If the beam particles have all

the same synchrotron frequency, that means ωs(ẑ) is constant, there is no
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