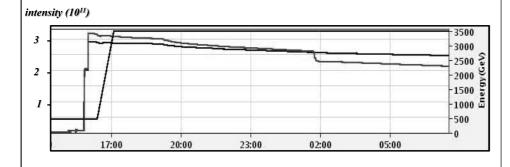


Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L = 10^{10} \cdot 10^{11}$ km

... several times Sun - Pluto and back



- → guide the particles on a well defined orbit ("design orbit")
- → focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

Transverse Beam Dynamics:

0.) Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine"

→ need transverse deflecting force

Lorentz force

$$F = q(\vec{v} \times \vec{v} \times \vec{B})$$

typical velocity in high energy machines:

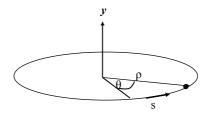
$$v \approx c \approx 3*10^8 \frac{1}{2}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

But remember: magn. fields act allways perpendicular to the velocity of the particle → only bending forces, → no "beam acceleration"

The ideal circular orbit



circular coordinate system

condition for circular orbit:

$$F_L = e v B$$

$$F_{centr} = \frac{\gamma \, m_0 \, v^2}{\rho}$$

$$\frac{\gamma m_0 v}{Q} = e \chi B$$

$$\frac{p}{e} = B \rho$$

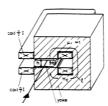
$$B \rho = "beam rigidity"$$

1.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$B = \frac{\mu_0 \ n \ I}{h}$$



convenient units:

$$B = \begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} \frac{Vs}{m^2} \end{bmatrix} \qquad p = \begin{bmatrix} \frac{GeV}{c} \end{bmatrix}$$

field map of a storage ring dipole magnet

Example LHC:

$$B = 8.3 T$$

$$p = 7000 \frac{GeV}{c}$$

Normalise magnetic field to momentum:

$$\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}$$

The Magnetic Guide Field

$$\frac{1}{\rho} = e \frac{8.3 \frac{Vs}{m^2}}{7000*10^9 eV/c} = \frac{8.3 s \ 3*10^8 \frac{m}{s}}{7000*10^9 m^2}$$

$$\frac{1}{\rho} = 0.3 \frac{8.3}{7000} \frac{1}{m}$$

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km}$$
$$\approx 66\%$$

$$B \approx 1 ... 8 T$$

rule of thumb: $\frac{1}{a} \approx 0.3 \frac{B[T]}{r[CeV]}$

"normalised bending strength"

2.) Quadrupole Magnets:

focusing forces to keep trajectories in vicinity of the ideal orbit

linear increasing Lorentz force

linear increasing magnetic field

$$B_y = g x$$
 $B_x = g y$

normalised quadrupole field:

gradient of a quadrupole magnet: $g = \frac{2\mu_0 nI}{r^2}$

LHC main quadrupole magnet $k = 0.3 \frac{g(T/m)}{p(GeV/c)}$ simple rule:

 $g \approx 25 ... 220 \ T/m$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{\mathbf{B}} = \mathbf{A} + \frac{\partial \vec{\mathbf{B}}_{y}}{\partial \mathbf{A}} = 0$$
 \Rightarrow $\frac{\partial \mathbf{B}_{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{B}_{x}}{\partial \mathbf{y}}$

3.) The equation of motion:

Linear approximation:

* ideal particle → design orbit

* any other particle \rightarrow coordinates x, y small quantities $x,y \ll \rho$

> \rightarrow magnetic guide field: only linear terms in x & y of B have to be taken into account

Taylor Expansion of the B field:

$$\frac{\boldsymbol{B}(x)}{\boldsymbol{p}/\boldsymbol{e}} = \frac{\boldsymbol{B}_0}{\boldsymbol{B}_0 \rho} + \frac{\boldsymbol{g}^* x}{\boldsymbol{p}/\boldsymbol{e}} + \frac{1}{2!} \frac{\boldsymbol{e} \boldsymbol{g}'}{\boldsymbol{p}/\boldsymbol{e}} + \frac{1}{3!} \frac{\boldsymbol{e} \boldsymbol{g}''}{\boldsymbol{p}/\boldsymbol{e}} + \dots$$

The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!} (x^2 + \frac{1}{3!}) (x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

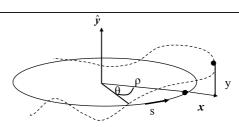
bending, focusing etc

Example: heavy ion storage ring TSR

* man sieht nur dipole und quads → linear

Equation of Motion:

Consider local segment of a particle trajectory ... and remember the old days:
(Goldstein page 27)



radial acceleration:

$$a_r = \frac{d^2 \rho}{dt^2} - \rho \left(\frac{d\theta}{dt}\right)^2$$

Ideal orbit: $\rho = const, \quad \frac{d\rho}{dt} = 0$

Force:
$$F = m\rho \left(\frac{d\theta}{dt}\right)^2 = m\rho\omega^2$$
$$F = mv^2/\rho$$

F = R

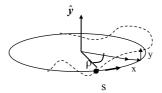
general trajectory: $\rho \rightarrow \rho + x$

$$F = m\frac{d^2}{dt^2}(x+\rho) - \frac{mv^2}{x+\rho} = e B_y v$$

$$F = m\frac{d^{2}}{dt^{2}}(x+\rho) - \frac{mv^{2}}{x+\rho} = e B_{y} v$$

$$(1) \qquad (2)$$

$$(1) \qquad \frac{d^{2}}{dt^{2}}(x+\rho) = \frac{d^{2}}{dt^{2}}x \qquad ... as \rho = const$$



2 remember: $x \approx mm$, $\rho \approx m$... \rightarrow develop for small x

$$\frac{1}{x+\rho} \approx \frac{1}{\rho} \left(1 - \frac{x}{\rho}\right)$$

$$f(x) = f(x_0) + \frac{(x-x_0)}{1!} f'(x_0) + \frac{(x-x_0)^2}{2!} f''(x_0) + \frac{(x-x_0)^2}{2!} f''(x_0)$$

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_y v$$

guide field in linear approx.

$$B_{y} = B_{0} + x \frac{\partial B_{y}}{\partial x} \qquad m \frac{d^{2}x}{dt^{2}} - \frac{mv^{2}}{\rho} (1 - \frac{x}{\rho}) = ev \left\{ B_{0} + x \frac{\partial B_{y}}{\partial x} \right\}$$

$$\frac{d^{2}x}{dt^{2}} - \frac{v^{2}}{\rho} (1 - \frac{x}{\rho}) = \frac{e \ v \ B_{0}}{m} + \frac{e \ v \ x \ g}{m}$$

$$\frac{d^2x}{dt^2} = \frac{d}{dt} \left(\frac{dx}{ds} \frac{ds}{dt} \right) = \frac{d}{ds} \left(\frac{dx}{ds} \frac{ds}{dt} \right) \frac{ds}{dt}$$

$$\frac{d^2x}{dt^2} = x'' v^2 + \frac{dx}{ds} \frac{dy}{ds} v$$

$$x''v^2 - \frac{v^2}{\rho}(1 - \frac{x}{\rho}) = \frac{e v B_0}{m} + \frac{e v x g}{m}$$
 : v^2

$$x'' - \frac{1}{\rho} \left(1 - \frac{x}{\rho} \right) = \frac{e B_0}{mv} + \frac{e x g}{mv}$$

$$m v = p$$

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = \frac{B_0}{p/e} + \frac{xg}{p/e}$$

normalize to momentum of particle

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = -\frac{1}{\rho} + k x$$

$$\frac{B_0}{p/e} = -\frac{1}{\rho}$$

$$x'' + x\left(\frac{1}{\rho^2} - k\right) = 0$$

Equation for the vertical motion:

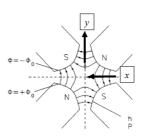
$$\frac{1}{\alpha^2} = 0$$

no dipoles ... in general ...

$$k \Leftrightarrow -k$$

 \Leftrightarrow - k quadrupole field changes sign

$$y'' + k y = 0$$



Remarks:

$$\star \qquad x'' + (\frac{1}{\rho^2} - k) \cdot x = 0$$

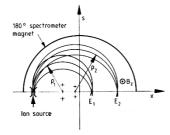
... there seems to be a focusing even without a quadrupole gradient

"weak focusing of dipole magnets"

$$k = 0$$
 \Rightarrow $x'' = -\frac{1}{\rho^2} x$

even without quadrupoles there is a retriving force (i.e. focusing) in the bending plane of the dipole magnets

... in large machines it is weak. (!)



Mass spectrometer: particles are separated according to their energy and focused due to the $1/\rho$ effect of the dipole

* Hard Edge Model:

$$x'' + \left\{\frac{1}{\rho^2} - k\right\} x = 0$$

... this equation is not correct !!!

$$x''(s) + \left\{ \frac{1}{\rho^2(s)} - k(s) \right\} x(s) = 0$$

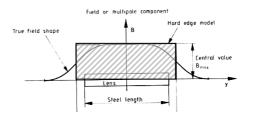
bending and focusing fields ... are functions of the independent variable "s"

!

1.0 –

Inside a magnet we assume constant focusing properties!

$$\frac{1}{\rho} = const$$
 $k = const$



4.) Solution of Trajectory Equations

Define ... hor. plane:
$$K = 1/\rho^2 - k$$

... vert. Plane: $K = k$

x'' + K x = 0

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz:
$$x(s) = a_1 \cdot \cos(\omega s) + a_2 \cdot \sin(\omega s)$$

general solution: linear combination of two independent solutions

$$x'(s) = -a_1 \omega \sin(\omega s) + a_2 \omega \cos(\omega s)$$

$$x''(s) = -a_1\omega^2\cos(\omega s) - a_2\omega^2\sin(\omega s) = -\omega^2 x(s) \qquad \longrightarrow \qquad \omega = \sqrt{K}$$

general solution:

$$x(s) = a_1 \cos(\sqrt{K}s) + a_2 \sin(\sqrt{K}s)$$

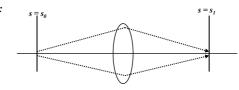
determine a_1 , a_2 by boundary conditions:

$$s = 0 \qquad \longrightarrow \qquad \begin{cases} x(0) = x_0 &, \quad a_1 = x_0 \\ x'(0) = x'_0 &, \quad a_2 = \frac{x'_0}{\sqrt{K}} \end{cases}$$

Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$

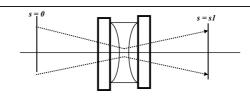
For convenience expressed in matrix formalism:



$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}_0$$

hor. defocusing quadrupole:

$$x'' - K x = 0$$



Remember from school:

$$f(s) = \cosh(s)$$
, $f'(s) = \sinh(s)$

Ansatz:
$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{defoc}\!=\!\begin{pmatrix} \cosh\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh\sqrt{|K|}l \\ \sqrt{|K|}\sinh\sqrt{|K|}l & \cosh\sqrt{|K|}l \end{pmatrix}$$

drift space:

$$K = 0$$

$$M_{drif t} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

with the assumptions made, the motion in the horizontal and vertical planes are independent "... the particle motion in x & y is uncoupled"

Thin Lens Approximation:

$$M = \begin{pmatrix} \cos\sqrt{|k|}l & \frac{1}{\sqrt{|k|}}\sin\sqrt{|k|}l \\ -\sqrt{|k|}\sin\sqrt{|k|}l & \cos\sqrt{|k|}l \end{pmatrix}$$

in many practical cases we have the situation:

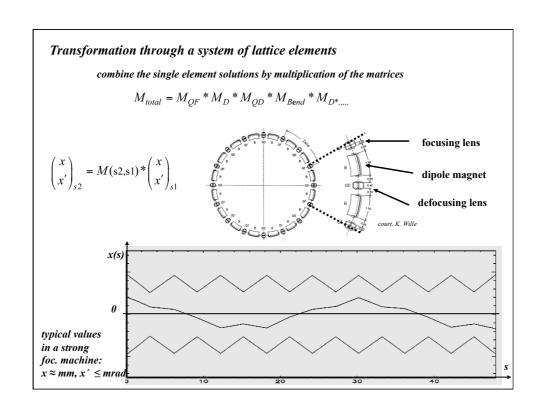
$$f = \frac{1}{kl_q} >> l_q$$
 ... focal length of the lens is much bigger than the length of the magnet

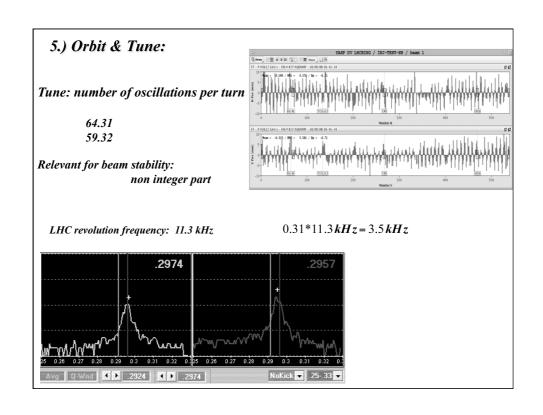
limes: $l_q \rightarrow 0$ while keeping $k l_q = const$

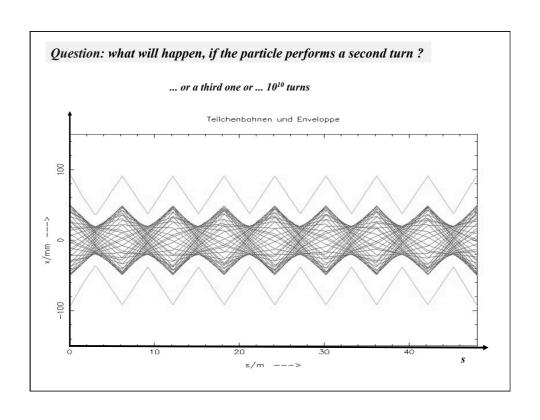
$$M_x = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

$$M_z = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f} & 1 \end{pmatrix}$$

... useful for fast (and in large machines still quite accurate) "back on the envelope calculations" ... and for the guided studies!







Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$x''(s) - k(s)x(s) = 0$$

restoring force \neq const, k(s) = depending on the position sk(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

6.) The Beta Function

General solution of Hill's equation:

(i)
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$\beta(s+L) = \beta(s)$$

Inserting (i) into the equation of motion ...

$$\psi(s) = \int_0^s \frac{ds}{\beta(s)}$$

 $\Psi(s)$ = "phase advance" of the oscillation between point "0" and "s" in the lattice. For one complete revolution: number of oscillations per turn "Tune"

$$Q_y = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

7.) Beam Emittance and Phase Space Ellipse

general solution of
Hill equation
$$\begin{cases} (1) & x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \\ (2) & x'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\} \end{cases}$$

from (1) we get

$$\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}}$$

$$\alpha(s) = \frac{-1}{2} \beta'(s)$$

$$\gamma(s) = \frac{1 + \alpha(s)}{\beta(s)}$$

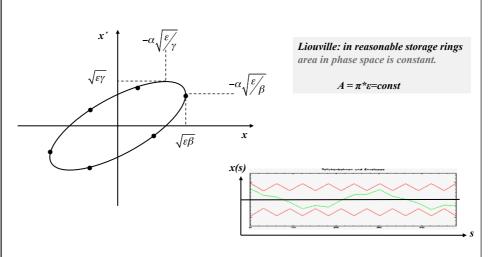
Insert into (2) and solve for ε

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

- * E is a constant of the motion ... it is independent of "s"
- * parametric representation of an ellipse in the x x' space
- * shape and orientation of ellipse are given by α , β , γ

Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) \, \boldsymbol{x}^2(s) + 2\alpha(s) \boldsymbol{x}(s) \boldsymbol{x}'(s) + \beta(s) \, \boldsymbol{x}'^2(s)$$



 ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely speaking: area covered in transverse x, x' phase space ... and it is constant !!!

Phase Space Ellipse

 $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{ \psi(s) + \phi \}$ particel trajectory:

 $\hat{x}(s) = \sqrt{\varepsilon \beta}$ \longrightarrow x' at that position ...? max. Amplitude:

... put $\hat{x}(s)$ into $\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$ and solve for x' $\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'^2$ $x' = -\alpha \cdot \sqrt{\varepsilon / \beta}$

- \star A high β -function means a large beam size and a small beam divergence. ... et vice versa !!!
- * In the middle of a quadrupole $\beta = maximum$, $\alpha = zero$ $\begin{cases} x' = 0 \end{cases}$... and the ellipse is flat

Phase Space Ellipse

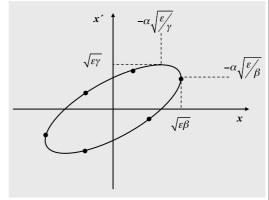
tase Space Ellipse $\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$ $\alpha(s) = \frac{-1}{2}\beta'(s)$ $\gamma(s) = \frac{1 + \alpha(s)^{2}}{\beta(s)}$

$$\varepsilon = \frac{x^2}{\beta} + \frac{\alpha^2 x^2}{\beta} + 2\alpha \cdot xx' + \beta \cdot x'^2$$

... solve for x' $x'_{1,2} = \frac{-\alpha \cdot x \pm \sqrt{\varepsilon \beta - x^2}}{\beta}$

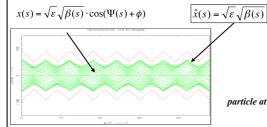
... and determine \hat{x}' via: $\frac{dx'}{dx} = 0$

$$\hat{x} = \pm \alpha \sqrt{\frac{\varepsilon}{\gamma}}$$



shape and orientation of the phase space ellipse depend on the Twiss parameters β α γ

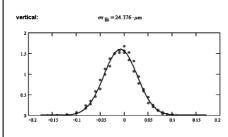
Emittance of the Particle Ensemble:



Gauß
Particle Distribution: $\rho(x) = \frac{N \cdot e}{\sqrt{2\pi\sigma_x}} \cdot e^{\frac{1-x^2}{2\sigma_x^2}}$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

single particle trajectories, $N \approx 10^{11}$ per bunch



LHC: $\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5*10^{-10} m*180 m} = 0.3 mm$

aperture requirements: $r_0 = 10 * \sigma$

8.) Transfer Matrix M ... yes we had the topic already

$$\begin{cases} x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\} \\ x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left[\alpha(s) \cos \{\psi(s) + \phi\} + \sin \{\psi(s) + \phi\} \right] \end{cases}$$

remember the trigonometrical gymnastics: sin(a + b) = ... etc

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} \left(\cos \psi_s \cos \phi - \sin \psi_s \sin \phi \right)$$

$$x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} \left[\alpha_s \cos \psi_s \cos \phi - \alpha_s \sin \psi_s \sin \phi + \sin \psi_s \cos \phi + \cos \psi_s \sin \phi \right]$$

starting at point $s(\theta) = s_{\theta}$, where we put $\Psi(\theta) = \theta$

$$\cos \phi = \frac{x_0}{\sqrt{\varepsilon \beta_0}} \quad , \\ \sin \phi = -\frac{1}{\sqrt{\varepsilon}} (x_0' \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}})$$
 inserting above ...

$$\frac{x(s) = \sqrt{\frac{\beta_s}{\beta_0}} \left\{ \cos \psi_s + \alpha_0 \sin \psi_s \right\} x_0 + \left\{ \sqrt{\beta_s \beta_0} \sin \psi_s \right\} x_0'}{x'(s) = \frac{1}{\sqrt{\beta_s \beta_0}} \left\{ \left(\alpha_0 - \alpha_s\right) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s \right\} x_0 + \sqrt{\frac{\beta_0}{\beta_s}} \left\{ \cos \psi_s - \alpha_s \sin \psi_s \right\} x_0'}$$

 $\begin{pmatrix} x \\ x' \end{pmatrix}_{x} = M \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$ which can be expressed ... for convenience ... in matrix form

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$

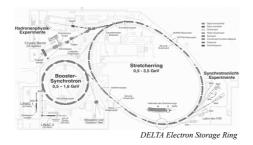
* we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \beta \gamma$ at these positions.

* and nothing but the α β γ at these positions.

...!

9.) Periodic Lattices

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$



"This rather formidable looking matrix simplifies considerably if we consider one complete revolution ... "

$$M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix}$$

$$\psi_{turn} = \int_{s}^{s+L} \frac{ds}{\beta(s)} \qquad \begin{array}{c} \psi_{turn} = phase \ advance \\ per \ period \end{array}$$

Tune: Phase advance per turn in units of 2π

$$Q = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs one complete turn?

Matrix for 1 turn:

$$M = \begin{pmatrix} \cos\psi_{num} + \alpha_s \sin\psi_{num} & \beta_s \sin\psi_{num} \\ -\gamma_s \sin\psi_{num} & \cos\psi_{num} - \alpha_s \sin\psi_{num} \end{pmatrix} = \cos\psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin\psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

Matrix for N turns:

$$M^{N} = (1 \cdot \cos \psi + J \cdot \sin \psi)^{N} = 1 \cdot \cos N\psi + J \cdot \sin N\psi$$

The motion for N turns remains bounded, if the elements of \mathbf{M}^N remain bounded

$$\psi = real$$
 \Leftrightarrow $|\cos \psi| \le 1$ \Leftrightarrow $Tr(M) \le 2$

stability criterion proof for the disbelieving collegues !!

Matrix for 1 turn:
$$M = \begin{pmatrix} \cos\psi_{num} + \alpha_s \sin\psi_{num} & \beta_s \sin\psi_{num} \\ -\gamma_s \sin\psi_{num} & \cos\psi_{num} - \alpha_s \sin\psi_{num} \end{pmatrix} = \cos\psi \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{+} + \sin\psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

Matrix for 2 turns:

$$\boldsymbol{M}^2 = (\boldsymbol{I} \cos \psi_1 + \boldsymbol{J} \sin \psi_1) (\boldsymbol{I} \cos \psi_2 + \boldsymbol{J} \sin \psi_2)$$

$$= \boldsymbol{I}^2 \cos \psi_1 \cos \psi_2 + \boldsymbol{I} \boldsymbol{J} \cos \psi_1 \sin \psi_2 + \boldsymbol{J} \boldsymbol{I} \sin \psi_1 \cos \psi_2 + \boldsymbol{J}^2 \sin \psi_1 \sin \psi_2$$

now ...

$$I^{2} = I$$

$$IJ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$JI = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$J^{2} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha^{2} - \gamma\beta & \alpha\beta - \beta\alpha \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

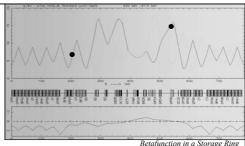
$$\boldsymbol{M}^2 = \boldsymbol{I} \cos(\psi_1 + \psi_2) + \boldsymbol{J} \sin(\psi_1 + \psi_2)$$

$$M^2 = I\cos(2\psi) + J\sin(2\psi)$$

10.) Transformation of α, β, γ

consider two positions in the storage ring: s_0 , s

$$\begin{pmatrix} x \\ x' \end{pmatrix}_s = M * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$
$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$



since $\varepsilon = const$ (Liouville):

$$\varepsilon = \beta_s x'^2 + 2\alpha_s x x' + \gamma_s x^2$$

$$\varepsilon = \beta_0 x_0'^2 + 2\alpha_0 x_0 x_0' + \gamma_0 x_0^2$$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_0 = M^{-1} * \begin{pmatrix} x \\ x' \end{pmatrix}_s$$

$$M^{-1} = \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$

$$X_0 = m_{22}X - m_{12}X'$$

$$X_0' = -m_{21}X + m_{11}X'$$
 ... inserting into ε

$$\varepsilon = \beta_0 (m_{11} x' - m_{21} x)^2 + 2\alpha_0 (m_{22} x - m_{12} x') (m_{11} x' - m_{21} x) + \gamma_0 (m_{22} x - m_{12} x')^2$$

sort via x, x'and compare the coefficients to get

The Twiss parameters α , β , γ can be transformed through the lattice via the matrix elements defined above.

$$\beta(s) = m_{11}^2 \beta_0 - 2m_{11}m_{12}\alpha_0 + m_{12}^2 \gamma_0$$

$$\alpha(s) = -m_{11}m_{21}\beta_0 + (m_{12}m_{21} + m_{11}m_{22})\alpha_0 - m_{12}m_{22}\gamma_0$$

$$\gamma(s) = m_{21}^2 \beta_0 - 2m_{21}m_{22}\alpha_0 + m_{22}^2 \gamma_0$$

in matrix notation:

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \\ \end{pmatrix}_{s2} = \begin{pmatrix} m_{11}^2 & -2m_{11}m_{12} & m_{12}^2 \\ -m_{11}m_{21} & m_{12}m_{21} + m_{22}m_{11} & -m_{12}m_{22} \\ m_{12}^2 & -2m_{22}m_{21} & m_{22}^2 \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \\ \end{pmatrix}_{s1}$$

- 1.) this expression is important
- 2.) given the twiss parameters α , β , γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
- 3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.
- 4.) go back to point 1.)

II.) Acceleration and Momentum Spread

The " not so ideal world "

Remember:

Beam Emittance and Phase Space Ellipse:

equation of motion:
$$x''(s) - k(s) x(s) = 0$$

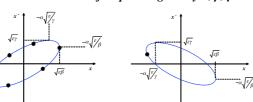
general solution of Hills equation:
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \varphi)$$

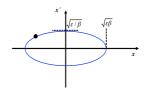
beam size:
$$\sigma = \sqrt{\varepsilon \beta} \approx "mm"$$

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

$$\alpha(s) = \frac{1}{2}$$

* shape and orientation of ellipse are given by α , β , γ





^{*} ϵ is a constant of the motion ... it is independent of "s"

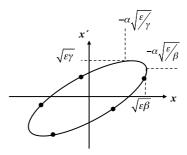
^{*} parametric representation of an ellipse in the x x' space

11.) Liouville during Acceleration

$$\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.



But so sorry ... $\varepsilon \neq const!$

Classical Mechanics:

phase space = diagram of the two canonical variables position & momentum

x D..

$$p_{j} = \frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L = T - V = kin. \, Energy - pot. \, Energy \label{eq:pj}$$

According to Hamiltonian mechanics: phase space diagram relates the variables q and p

$$q = position = x$$

 $p = momentum = \gamma mv = mc\gamma\beta_x$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad \beta_x = \frac{\dot{x}}{c}$$

Liouvilles Theorem: $\int p \, dq = const$

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$x' = \frac{dx}{ds} = \frac{dx}{dt}\frac{dt}{ds} = \frac{\beta_x}{\beta}$$
 where $\beta_x = v_x/c$

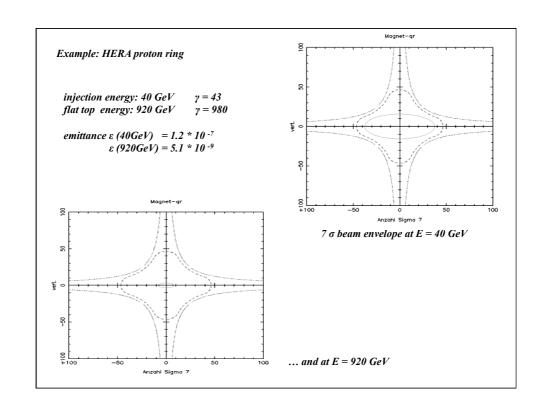
$$\int p \, dq = mc \int \gamma \beta_x dx$$

$$\int p \, dq = mc\gamma\beta \int x' \, dx$$

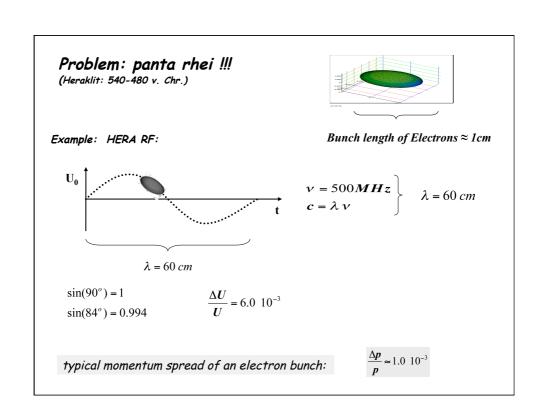
$$\Rightarrow \quad \varepsilon = \int x' dx \propto \frac{1}{\beta \gamma}$$

the beam emittance shrinks during acceleration $\varepsilon \sim 1/\gamma$

Nota bene: 1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1/2}$ in both planes. $\sigma = \sqrt{\varepsilon \beta}$ 2.) At lowest energy the machine will have the major aperture problems, → here we have to minimise LHC Error Analysis MAD-X 3.00.03 03/12/08 10.32.07 5000. 4500. 3.) we need different beam 4000. optics adopted to the energy: A Mini Beta concept will only 3000. be adequate at flat top. 2500. 2000. 600. 550. 500. 1500. 1000. 450. 400. 500. 350. 8.01 300. 250. 0.00 % s (m) [*10**(3)] 200 150. 100. LHC mini beta optics at 7000 GeV LHC injection optics at 450 GeV s(m) [*10**(3)]



Linear Accelerator Energy Gain per "Gap": $W = q U_0 \sin \omega_{RF} t$ The symbol proton linar * RF Acceleration: multiple application of the same acceleration voltage; brillant idea to gain higher energies ... but changing acceleration voltage



13.) Dispersion: trajectories for $\Delta p / p \neq 0$

Force acting on the particle

$$F = m\frac{d^2}{dt^2}(x+\rho) - \frac{mv^2}{x+\rho} = e B_y v$$



remember: $x \approx mm$, $\rho \approx m$... \rightarrow develop for small x

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_y v$$

consider only linear fields, and change independent variable: $t \rightarrow s$ $B_y = B_0 + x \frac{\partial B_y}{\partial x}$

$$x'' - \frac{1}{\rho}(1 - \frac{x}{\rho}) = \underbrace{\frac{e B_0}{mv}} + \underbrace{\frac{e x g}{mv}}_{p=p_0 + Ap}$$

... but now take a small momentum error into account !!!

Dispersion:

develop for small momentum error

$$\Delta p \ll p_0 \Rightarrow \frac{1}{p_0 + \Delta p} \approx \frac{1}{p_0} - \frac{\Delta p}{p_0^2}$$

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} \approx \frac{e B_0}{p_0} - \frac{\Delta p}{p_0^2} e B_0 + \frac{x e g}{p_0} - x e g \frac{\Delta p}{p_0^2}$$
$$-\frac{1}{\rho} \qquad k * x \qquad \approx 0$$

$$x'' + \frac{x}{\rho^2} \approx \frac{\Delta p}{p_0} * \frac{(-eB_0)}{p_0} + k * x = \frac{\Delta p}{p_0} * \frac{1}{\rho} + k * x$$

$$\frac{1}{\rho}$$

$$x'' + \frac{x}{\rho^2} - kx = \frac{\Delta p}{p_0} \frac{1}{\rho} \qquad \longrightarrow \qquad x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p_0} \frac{1}{\rho}$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. \rightarrow inhomogeneous differential equation.

Dispersion:

$$x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p} \cdot \frac{1}{\rho}$$

general solution:

$$x(s) = x_h(s) + x_i(s)$$

$$x(s) = x_h(s) + x_i(s)$$

$$\begin{cases} x_h''(s) + K(s) \cdot x_h(s) = 0 \\ x_i''(s) + K(s) \cdot x_i(s) = \frac{1}{\rho} \cdot \frac{\Delta p}{\rho} \end{cases}$$

Normalise with respect to $\Delta p/p$:

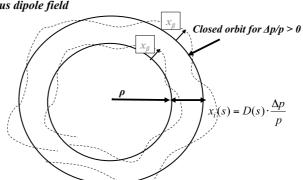
$$D(s) = \frac{x_i(s)}{\frac{\Delta p}{p}}$$

Dispersion function D(s)

- * is that special orbit, an ideal particle would have for $\Delta p/p = 1$
- * the orbit of any particle is the sum of the well known x_{β} and the dispersion
- * as D(s) is just another orbit it will be subject to the focusing properties of the lattice

Dispersion

Example: homogeneous dipole field



Matrix formalism:

e.g. matrix for a quadrupole lens:

$$M_{soc} = \begin{pmatrix} \cos(\sqrt{|K|}s & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s & \cos(\sqrt{|K|}s) \end{pmatrix} = \begin{pmatrix} C & S \\ C & S' \end{pmatrix}$$

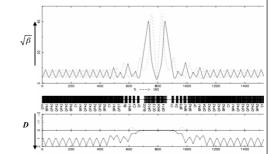
$$x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}$$

$$x(s) = C(s) \cdot x_0 + S(s) \cdot x_0' + D(s) \cdot \frac{\Delta p}{p}$$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_s = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_0 + \frac{\Delta p}{p} \begin{pmatrix} D \\ D' \end{pmatrix}$$

or expressed as 3x3 matrix

$$\begin{pmatrix} x \\ x' \\ \Delta p/p \end{pmatrix}_{S} = \begin{pmatrix} C & S & D \\ C' & S' & D' \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ x' \\ \Delta p/p \\ p \end{pmatrix}_{0}$$



Example HERA

$$x_{\beta} = 1 ... 2 mm$$

$$D(s) \approx 1 ... 2 m$$

$$\Delta p / p \approx 1 \cdot 10^{-3}$$
Amplitude of Orbit oscillation
$$contribution due to Dispersion \approx beam size$$

$$\Rightarrow Dispersion must vanish at the collision p$$

→ Dispersion must vanish at the collision point

Calculate D, D'

$$D(s) = S(s) \int_{s_0}^{s_1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s_0}^{s_1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$

Example: Drift

$$M_{Drif t} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

$$M_{Drif \, l} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

$$D(s) = S(s) \underbrace{\int_{s_0}^{s_1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s}}_{=0} - C(s) \underbrace{\int_{s_0}^{s_1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}}_{=0} = 0$$

Example: Dipole

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}_0$$

$$K = \frac{1}{\rho^2}$$

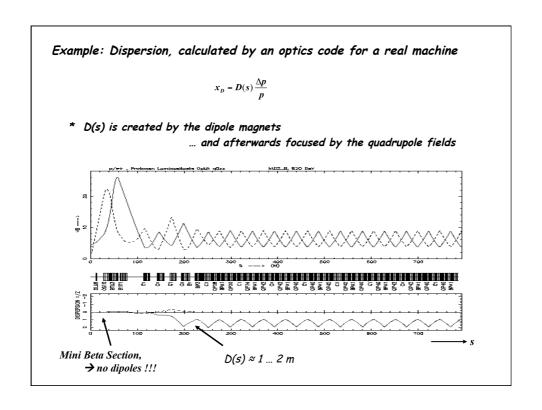
$$s = I_B$$

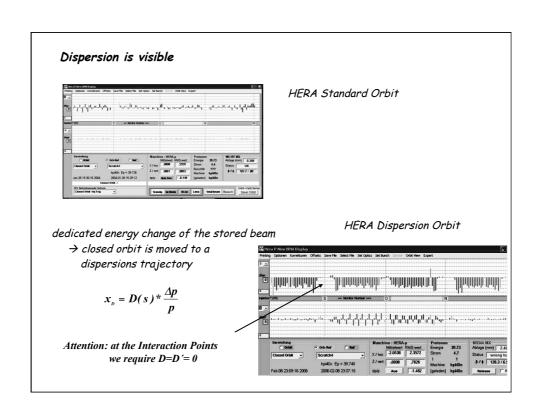
$$K = \frac{1}{\rho^2}$$

$$s = l_B$$

$$M_{Dipole} = \begin{pmatrix} \cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} \\ -\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho} \end{pmatrix} \longrightarrow D(s) = \rho \cdot (1 - \cos \frac{l}{\rho})$$

$$D'(s) = \sin \frac{l}{\rho}$$



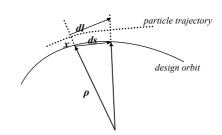


14.) Momentum Compaction Factor: α_n

particle with a displacement x to the design orbit → path length dl ...

$$\frac{dl}{ds} = \frac{\rho + x}{\rho}$$

$$\Rightarrow dl = \left(1 + \frac{x}{\rho(s)}\right) ds$$



circumference of an off-energy closed orbit

$$l_{\Delta E} = \int dl = \int \left(1 + \frac{x_{\Delta E}}{\rho(s)}\right) ds$$

$$x_{\Delta E}(s) = D(s) \frac{\Delta p}{p}$$

$$\delta l_{\Delta E} = \frac{\Delta p}{p} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

The lengthening of the orbit for off-momentum particles is given by the dispersion function and the bending radius.

Definition:

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\Rightarrow \alpha_p = \frac{1}{L} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

For first estimates assume:

$$\frac{1}{\rho} = const.$$

$$\int_{dipoles} D(s) ds \approx l_{\Sigma(dipoles)} \cdot \langle D \rangle_{dipole}$$

$$\alpha_{p} = \frac{1}{L} \ I_{\Sigma(dipoles)} \cdot \langle \boldsymbol{D} \rangle \frac{1}{\rho} = \frac{1}{L} \ 2\pi \rho \cdot \langle \boldsymbol{D} \rangle \frac{1}{\rho} \quad \rightarrow \quad \alpha_{p} \approx \frac{2\pi}{L} \ \langle \boldsymbol{D} \rangle \approx \frac{\langle \boldsymbol{D} \rangle}{R}$$

$$\alpha_p \approx \frac{2\pi}{L} \langle \mathbf{D} \rangle \approx \frac{\langle \mathbf{D} \rangle}{R}$$

Assume: $v \approx c$

$$\Rightarrow \frac{\delta T}{T} = \frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

 α_p combines via the dispersion function the momentum spread with the longitudinal motion of the particle.

15.) Gradient Errors

Matrix in Twiss Form

Transfer Matrix from point "0" in the lattice to point "s":

$$\boldsymbol{M}(s) = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} (\cos \psi_s + \alpha_0 \sin \psi_s) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos(\psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s)}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} (\cos(\psi_s - \alpha_0 \sin \psi_s)) \end{pmatrix}$$

For one complete turn the Twiss parameters have to obey periodic bundary conditions:

$$\beta(s+L) = \beta(s)$$

$$\alpha(s+L) = \alpha(s)$$

$$\gamma(s+L)=\gamma(s)$$

$$M(s) = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_s & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix}$$

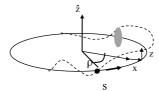
Quadrupole Error in the Lattice

optic perturbation described by thin lens quadrupole

$$\boldsymbol{M}_{dist} = \boldsymbol{M}_{\Delta k} \cdot \boldsymbol{M}_{0} = \begin{pmatrix} 1 & 0 \\ \Delta k ds & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \psi_{turn} + \alpha \sin \psi_{turn} & \beta \sin \psi_{turn} \\ -\gamma \sin \psi_{turn} & \cos \psi_{turn} - \alpha \sin \psi_{turn} \end{pmatrix}$$

quad error

ideal storage ring



$$\boldsymbol{M}_{dist} = \begin{pmatrix} \cos\psi_0 + \alpha\sin\psi_0 & \beta\sin\psi_0 \\ \Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} (\cos\psi_0 + \alpha\sin\psi_0) - \gamma\sin\psi_0 & \Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta\sin\psi_0 + \cos\psi_0 - \alpha\sin\psi_0 \end{pmatrix}$$

rule for getting the tune

 $Trace(M) = 2\cos\psi = 2\cos\psi_0 + \Delta k ds\beta\sin\psi_0$

Quadrupole error → Tune Shift

$$\psi = \psi_0 + \Delta \psi$$
 $\cos(\psi_0 + \Delta \psi) = \cos \psi_0 + \frac{\Delta k ds \, \beta \sin \psi_0}{2}$

remember the old fashioned trigonometric stuff and assume that the error is small!!!

$$\cos \psi_0 \underbrace{\cos \Delta \psi}_{\approx 1} - \sin \psi_0 \underbrace{\sin \Delta \psi}_{\approx \Delta \psi} = \cos \psi_0 + \frac{k ds \, \beta \sin \psi_0}{2}$$

$$\Delta \psi = \frac{kds \, \beta}{2}$$

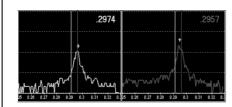
and referring to Q instead of ψ :

$$\psi = 2\pi Q$$

$$\Delta Q = \int_{s_0}^{s_0+l} \frac{\Delta k(s)\beta(s)ds}{4\pi}$$

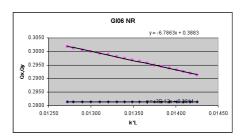
- the tune shift is proportional to the β-function at the quadrupole
- !! field quality, power supply tolerances etc are much tighter at places where β is large
- !!! mini beta quads: β ≈ 1900 m arc quads: β ≈ 80 m
- IIII β is a measure for the sensitivity of the beam

a quadrupol error leads to a shift of the tune:



$$\Delta Q = \int_{s_0}^{s_0+l} \frac{\Delta k \beta(s)}{4\pi} ds \approx \frac{\Delta k l_{quad} \overline{\beta}}{4\pi}$$

Example: measurement of β in a storage ring: tune spectrum

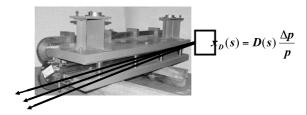


16.) Chromaticity:

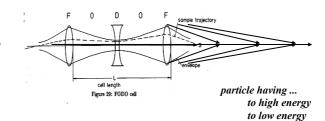
A Quadrupole Error for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

dipole magnet



focusing lens



ideal energy

Chromaticity: Q'

$$k = \frac{g}{p/e}$$

$$k = \frac{g}{p/p} \qquad p = p_0 + \Delta p$$

in case of a momentum spread:

$$k = \frac{eg}{p_0 + \Delta p} \approx \frac{e}{p_0} (1 - \frac{\Delta p}{p_0}) g = k_0 + \Delta k$$

$$\Delta k = -\frac{\Delta p}{p_0} k_0$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds$$

definition of chromaticity:

$$\Delta Q = Q' \frac{\Delta p}{p} ; \quad Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself!!

Q' is a number indicating the size of the tune spot in the working diagram,

Q' is always created if the beam is focussed

 \rightarrow it is determined by the focusing strength k of all quadrupoles

$$Q' = -\frac{1}{4\pi} \oint k(s) \beta(s) ds$$

k = quadrupole strength

 β = betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$Q' = 250$$

 $\Delta p/p = +/-0.2 *10^{-3}$
 $\Delta Q = 0.256 \dots 0.36$

→Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake

Correction of Q':

1.) sort the particles acording to their momentum

$$x_D(s) = D(s) \frac{\Delta p}{p}$$

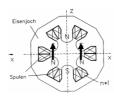
2.) apply a magnetic field that rises quadratically with x (sextupole field)

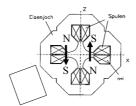
$$B_x = \tilde{g}xz$$

$$B_z = \frac{1}{2}\tilde{g}(x^2 - z^2)$$

$$\frac{\partial B_x}{\partial z} = \frac{\partial B_z}{\partial x} = \tilde{g}x$$
 linear rising "gradient":

Sextupole Magnets:





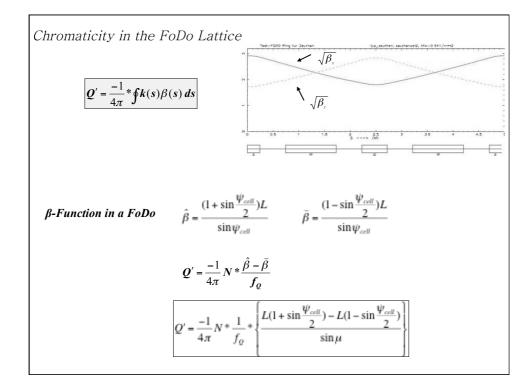
normalised quadrupole strength:

$$k_{sext} = \frac{\tilde{g}x}{p/e} = m_{sext.}x$$

$$k_{sext} = m_{sext.} D \frac{\Delta p}{p}$$

corrected chromaticity:

$$Q' = -\frac{1}{4\pi} \oint \{K(s) - mD(s)\} \beta(s) ds$$



using some TLC transformations ...
$$\xi$$
 can be expressed in a very simple form:
$$Q' = \frac{-1}{4\pi}N*\frac{1}{f_Q}*\frac{2L\sin\frac{\Psi_{coll}}{2}}{\sin\psi_{coll}}$$

$$Q' = \frac{-1}{4\pi}N*\frac{1}{f_Q}*\frac{L\sin\frac{\Psi_{coll}}{2}}{\sin\frac{\Psi_{coll}}{2}\cos\frac{\Psi_{coll}}{2}}$$

$$remember ...$$

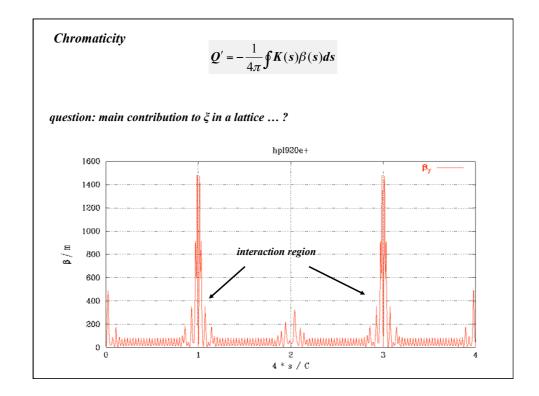
$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

$$Q'_{coll} = \frac{-1}{4\pi}f_Q * \frac{L\tan\frac{\Psi_{coll}}{2}}{\sin\frac{\Psi_{coll}}{2}}$$

$$putting ...$$

$$\sin\frac{\Psi_{coll}}{2} = \frac{L}{4f_Q}$$

$$Q'_{coll} = \frac{-1}{\pi}*\tan\frac{\Psi_{coll}}{2}$$
 contribution of one FoDo Cell to the chromaticity of the ring:



17.) Résumé:

beam rigidity: $B \cdot \rho = \frac{p}{q}$

bending strength of a dipole: $\frac{1}{\rho} \left[m^{-1} \right] = \frac{0.2998 \cdot B_0(T)}{p(GeV/c)}$

focusing strength of a quadrupole: $k \left[m^{-2} \right] = \frac{0.2998 \cdot g}{p(GeV/c)}$

focal length of a quadrupole: $f = \frac{1}{k \cdot l_q}$

equation of motion: $x'' + Kx = \frac{1}{\rho} \frac{\Delta p}{p}$

matrix of a foc. quadrupole: $x_{s2} = M \cdot x_{s1}$

$$M = \begin{pmatrix} \cos \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sin \sqrt{|K|} l \\ -\sqrt{|K|} \sin \sqrt{|K|} l & \cos \sqrt{|K|} l \end{pmatrix} , \qquad M = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

Resume': beam emittance:
$$\varepsilon \propto \frac{1}{\beta \gamma}$$

beta function in a drift:
$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$

... and for
$$\alpha = 0$$

$$\beta(s) = \beta_0 + \frac{s^2}{\beta_0}$$

particle trajectory for
$$\Delta p/p \neq 0$$

$$x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p_0} \frac{1}{\rho}$$
inhomogenious equation:

... and its solution:
$$x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}$$

momentum compaction:
$$\frac{\delta l_{_{e}}}{L} = \alpha_{_{cp}} \frac{\Delta p}{p} \qquad \alpha_{_{cp}} \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$$

quadrupole error:
$$\Delta Q = \int_{0}^{s_0+l} \frac{\Delta K(s)\beta(s)ds}{4\pi}$$

chromaticity:
$$Q' = -\frac{1}{4\pi} \oint K(s)\beta(s)ds$$

18.) Bibliography

- 1.) Klaus Wille, Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
- 2.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
- 3.) H. Wiedemann, Particle Accelerator Physics (Springer-Verlag, Berlin, 1993)
- 4.) A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific 1998)
- 5.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
- 6.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm. Acc. phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
- 7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
- 9.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
- 10.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990