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Beam Position Monitors: 
Detector Principle and Signal Estimation 

Peter Forck 
Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany

Outline:
General discussion on BPM features and specification
Sum signal estimation, example ‘shoe box’ BPM for proton synchrotron
Differential signal estimation, example ‘button’ BPM for p-LINAC and e-

‘Stripline’ BPM for circular colliders
‘Cavity’ BPMs for FEL LINAC
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Preface: Time Domain ↔ Frequency Domain

Time domain: Recording of a voltage as a function of time:

Instrument: 
Oscilloscope

Frequency domain: Displaying of a voltage as a function of frequency:

Instrument: 
Spectrum Analyzer
or Fourier Transformation of time domain data
Care: Contains amplitude and phase
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Usage of BPMs

A Beam Position Monitor is an non-destructive device for bunched beams
It has a low cut-off frequency i.e. dc-beam behavior can not be monitored
The abbreviation BPM and  pick-up PU are synonyms

It delivers information about the transverse center of the beam
Trajectory: Position of an individual bunch within a transfer line or synchrotron
Closed orbit: central orbit averaged over a period much longer than  a betatron oscillation
Single bunch position → determination of parameters like tune, chromaticity, β-function
Bunch position on a large time scale: bunch-by-bunch → turn-by-turn → averaged position
Time evolution of a single bunch can be compared to ‘macro-particle tracking’ calculations
Feedback: fast bunch-by-bunch damping or precise (and slow) closed orbit correction
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Trajectory Measurement with BPMs

Trajectory:
The position delivered by an individual bunch within a transfer line or a synchrotron.  
Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 (y-axis: -10 → 10 mm, x-axis: monitor number 0 →530) 

From R. Jones (CERN)
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Principle of Signal Generation of capacitive BPMs

Animation by Rhodri Jones (CERN)

The image current at the wall is    
monitored on a high frequency basis
i.e. ac-part given by the bunched beam.
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Specification of BPM Demands → Discussion Topic

What are the general demands for a proper choice of BPMs?

What are the basic properties to characterize a BPM? 

What are adequate technical terms required for the BPM specification?

What are reasons for the choice of an appropriate type? 
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Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity
defined as 

Accuracy: Ability for position reading relative to a mechanical fix-point (‘absolute position’)
influenced by mechanical tolerances and alignment accuracy and reproducibility
by electronics: e.g. amplifier drifts,  electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation (‘relative position’)
typically: single bunch: 10-3 of aperture ≈ 100 µm

averaged: 10-5 of aperture ≈1 µm, goal: 10 % of beam width ∆x≈0.1·σ
in most case much better than accuracy!
electronics has to match the requirements e.g. bandwidth, ADC granularity…

Bandwidth: Frequency range available for measurement
has to be chosen with respect to required resolution via analog or digital filtering

Dynamic range: Range of beam currents the system has to respond
position reading should not depend on input amplitude

Signal-to-noise: Ratio of wanted signal to unwanted background
influenced by thermal and circuit noise, electronic interference 
can be matched by bandwidth limitation

Detection threshold=signal sensitivity: minimum beam current for measurement

( ) [ ]%/mm/),,( =Σ∆= xxx UU
dx
dfyxS
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Comparison of BPM Types (simplified)

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, 
BPMs with external resonator, slotted wave-guides for stochastic cooling etc.  

Very complex, 
high frequency

Very sensitiveShort bunches
Special appl.

e- Linacs
(e.g. FEL)

Cavity

Complex 50 Ω matching
Complex mechanics

Directivity
‘Clean’ signals
Large Signal

best for β ≈ 1,
short bunches

colliders 
p-Linacs
all e- acc.

Stipline

Non-linear, x-y coupling
Possible signal 
deformation

Simple
mechanics

frf > 10 MHzp-Linacs,
all e- acc.

Button

Complex mechanics
Capacitive coupling                 
between plates

Very linear
No x-y coupling
Sensitive
For broad beams

Long bunches 
frf < 10 MHz

p-Synch.Shoe-box

DisadvantageAdvantagePrecautionUsageType
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Estimation of the Beam Spectrum 

2.1.1 What is the spectral function of a single bunch?
Assume a single bunch of Gaussian width σt=100 ns passing a BPM. 
Sketch the spectral beam current Ibeam(f) as a function of frequency! 
What are the corresponding values for σt=10 ns and σt=1 ns? 
Note: The Fourier transformation of a Gaussian with σt is a half Gaussian with σf=1/(2πσt).

I be
am
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Estimation of the Beam Spectrum 

2.1.2 What is the spectral function of a train of bunches?
Assume a train of  bunches with σt=100 ns width and a repetition of facc=1 MHz. 
Sketch the spectral beam current Ibeam(f) as a function of frequency! 

The spectrum consists of line 
separated by facc.

The envelope is given by the 
single bunch.

Typical value for p-synch.:  
most power below ≈10·fmax.

facc

fmax
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Outline:
General discussion on BPM features and specification
Sum signal estimation, example ‘shoe box’ BPM for proton synchrotron
Differential signal estimation, example ‘button’ BPM for p-LINAC and e-

Stripline BPM for circular colliders
Cavity BPMs for FEL LINAC
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Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz<frf<10 MHz ⇒ bunch-length >> BPM-length.

Signal is proportional to actual plate length:

In ideal case: linear reading 
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Shoe-box BPM:
Advantage: Very linear, minor frequency dependence

i.e. position sensitivity S is constant
Disadvantage: Large size, complex mechanics

high capacitance

Size: 200x70 mm2
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Technical Realization of Shoe-Box BPM
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Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u
BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm.
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Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u
BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm.
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Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current Iim at the plate is given by the geometry and the capacitive coupling:

Using a relation for Fourier transformation: Ibeam = I0eiωt ⇒ dIbeam/dt = iωIbeam.
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Transfer Impedance for capacitive BPM

At a resistor R the voltage Uim from the image current is measured.
The transfer impedance Zt is the ratio between voltage Uim and beam current Ibeam
in frequency domain: Usig(ω) = R · Iim(ω) = Zt(ω, β) · Ibeam(ω).

⇒ this is a high-pass with  ωcut= 1/(RC) ⇔ fcut=1/(2πRC):

Capacitive BPM: 
•The pick-up capacitance C: 

plate ↔ vacuum-pipe and cable.
•The amplifier with input resistor R.
•The beam is a high-impedance current source:
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What is the spectral function of a bunched beam seen by the capacitive BPM?

2.2.1 Calculate the cut-off frequency fcut=1/(2πRC) for R=50 Ω (for voltage measurement) 
and C=100 pF (capacitance BPM-Plates-wall, cable etc.)! 

Sketch the transfer impedance Zt(f) as a function of frequency! (high-pass characteristic) 

The cut-off frequency is 
fcut=1/(2πRC)=32 MHz. 

Estimation Voltage Spectrum for Shoe-box BPM

Zt(f) is described by a first order high-pass:

geometry
capacitance

high-pass

|Zt(f>fcut)|=7 Ω for a 10 cm long cylinder, β=50%

cut

cut
t

ff
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Estimation Voltage Spectrum for Shoe-box BPM

2.2.2 What is the voltage spectrum  for the case of a single bunch with
σt=100 ns, σt=10 ns and σt=1 ns as discussed above with fcut=1/(2πRC)=32 MHz ?

What type of math. algorithm is used for the calculation of the time dependent Usignal(t)?
Sketch the time dependent voltage Usignal(t) for these cases ! 

Given Ibeam(t) → FFT yields Ibeam(f)
→ multiplying by Zt(f) yields Usignal(f) = Zt(f) · Ibeam(f)
→ inverse FFT yields Usignal(t)

For the amplitude |Zt(f)| → multiplication of both spectra. For the phase → adding φ(f)
Calculation in time domain using response function H(t) is possible as well. 
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Numerical Value of Usignal(t) with 1MΩ Termination

2.2.4 Sometimes a high impedance termination with R=1 MΩ is used for shoe-box BPMs.
What is the cut-off frequency fcut=1/(2πRC) in this case (C=100 pF) ?
Sketch and discuss the signal voltage for the case of a bunch train with σt=100 ns !
What might be reasons for this choice? 

The cut-off frequency is 
fcut=1/(2πRC)=1.6 kHz
⇒ the proportional shape is recorded
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Numerical Value of Usignal(t) with 1MΩ Termination

Signal strength for long bunches  is Usignal=Zt(f>fcut) ·Ibeam

A baseline shift occur i.e. no dc-transmission

2.2.4 Sometimes a high impedance termination with R=1 MΩ is used for shoe-box BPMs.
What is the cut-off frequency fcut=1/(2πRC) in this case (C=100 pF) ?
Sketch and discuss the signal voltage for the case of a bunch train with σt=100 ns !
What might be reasons for this choice? 

The cut-off frequency is 
fcut=1/(2πRC)=1.6 kHz
⇒ the proportional shape is recorded Reason for this choice: larger signal independent on bunch length 

However: larger thermal noise due to Ueff=(4kB·T·Δf·R)1/2



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesP. Forck, CAS, Chios, Sep. 2011   BPM: Principle and Signal Estimation  21

Outline:
General discussion on BPM features and specification
Sum signal estimation, example ‘shoe box’ BPM for proton synchrotron
Differential signal estimation, example ‘button’ BPM for p-LINAC and e-

Stripline BPM for circular colliders
Cavity BPMs for FEL LINAC
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Button BPM for short Bunches

LINACs, e--synchrotrons: 100 MHz < frf < 3 GHz → bunch length ≈ BPM length
→ 50 Ω signal path to prevent reflections

Button BPM with 50 Ω ⇒
dt

dI
ca

ARtU beam
sig ⋅⋅⋅=

βπ
1

2
)(

Example: LHC-type inside cryostat:  
∅24 mm, half aperture a=25 mm, C=8 pF 
⇒ fcut=400 MHz, Zt = 1.3 Ω above fcut

From C. Boccard (CERN)

Ø24 mm
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Button BPM for short Bunches

LINACs, e--synchrotrons: 100 MHz < frf < 3 GHz → bunch length ≈ BPM length
→ 50 Ω signal path to prevent reflections

Button BPM with 50 Ω ⇒
dt
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Example: LHC-type inside cryostat:  
∅24 mm, half aperture a=25 mm, C=8 pF 
⇒ fcut=400 MHz, Zt = 1.3 Ω above fcut

From C. Boccard (CERN)

Ø24 mm

From 
K.Wittenburg
(DESY)
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2-dim Model for Button BPM 

‘Proximity effect’: larger signal for closer plate
Ideal 2-dim model: Cylindrical pipe → image current density 
via ‘image charge method’ for ‘pensile’ beam:
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Image current: Integration of finite BPM size: 

Position map:
Beam position
& result
using ∆U/ΣU

⇒non-linear S(x,y)
⇒ beam size 

dependent 
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button

a=25mm
α=300 S=7.4%/mm

Even for θ=0o

useful readout 
only if 
Uright>0.1·Uleft
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Estimation of Signal Voltage for Button BPM

2.3.1 What is the signal voltage shape for a single bunch of σt=1 ns, σt=100 ps and σt=10 ps?
Sketch the time dependent voltage Usignal(t) for these cases !
Assume a termination of  R=50 Ω and a capacitance C=5 pF. 

The cut-off frequency is fcut=1/(2πRC)=640 MHz. 
For σt=1 ns   ⇒ σt=1/2πσt = 160 MHz  i.e. main component below fcut ⇒ derivative 
For σt=10 ps ⇒ σt=1/2πσt = 16   GHz   i.e. main component  above fcut ⇒ proportional
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Numerical Value of Signal Voltage for Button BPM

2.3.2 Calculate the signal voltage Usignal(t) for the cases σt=1 ns, σt=100 ps and σt=10 ps?
Assume N=1010 electrons per bunch and transfer impedance | Zt(f>fcut) |=1 Ω,.
Use a boxcar like bunch shape of width 4·σ, e = 1.6·10-19 C, vbeam= c.
Discuss briefly possible problems for short bunch observations! 

For N=1010 electron within boxcar-like bunch shape of 6σt the beam current is: Ibeam=eN/6σt

If the bunch length is comparable to  button size→ signal propagation must be considered

Technical item: Bandwidth of feed-through typically below ≈ 3 GHz.  

If one assumes a Gaussian bunch shape: Maximum voltage ≈2 larger than the average value.
⇒ e.g. Usignal = 80 V for σt=10 ps ! 

161.60.16Spectrum width σf [GHz]
0.3330Bunch length σl [cm]

4040.4
due to f > fcut ≈0.2 V

Signal Usignal [V]

4040.4 Current Ibeam [A]

101001000Bunch length σt [ps]
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Difference Voltage for position Measurement

2.3.3 The beam position is obtained via x = 1/S · (Uright- Uleft)/(Uright+Uleft)   (linear processing)

S is the position sensitivity with a typical value of S = 10 %/mm (at the BPM center).
What is the precision of the voltage reading for the detection of 10 µm offset ?
What is the related numerical value of ∆U=(Uright-Uleft) for a single bunch of σt=1 ns ?
Thermal noise Ueff=(4kB·T·Δf·R)1/2 contributes to any signal, kB=1.4·10-23 J/K.
Calculate the thermal noise for ∆f=1 GHz and T=300 K!  
What is the beam current for a S-to-N of 2:1? What is a strategy for enlarged resolution?

Due to S=10 %/mm an 10 µm offset transforms to ratio ∆U/ΣU = 0.1 %
For the case of ΣU=400 mV it is ∆U=10-3 ·ΣU= 400 µV only
The thermal noise for ∆f=1 GHz  is Ueff=30 µV → S-to-N = ΔU/Ueff ≈ 10:1

For a S-to-N=2:1 a current of Ibeam=50 µA is required i.e. N=109 electrons.  
Realistic value: Amplifier has at least 3 time higher noise.  

The main improvement is gained by a restriction of bandwidth ∆f, down to kHz.
Correspondingly the time resolution of any position variation decreases!  
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Button BPM at Synchrotron Light Sources
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Beam position swept with 2 mm steps
Non-linear sensitivity and hor.-vert. coupling
At center Sx=8.5%/mm in this case

From S. Varnasseri, SESAME, DIPAC 2005

Due to synchrotron radiation, the button insulation might be destroyed 
⇒buttons only in vertical plane possible ⇒ increased non-linearity
Optimization: horizontal distance and size of buttons
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Outline:
General discussion on BPM features and specification
Sum signal estimation, example ‘shoe box’ BPM for proton synchrotron
Differential signal estimation, example ‘button’ BPM for p-LINAC and e-

Stripline BPM for circular colliders
Cavity BPMs for FEL LINAC
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Stripline BPM: General Idea 

For short bunches, the capacitive button deforms the signal
→ Relativistic beam β≈1 ⇒ field of bunches nearly TEM wave
→ Bunch’s electro-magnetic field induces a traveling pulse at the strips
→ Assumption: Bunch shorter than BPM, Zstrip=R1=R2=50 Ω and vbeam=cstrip.

LHC stripline BPM, l=12 cm

From C. Boccard, CERN
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Stripline BPM: General Idea 

For relativistic beam with β≈1 and short bunches:
→ Bunch’s electro-magnetic field induces a traveling pulse at the strip
→ Assumption: lbunch<< l, Zstrip=R1=R2=50 Ω and vbeam=cstrip
Signal treatment at upstream port 1:

( ))/2()(
22

1)(1 cltItIZtU beambeamstrip −−⋅⋅=⇒
π
α

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 
⇒ Signal depends direction ⇔ directional coupler: e.g. can distinguish between e- and e+ in collider

t=0: Beam induced charges at port 1:
→ half to R1, half toward port 2

t=l/c: Beam induced charges at port 2:    
→ half to R2, but  due to different sign, 

it cancels with the signal from port 1
→ half signal reflected

t=2·l/c: reflected signal reaches port 1

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one:
→ no net signal at port 1
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Signal Voltage for stripline BPM

3.2 Sketch the signal voltage of a stripline BPM for a single bunch  with σt=100 ps ! 

Use the following parameter: Strip length l=30 cm, transfer imp. Zt=1.5 Ω at its maximum.
Sketch the transfer impedance!
How is the signal shape and transfer impedance modified for longer bunches ?

The bunch length σt=100 ps is short compared to the transit time 2l/c ⇒ no overlap
The shape of Zt(f) are comps with minima at  n·c/2l with a envelop given by σf=1/2πσt  .

Short bunches: Zt is periodic, for long bunches (σt>0.3ns) overlapping occur, Zt max. not reached
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Outline:
General discussion on BPM features and specification
Sum signal estimation, example ‘shoe box’ BPM for proton synchrotron
Differential signal estimation, example ‘button’ BPM for p-LINAC and e-

Stripline BPM for circular colliders
Cavity BPMs for FEL LINAC
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Cavity BPM: Principle

High resolution on µs time scale can be achieved by excitation of a dipole mode:

TM01

TM11

TM02

f / GHz

U
 / 

V

TM010

TM011

TM020

U~Q U~Qr U~Q

Application:
small e- beams  
(ILC, X-FEL…)

From D. Lipka,
DESY, Hamburg

For pill box the resonator modes given by geometry: 
monopole TM010 with f010
→ maximum at beam center ⇒ strong excitation
Dipole mode TM011 with f011

→ minimum at center ⇒ excitation by beam offset 
⇒ Detection of dipole mode amplitude 
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Cavity BPM: Example of Realization

From M. Wendt (FNAL)

FNAL realization:
Cavity: ∅ 113 mm

Gap 15 mm
Mono. f010=1.1GHz
Dipole. f110=1.5GHz
Qload ≈ 600
With comparable BPM
⇒0.1 µm resolution

within 1 µs

Basic consideration for detection of eigen-frequency amplitudes: 
Dipole mode f110 separated from  monopole mode 

due to finite quality factor Q ⇒ ∆f=f/Q
Frequency  f110 ≈ 1…10 GHz
Waveguide house the antennas 
Task: suppression of TM010 mono-pole mode 

Gap
15 mm 

Antenna for
monopole mode

Antenna for
dipole mode

Waveguide 
input for dipole 
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Suppression of mono-pole mode: waveguide that couple only to dipole-mode

due to fmono < fcut < fdipole

Monopole Mode Dipole Mode

Courtesy of D. Lipka,
DESY, Hamburg

Prototype BPM for ILC Final Focus
Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe
Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Courtesy of D. Lipka,
DESY, Hamburg

wave guide

Mono-pole mode Dipole-pole mode

Courtesy of D. Lipka & Y. Honda

Courtesy of D. Lipka and Y. Honda

Cavity BPM: Suppression of monopole Mode
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Signal Voltage for stripline BPM

3.3 Sketch the signal voltage of a cavity BPM for a single bunch with σt=100 ps ! 

Use the following parameter: Resonance frequency f=4 GHz, quality factor QL=1000.
What influences the choice for the value of QL? 

The excited oscillation is described 
by Usignal(t) = U0·e

-2πf/2Qt ·sin(2πf·t). 
For the given quality factor QL
the damping time is τ=2QL/2πf ≈ 80 ns .

Large QL: larger integrated signal
larger position sensitivity

Small QL : Faster reaction to acceding pulse
broadband 
→ better excited by bunch.
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Signal Voltage for stripline BPM

3.4 Discuss briefly the reasons for an appropriate choice of 
shoebox button, stripline and cavity types !

Shoebox: for low frequencies (proton synchrotron) 

Linear position reading, no beam-size dependence

Button: BPMs are easier to produce and have simpler processing scheme. 

Stripline: BPMs have lower signal deformation and offer directivity for colliders
i.e. counter-propagating beams within one beam pipe. 

Cavity: BPMs have much higher single pass resolution. 
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Comparison of BPM Types (simplified)

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, 
BPMs with external resonator, slotted wave-guides for stochastic cooling etc.  

Very complex, 
high frequency

Very sensitiveShort bunches
Special appl.

e- Linacs
(e.g. FEL)

Cavity

Complex 50 Ω matching
Complex mechanics

Directivity
‘Clean’ signals
Large Signal

best for β ≈ 1,
short bunches

colliders 
p-Linacs
all e- acc.

Stipline

Non-linear, x-y coupling
Possible signal 
deformation

Simple
mechanics

frf > 10 MHzp-Linacs,
all e- acc.

Button

Complex mechanics
Capacitive coupling                 
between plates

Very linear
No x-y coupling
Sensitive
For broad beams

Long bunches 
frf < 10 MHz

p-Synch.Shoe-box

DisadvantageAdvantagePrecautionUsageType

Thank you for your attention!


