

Beam Position Monitors: Detector Principle and Signal Estimation Peter Forck

Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany **Outline:**

- General discussion on BPM features and specification
- > Sum signal estimation, example 'shoe box' BPM for proton synchrotron
- > Differential signal estimation, example 'button' BPM for p-LINAC and e-

BPM: Principle and Signal Estimation

Preface: Time Domain \leftrightarrow Frequency Domain

Time domain: Recording of a voltage as a function of time:

Frequency domain: Displaying of a voltage as a function of frequency:

Instrument:

Spectrum Analyzer

or Fourier Transformation of time domain data

Care: Contains amplitude and phase

P. Forck, CAS, Chios, Sep. 2011

GSI

A Beam Position Monitor is an non-destructive device for bunched beams It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

It delivers information about the transverse center of the beam

- > *Trajectory:* Position of an individual bunch within a transfer line or synchrotron
- Closed orbit: central orbit averaged over a period much longer than a betatron oscillation
- Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- ▶ Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction

Trajectory Measurement with BPMs

Trajectory:

The position delivered by an individual bunch within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 (y-axis: $-10 \rightarrow 10$ mm, x-axis: monitor number $0 \rightarrow 530$)

Specification of BPM Demands \rightarrow Discussion Topic

What are the general demands for a proper choice of BPMs? What are the basic properties to characterize a BPM?

What are adequate technical terms required for the BPM specification? What are reasons for the choice of an appropriate type?

Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity defined as $S_x(x, y, f) = \frac{d}{dr} (\Delta U_x / \Sigma U_x) = [\%/mm]$

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

➢ influenced by mechanical tolerances and alignment accuracy and reproducibility

➢ by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

→ typically: *single bunch*: 10^{-3} of aperture ≈ 100 µm

averaged: 10^{-5} of aperture $\approx 1 \ \mu m$, *goal:* $10 \ \%$ of beam width $\Delta x \approx 0.1 \cdot \sigma$

 \succ in most case much better than accuracy!

> electronics has to match the requirements e.g. bandwidth, ADC granularity...

Bandwidth: Frequency range available for measurement

➢ has to be chosen with respect to required resolution via analog or digital filtering **Dynamic range:** Range of beam currents the system has to respond

> position reading should not depend on input amplitude

Signal-to-noise: Ratio of wanted signal to unwanted background

➢ influenced by thermal and circuit noise, electronic interference

➤ can be matched by bandwidth limitation

Detection threshold=signal sensitivity: minimum beam current for measurement

P. Forck, CAS, Chios, Sep. 2011

G 55 1

Comparison of BPM Types (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Shoe-box	p-Synch.	Long bunches $f_{rf} < 10 \text{ MHz}$	Very linear No x-y coupling Sensitive For broad beams	Complex mechanics Capacitive coupling between plates
Button	p-Linacs, all e ⁻ acc.	<i>f_{rf}</i> > 10 MHz	Simple mechanics	Non-linear, <i>x-y</i> coupling Possible signal deformation
Stipline	colliders p-Linacs all e ⁻ acc.	best for $\beta \approx 1$, short bunches	Directivity 'Clean' signals Large Signal	Complex 50 Ω matching Complex mechanics
Cavity	e ⁻ Linacs (e.g. FEL)	Short bunches Special appl.	Very sensitive	Very complex, high frequency

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

Estimation of the Beam Spectrum

2.1.1 What is the spectral function of a **single bunch?**

Assume a single bunch of Gaussian width $\sigma_t = 100$ ns passing a BPM. Sketch the spectral beam current $I_{heam}(f)$ as a function of frequency! What are the corresponding values for $\sigma_t = 10$ ns and $\sigma_t = 1$ ns? *Note*: The Fourier transformation of a Gaussian with σ_t is a half Gaussian with $\sigma_f = 1/(2\pi\sigma_t)$.

Estimation of the Beam Spectrum

2.1.2 What is the spectral function of a train of bunches?

Assume a train of bunches with $\sigma_t = 100$ ns width and a repetition of $f_{acc} = 1$ MHz. Sketch the spectral beam current $I_{beam}(f)$ as a function of frequency!

Outline:

- General discussion on BPM features and specification
- Sum signal estimation, example 'shoe box' BPM for proton synchrotron
- > Differential signal estimation, example 'button' BPM for p-LINAC and e⁻
- > Stripline BPM for circular colliders
- > Cavity BPMs for FEL LINAC

G 55 1

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $\leq f_{rf} \leq$ 10 MHz \Rightarrow bunch-length >> BPM-length.

P. Forck, CAS, Chios, Sep. 2011

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

P. Forck, CAS, Chios, Sep. 2011

Transfer Impedance for capacitive BPM

Estimation Voltage Spectrum for Shoe-box BPM

What is the spectral function of a bunched beam seen by the capacitive BPM?

2.2.1 Calculate the cut-off frequency $f_{cut} = 1/(2\pi RC)$ for $R = 50 \Omega$ (for voltage measurement) and C=100 pF (capacitance BPM-Plates-wall, cable etc.)!

Sketch the transfer impedance $Z_t(f)$ as a function of frequency! (high-pass characteristic)

P. Forck, CAS, Chios, Sep. 2011

Numerical Value of $U_{signa}(t)$ with $1M\Omega$ Termination

2.2.4 Sometimes a high impedance termination with R=1 M Ω is used for shoe-box BPMs. What is the cut-off frequency $f_{cut}=1/(2\pi RC)$ in this case (C=100 pF)? Sketch and discuss the signal voltage for the case of a bunch train with $\sigma_t=100$ ns ! What might be reasons for this choice?

The cut-off frequency is $f_{cut} = 1/(2\pi RC) = 1.6 \text{ kHz}$ \Rightarrow the proportional shape is recorded

651

Numerical Value of $U_{signa}(t)$ with $1M\Omega$ Termination

2.2.4 Sometimes a high impedance termination with R=1 M Ω is used for shoe-box BPMs. What is the cut-off frequency $f_{cut}=1/(2\pi RC)$ in this case (C=100 pF)? Sketch and discuss the signal voltage for the case of a bunch train with $\sigma_t=100$ ns ! What might be reasons for this choice?

The cut-off frequency is $f_{cut}=1/(2\pi RC)=1.6$ kHz

 \Rightarrow the proportional shape is recorded

Signal strength for long bunches is $U_{signal} = Z_t (f > f_{cut}) \cdot I_{beam}$

A baseline shift occur i.e. no dc-transmission

Reason for this choice: larger signal *independent* on bunch length *However:* larger thermal noise due to $U_{eff} = (4kB \cdot T \cdot \Delta f \cdot R)^{1/2}$

P. Forck, CAS, Chios, Sep. 2011

Outline:

- General discussion on BPM features and specification
- Sum signal estimation, example 'shoe box' BPM for proton synchrotron
- > Differential signal estimation, example 'button' BPM for p-LINAC and e-
- > Stripline BPM for circular colliders
- > Cavity BPMs for FEL LINAC

G 55 1

Button BPM for short Bunches

LINACs, e-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

P. Forck, CAS, Chios, Sep. 2011

Button BPM for short Bunches

LINACs, e-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

P. Forck, CAS, Chios, Sep. 2011

2-dim Model for Button BPM

P. Forck, CAS, Chios, Sep. 2011

Estimation of Signal Voltage for Button BPM

2.3.1 What is the signal voltage shape for a single bunch of $\sigma_t = 1$ ns, $\sigma_t = 100$ ps and $\sigma_t = 10$ ps? Sketch the time dependent voltage $U_{signal}(t)$ for these cases ! Assume a termination of $R=50 \Omega$ and a capacitance C=5 pF.

The cut-off frequency is $f_{cut} = 1/(2\pi RC) = 640$ MHz. For $\sigma_t = 1$ ns $\Rightarrow \sigma_t = 1/2\pi\sigma_t = 160$ MHz i.e. main component below $f_{cut} \Rightarrow$ derivative For $\sigma_t = 10$ ps $\Rightarrow \sigma_t = 1/2\pi\sigma_t = 16$ GHz i.e. main component above $f_{cut} \Rightarrow$ proportional

Numerical Value of Signal Voltage for Button BPM

2.3.2 Calculate the signal voltage $U_{signal}(t)$ for the cases $\sigma_t = 1$ ns, $\sigma_t = 100$ ps and $\sigma_t = 10$ ps? Assume $N=10^{10}$ electrons per bunch and transfer impedance $|Z_t(f>f_{cut})|=1 \Omega_{,.}$ Use a boxcar like bunch shape of width $4 \cdot \sigma$, $e = 1.6 \cdot 10^{-19}$ C, $v_{beam} = c$. Discuss briefly possible problems for short bunch observations!

For $N=10^{10}$ electron within *boxcar-like* bunch shape of $\delta\sigma_t$ the beam current is: $I_{beam} = eN/\delta\sigma_t$

Bunch length σ_t [ps]	1000	100	10	1.0 $\sigma_t = 1 \text{ ns}$
Current I _{beam} [A]	0.4	4	40	
Signal U _{signal} [V]	0.4	4	40	
	due to $f > f_{cut} \approx 0.2 \text{ V}$			1 0.2 $4 \cdot \sigma_{+}$
Bunch length σ_l [cm]	30	3	0.3	
Spectrum width σ_f [GHz]	0.16	1.6	16	time [ns]

If one assumes a *Gaussian bunch shape*: Maximum voltage ≈ 2 larger than the average value. $\Rightarrow e.g. U_{signal} = 80 \text{ V for } \sigma_t = 10 \text{ ps } !$

If the bunch length is comparable to button size \rightarrow signal propagation must be considered

Technical item: Bandwidth of feed-through typically below \approx 3 GHz.

P. Forck, CAS, Chios, Sep. 2011

G 55 1

Difference Voltage for position Measurement

2.3.3 The beam position is obtained via $x = 1/S \cdot (U_{right} - U_{left})/(U_{right} + U_{left})$ (linear processing) **S** is the position sensitivity with a typical value of S = 10 %/mm (at the BPM center). What is the precision of the voltage reading for the detection of 10 µm offset ? What is the related numerical value of $\Delta U = (U_{right} - U_{left})$ for a single bunch of $\sigma_t = 1$ ns ? Thermal noise $U_{eff} = (4k_B \cdot T \cdot \Delta f \cdot R)^{1/2}$ contributes to any signal, $k_B = 1.4 \cdot 10^{-23}$ J/K. Calculate the thermal noise for $\Delta f = 1$ GHz and T = 300 K! What is the beam current for a S-to-N of 2:1? What is a strategy for enlarged resolution?

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity Optimization: horizontal distance and size of buttons 0.8 SMA connector housing transition obeying 50 Ω insulator -1.5 15 button Ø15 Beam position swept with 2 mm steps Non-linear sensitivity and hor.-vert. coupling >At center $S_x = 8.5\%$ /mm in this case Ø1: horizontal: $x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$ 45 vertical: $y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$ From S. Varnasseri, SESAME, DIPAC 2005

Outline:

- General discussion on BPM features and specification
- Sum signal estimation, example 'shoe box' BPM for proton synchrotron
- > Differential signal estimation, example 'button' BPM for p-LINAC and e⁻
- > Stripline BPM for circular colliders
- > Cavity BPMs for FEL LINAC

G 55 1

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx l \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

LHC stripline BPM, *l*=12 cm

From C. Boccard, CERN

GSI

Stripline BPM: General Idea

For relativistic beam with $\beta \approx l$ and short bunches:

 \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow Assumption: $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$ Signal treatment at upstream port 1:

t=0: Beam induced charges at **port 1**: \rightarrow half to R_1 , half toward **port 2**

t=l/c: Beam induced charges at **port 2**:

→ half to R_2 , **but** due to different sign, it cancels with the signal from **port 1** → half signal reflected

t=2·l/c: reflected signal reaches **port 1**

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one: → no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

GSI

Signal Voltage for stripline BPM

3.2 Sketch the signal voltage of a stripline BPM for a single bunch with $\sigma_t = 100 \text{ ps}$!

Use the following parameter: Strip length l=30 cm, transfer imp. $Z_t=1.5 \Omega$ at its maximum. Sketch the transfer impedance!

How is the signal shape and transfer impedance modified for longer bunches ? *The bunch length* $\sigma_t = 100$ ps is short compared to the transit time $2l/c \Rightarrow$ no overlap The shape of $Z_t(f)$ are comps with minima at $n \cdot c/2l$ with a envelop given by $\sigma_f = 1/2 \pi \sigma_t$.

Short bunches: Z_t is periodic, for long bunches ($\sigma_t > 0.3$ ns) overlapping occur, Z_t max. not reached

Outline:

- General discussion on BPM features and specification
- Sum signal estimation, example 'shoe box' BPM for proton synchrotron
- > Differential signal estimation, example 'button' BPM for p-LINAC and e⁻
- > Stripline BPM for circular colliders
- Cavity BPMs for FEL LINAC

G 55 1

Cavity BPM: Principle

High resolution on µs time scale can be achieved by excitation of a dipole mode:

Cavity BPM: Example of Realization

P. Forck, CAS, Chios, Sep. 2011

Courtesy of D. Lipka & Y. Honda

Cavity BPM: Suppression of monopole Mode

Suppression of mono-pole mode: waveguide that couple only to dipole-mode

Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus

➤ Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe

Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Signal Voltage for stripline BPM

3.3 Sketch the signal voltage of a cavity BPM for a single bunch with $\sigma_t = 100 \text{ ps}$!

Use the following parameter: Resonance frequency f=4 GHz, quality factor $Q_L=1000$. What influences the choice for the value of Q_L ?

Signal Voltage for stripline BPM

3.4 Discuss briefly the reasons for an appropriate choice of shoebox button, stripline and cavity types !

Shoebox: for low frequencies (proton synchrotron)

Linear position reading, no beam-size dependence

- **Button:** BPMs are easier to produce and have simpler processing scheme.
- Stripline: BPMs have lower signal deformation and offer directivity for colliders i.e. counter-propagating beams within one beam pipe.
- > *Cavity:* BPMs have much higher single pass resolution.

Comparison of BPM Types (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Shoe-box	p-Synch.	Long bunches $f_{rf} < 10 \text{ MHz}$	Very linear No x-y coupling Sensitive For broad beams	Complex mechanics Capacitive coupling between plates
Button	p-Linacs, all e ⁻ acc.	<i>f_{rf}</i> > 10 MHz	Simple mechanics	Non-linear, <i>x-y</i> coupling Possible signal deformation
Stipline	colliders p-Linacs all e ⁻ acc.	best for $\beta \approx 1$, short bunches	Directivity 'Clean' signals Large Signal	Complex 50 Ω matching Complex mechanics
Cavity	e ⁻ Linacs (e.g. FEL)	Short bunches Special appl.	Very sensitive	Very complex, high frequency

Remark: Other types are also some time used: e.g. wall current monitors, inductive antenna, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

Thank you for your attention!

GSI