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EQUATION OF MOTION	


	



 The motion of charged particles is governed by the Lorentz force :	
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d mγ v( )
dt

= Fe.m.
ext = e E + v × B( )

Where m is the rest mass, γ the relativistic factor and v the particle velocity 	



Charged  particles  are  accelerated,  guided  and  confined  by  external 
electromagnetic fields. 	


	


 Acceleration is  provided by the electric field of the RF cavity	


	


Magnetic  fields  are  produced  in  the  bending  magnets  for  guiding  the 
charges  on  the  reference  trajectory  (orbit),  in  the  quadrupoles  for  the 
transverse confinement, in the sextupoles for the chromaticity correction.	





There is another important source of e.m. fields :  the beam itself	



Direct self fields	



Image self fields	



 Wake  fields  	



SELF FIELDS AND WAKE FIELDS	



Space Charge	





   	


•    energy loss	



•    energy spread and emittance degradation	


	


•    shift of the synchronous phase and frequency (tune)	


 	


•    shift of the betatron frequencies (tunes)	


    	


•    instabilities. 	



These fields depend on the current and on the charges velocity.	


	


They are responsible of many phenomena of beam dynamics: 	



(wake-fields)	





Space Charge: What does it mean?	


The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:	



1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects	



	



	



	



2) 	

Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects	





Surface charge density 	

 Surface electric field	



Restoring force	



Plasma frequency	



Plasma oscillations	



Neutral Plasma




Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




A measure for the relative importance of collisional versus collective effects is the	



Debye Length λD	


	



Let consider a non-neutralized system of identical charged particles	



We wish to calculate the effective potential of a fixed test charged particle 
surrounded by other particles that are statistically distributed. 	
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Φ
 r ( ) =

C
r
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C =
e

4πεo

ΦD
r( ) = ?

Magnetic focusing


Magnetic focusing




ΦD
r( ) = C

r
e−r/λD

λD =
εokBT
e2nN => total number of particles               	



n => particle density (N/V)	


kB=> Boltzman constant	


T => Temperature	


kB T => average kinetic energy of the particles	



The effective potential of a test charge can be defined as the sum of 
the potential of the single particle δ and a “perturbed” term Δn.	



∇2ΦD
r( ) = e

εo
δ
r( )+ e

εo
Δn r( )

From Poisson Equation:	



Δn = ne−eΦD /kBT − n ≈ − ne
kBT

ΦD

∇2ΦD
r( )+λDΦD

r( ) = e
εo
δ
r( )



the effective interaction range of the test particle is limited to the 
Debye length 	



The charges sourrounding the test particles have a screening effect	
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Smooth functions for the charge and field distributions can be used 
as long as the Debye length remains small compared to the particle 

bunch size	



λD	


>>   ΦD

r( )ΦSC
r( )
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σ x,y, z << λD
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σ x,y, z >> λD
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λD =
εoγ

2kBT
e2n

In a charged particle beam moving at a longitudinal relativistic 
velocity, assuming that the random transverse motion in the 
beam is non-relativistic, the Debye length has the following 

form:	
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vx =
kBT
γm

<< c
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vz ≈ c

z

x	



R=1mm, L=3mm	



Q=1nC, T=103 K	
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[mm]	



Electron bunch	





Fields of a point charge with uniform motion 	
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" E =

q
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" r 
" r 3

 
" B = 0

•     In the moving frame O’ the charge is at rest	


•    The electric field is radial with spherical symmetry	


•    The magnetic field is zero	
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vt is the position of the point charge in the lab. frame O.	
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Ex = " E x
Ey = γ ( " E y + v " B z )

Ez = γ ( " E z − v " B y )
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" r = " x 2 + " y 2 + " z 2( )1 / 2

" r = γ 2 ( x − vt)2 + y2 + z 2[ ]
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Relativistic transforms of the fields from O’ to O	
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The fields have lost the spherical symmetry	
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The field pattern is moving with the charge and it can be 
observed at t=0:	
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γ 2 x2 + y2 + z2 = r2γ 2 1−β 2 sin2 θ( )



γ =1	

 γ >1	

 γ >>1 
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Continuous Uniform Cylindrical Beam Model	
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J =
I
πa2
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ρ =
I

πa2v
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εoE ⋅ dS = ρdV∫∫
Gauss’s law	
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     for   r > a

Ampere’s law	
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B ⋅ dl = µo J ⋅ dS∫∫
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Bϑ = µo
Ir

2πa2
   for    r ≤ a

Bϑ = µo
I
2πr

   for    r > a



Lorentz Force	
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Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high 
velocities, tends to compensate for the repulsive electric force. 	



has only radial component  and 	



is a linear function of the transverse coordinate	





Bunched Uniform Cylindrical Beam Model	



Longitudinal Space Charge field in the bunch moving frame:	
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Radial Space Charge field in the bunch moving frame 	



by series representation of axisymmetric field:	
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It is still a linear field with r but with a longitudinal correlation s	
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Lorentz Transformation to the Lab frame	
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Ez = ˜ E z
Er = γ ˜ E r
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˜ L = γL  ⇒   ˜ ρ =
ρ
γ

˜ s = γs



γ= 1	

 γ = 5	

 γ = 10	



L(t)	


Rs(t)	

 Δt	



€ 

Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )

€ 

Ez(0,s,γ ) =
I

2πγε0R
2βc

h s,γ( )

€ 

Fr =
eEr
γ 2

=
eIr

2πγ 2ε0R
2βc

g s,γ( )



Δt	



€ 

" " σ + ks
2σ =

ksc s,γ( )
σ

€ 

ksc s,γ( ) =
2I

IA βγ( )3
g s,γ( )

€ 

IA =
4πεomoc

3

e
= 17kA

Envelope equation for a beam slice	





Single Component 
Relativistic Plasma


€ 

" " σ + ks
2σ =

ksc s,γ( )
σ

ks =
qB

2mcβγ
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δ # # σ s( ) + 2ks
2δσ s( ) = 0
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σ eq s,γ( ) =
ksc s,γ( )
ks

Equilibrium solution:


σ s( ) =σ eq s( )+δσ s( )
Small perturbation:
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σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the 
same frequency but with different amplitudes:


€ 

δσ s( ) = δσ o s( )cos 2ksz( )



Space Charge differential defocusing in core and tails of the 
beam drive Reversible Emittance Oscillations 	
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Projected Phase Space	

 Slice Phase 
Spaces	
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εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )



x	



px	



Perturbed trajectories oscillate around the equilibrium 
with the 	



same frequency but with different amplitudes	





There is another important source of e.m. fields :  the beam itself	



Direct self fields	



Image self fields	



 Wake  fields  	



IMAGE SELF FIELDS	



Space Charge	





Static Fields: conducting or magnetic screens 	



Let us consider a point charge q close to a conducting screen. 	



The electrostatic field can be derived through the "image 
method". Since the metallic screen is an equi-potential plane, it 
can be removed provided that a "virtual" charge is introduced 
such that the potential is constant at the position of the screen	



q q - q	





I	



A constant current in the free space produces circular magnetic 
field. 	



If µr≈1, the material, even in the case of a good conductor, does not 
affect the field lines.	





 Circular  Perfectly Conducting  Pipe (Beam at Center)	



In the case of charge distribution, and γ→∞, 
the  electric  field  lines  are  perpendicular  to 
the direction of motion. The transverse fields 
intensity can be computed like in the static 
case, applying the Gauss and Ampere laws.	
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there is a cancellation of the electric and magnetic forces	





In some cases, the beam pipe cross section is such that we can consider only the 
surfaces closer to the beam, which behave like two parallel plates. In this case, we 
use the image method to a charge distribution of radius a between two conducting 
plates 2h apart. By applying the superposition principle we get the total image field 
at a position y inside the beam. 	
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Where we have assumed h>>a>y. 	



For  d.c.  or  slowly  varying  currents,  the  boundary  condition  imposed  by  the 
conducting  plates  does  not  affect  the  magnetic  field.  We do  not  need  “image 
currents “As a consequence there is no cancellation effect for the fields produced 
by the "image" charges. 	
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Parallel Plates (beam at center)	
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From the divergence equation we derive also the other transverse component, 
notice the opposite sign:	
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Including also the direct space charge force, we get:	
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Therefore, for γ>>1, and for d.c. or slowly varying currents the cancellation effect 
applies only for the direct space charge forces. There is no cancellation of the 
electric and magnetic forces due to the "image" charges.	





For  ferromagnetic  type,  with  µr>>1,  the  very  high  magnetic 
permeability  makes  the  tangential  magnetic  field  zero  at  the 
boundary  so  that  the  magnetic  field  is  perpendicular  to  the 
surface, just like the electric field lines close to a conductor. 	
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In analogy with the image method we get the magnetic field, in 
the region outside the material, as superposition of the fields due 
to two symmetric equal currents flowing in the same direction. 	





	



It is necessary to compare the wall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 	



	



	



If the fields penetrate and pass through the material, we are practically in 
the static boundary conditions case. Conversely, if the skin depth is very 
small, fields do not penetrate, the electric filed lines are perpendicular to 
the wall, as in the static case, while the magnetic field line are tangent to 
the surface. 	
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Time-varying fields  	



€ 

δw ≅
2

ωσµ



Usually, the frequency beam spectrum is quite rich of harmonics, 
especially for bunched beams. 	



It is convenient to decompose the current into a d.c. component, I, 
for which δw>>Δw, and an a.c. component, Î, for which δw<< Δw.	



While the d.c. component of the magnetic field does not perceives 
the  presence  of  the  material,  its  a.c.  component  is  obliged to  be 
tangent at the wall. For a charge density λ we have I=λv. 	



We can see that this current produces a magnetic field able to cancel 
the effect of the electrostatic force.	



Parallel Plates (Beam at Center) a.c. currents	
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There is cancellation of the electric and magnetic forces !!	
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Parallel Plates - General expression of the force 	



Taking into account all the boundary conditions for d.c. and a.c. 
currents, we can write the expression of the force as:	
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where λ is the total current, and λ its d.c. part. We take the sign (+) if u=y, and the 
sign (–) if u=x.	



-L. J. Laslett, LBL Document PUB-6161, 1987, vol III	





Space charge effects in storage rings	





When the beam is located at the centre of symmetry of the pipe, the e.m. forces due 
to  space  charge  and  images  cannot  affect  the  motion  of  the  centre  of  mass 
(coherent),  but  change  the  trajectory  of  individual  charges  in  the  beam 
(incoherent). 	



These force may have a complicate dependence on the charge position. A simple 
analysis  is  done  considering  only  the  linear  expansion  of  the  self-fields  forces 
around the equilibrium trajectory.	



Incoherent and Coherent Transverse Effects	





Consider a perfectly circular accelerator with radius ρx. The beam 
circulates  inside  the  beam pipe.  The  transverse  single  particle 
motion  in  the  linear  regime,  is  derived  from  the  equation  of 
motion. Including the self field forces in the motion equation, we 
have 	
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Self Fields and betatron  motion	





In the analysis of the motion of the particles in presence of the self 
field,  we will adopt a simplified model where particles execute 
simple harmonic oscillations around the reference orbit. 	


This is the case where the focussing term is constant. Although 
this condition in never fulfilled in a real accelerator, it provides a 
reliable model  for the description of the beam instabilities	
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Qx Betatron tune: n. of betatron oscillations per turn	





Transverse Incoherent  Effects	



We take the linear term of the transverse force in the betatron equation:	
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The  betatron  shift  is  negative  since  the  space  charge  forces  are 
defocusing on both planes. Notice that the tune shift  is in general 
function of “z”, therefore there is a tune spread inside the beam.	
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Example:  Incoherent  betatron  tune  shift  for  an  uniform 
electron beam of radius a, length lo, inside circular  perfectly 
conducting  pipe 	
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For a real  bunched beams the space charge forces, and the tune shift 
depend on the longitudinal and radial position of the charge. 	





Consequences of the space charge  tune shifts	



In circular accelerators the values of the betatron tunes should not be 
close to rational numbers in order to avoid the crossing of linear and 
non-linear resonances where the beam becomes unstable.	



 	



The tune spread induced by the space charge force can make hard to 
satisfy  this  basic  requirement.  Typically,  in  order  to  avoid  major 
resonances the stability requires 	
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ΔQu < 0.3



Transverse Coherent  Effects	



If the beam experiences a transverse deflection kick, it starts to 
perform betatron oscillations as a whole. The beam, source of the 
space  charge  fields  moves  transversely  inside  the  pipe,  while 
individual particles still continue their incoherent motion around 
the common coherent trajectory.	
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d =
b2

x

The image charge is at a distance “d” such that	


the pipe surface is at constant voltage, and pulls	


 the beam away from the center of the pipe.	



 Circular  Perfectly Conducting  Pipe (Beam off Center)	





The effect is defocusing: the horizontal electric image	


 field E and the horizontal force F are: 	
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Parallel Plates (Beam Off- Center)	



If the whole beam is displaced from the 
axis by yc, the image charges produce a 
transverse field which leads to coherent 
effects: 
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Time-varying Fields  	



Static  electric  fields  vanish  inside  a  conductor for any  finite 
conductivity,  while  magnetic  fields pass through unless  of  an 
high permeability. 	


This  is  no  longer  true  for  time  changing  fields,  which  can 
penetrate  inside the material  only  in  a  region δw  called skin 
depth.  Inside the conducting material  we write the following 
Maxwell equations:	



Copper σ = 5.8 107 (Ωm)-1 	


Aluminium σ = 3.5 107 (Ωm)-1 	


Stainless steel σ = 1.4 106 (Ωm)-1 .	
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Consider a plane wave (Hy,Ex) propagating in the 
material	
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∂2Ex

∂z2
−εµ

∂2Ex

∂t 2
−σµ

∂Ex

∂t
= 0

(the same equation holds for Hy). Assuming that fields propagate  	


in the z-direction with the law:	



Hy = H 0e
i ωt−κz( )

Ex = E0e
i ωt−κz( )

(κ 2 +εµω 2 − iωµσ ) Eoe
i ωt−κz( ) = 0

We say that the material behaves like a conductor if  σ >>ωε  thus: 
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Fields propagating along “z” are attenuated. 	


The attenuation constant is called skin depth δw: 
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δw ≅
1

ℜ(κ)
=

2
ωσµ

The skin depth depends on the material properties and on the 
frequency. Fields pass through the conductor wall if δw> Δw. 
This happens at relatively low frequencies. 
 
At higher frequencies, for a good conductor  δw<< Δw and both  
electric and magnetic fields vanish inside the wall.   
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δw ≅
6.66
f

(cm);       ω = 2πf

For a pipe 2mm thick, the fields pass through the wall up to 1 kHz. 	


(Skin depth of Aluminium is larger by a factor 1.27)	



For the copper	



Δw	



δw	





• Compare the wall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 	



•  If the fields penetrate and pass through the material, they 
can  interact with bodies in the outer region. 	



•  If the skin depth is very small, fields do not penetrate, the 
electric filed lines are perpendicular to the wall, as in the 
static case, while the magnetic field line are tangent to the 
surface. 	
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λ(z) = λo +  ı λ  cos kzz( )   ;  kz = 2π /lw

(δw<< Δw)	




