

Machine Protection

Basics of Accelerator Science and Technology at CERN

<u>Markus Zerlauth</u> with acknowledgements to M.Lamont, R.Schmidt, J. Wenninger and many other CERN colleagues

Outline

- Introduction
- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

Outline

Introduction

- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

Safety in accelerators - definitions

Accelerators, as all other technical systems, must respect some general principles with respect to safety:

- □ Protect the people (legal requirements).
- □ Protect the environment (legal requirements).
- Protect the equipment (asset management).
 - Without beam : superconducting magnets, high power equipment, power cables, normal conducting magnets, RF systems, etc.
 - With beam: damage caused by beams.
- □ Those 3 aspects may be coupled in some circumstances!

This presentation on "Machine Protection" is focused on equipment protection from damage caused by <u>beams</u>.

Trends in modern accelerators

- □ All major accelerator projects are pushed to new records.
- □ Higher beam energy and intensity:
 - □ Hadron colliders LHC.
 - □ Linear e+e- colliders.
 - **CERN** Future Circular Colliders study.
- Higher power and brightness:
 - □ Neutron spallation sources.
 - Neutrino physics.
 - □ Synchrotron light sources (synchrotron light power).

>> the energy (density) stored in the beams increases!

In many modern projects machine protection aspects have a large impact on (or may even dominate) design and operation

Risks and machine protection

Protection is required since there is (always!) some risk

Risk = probability of an accident x consequences (in Euro, downtime, radiation doses).

Probability of an uncontrolled beam loss:

- What are the failures that lead to beam loss into equipment?
- What is the probability for the failure modes?

Consequences:

- Damage to equipment.
- Downtime of the accelerator for repair.
- Activation of material, dose to personnel.

>> The higher the risk, the more protection and/or mitigation becomes important !

Outline

Introduction

- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

Technological Challenges

The LHC at the Energy Frontier

M.Zerlauth - CAS 2016

Relevant parameter for MPS

- Momentum of the particle
- Particle type
 - Activation of material is mainly an issue for hadron accelerators.
- Energy stored in the beam
 - 360MJ per beam in the LHC when fully filled with 2808 bunches
- Beam power
- Beam size
- Time structure of beam

The kinetic energy of a 200 m long train at 155 km/hour

One LHC beam = 360 MJ = ?

Energy stored in Magnet Powering System of the LHC

2/9/2017

M.Zerlauth - CAS 2016

Beam loss in materials

- Lost particles induce particle cascades in materials they traverse.
 - The peak energy deposition can be deep in the material at the maximum of the hadron / electromagnetic shower
 - Particle showers from hadrons with energies of 100's of GeV to some TeV have a penetration depth of several meters
- The energy deposition leads to a temperature increase, and for very fast losses to shock waves and to plastic deformation
 - Material can melt, vaporize, deform or lose its mechanical properties
 - Limited risk for some 10 kJ, large risk for some MJ
 - Equipment becomes activated due to beam losses
 - Superconducting magnets can quench (become normalconducting)

Small but already dangerous

□ Damage @ Linac4 with a 3 MeV beam – vacuum leak.

- □ Failure combination:
 - Beam misaligned
 - Unlucky magnet setting
 - Aperture limitation at bellow

JB Lallement

At such low energies, the local energy loss per proton is very high

 \Rightarrow Damage after some integration time

SPS dipole magnet

A real case from the 2008 SPS run !

- Impact on the vacuum chamber of a 400 GeV beam of 3x10¹³ protons (2 MJ).
- Event is due to an insufficient coverage of the SPS MPS (known !).
- Vacuum chamber to atmospheric pressure, downtime ~ 3 days.

Risk = (3 days downtime + dose to workers) x (1 event / 5-10 years)

Release of 600MJ at the LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging ~600 m of LHC, polluting the beam vacuum over more than 2 km.

Risk = (1 year downtime + repair of 50 magnets + CERN reputation) x (1 event / 1000? years)

2/9/2017

M.Zerlauth - CAS 2016

Controlled damage tests for MP

- In the past decade a lot of effort was invested to better understand the interaction of high energy / high density beams with matter.
- Experiments:
 - Ad-hoc experiments for the LHC
 - Construction of a dedicated test facility at CERN (HiRadMat @ SPS)
- Modeling and comparison with tests.
 - Many matter phases (solid, liquid, plasma), 'hydro-dynamic-codes'

Some outcomes:

- Validation of LHC carbon collimator robustness
- Validation of damage thresholds for LHC injection energy
- Validation of simulation codes
- Search for more robust material

SPS experiment: damage at 450GeV

Controlled SPS experiment / protons.

- Energy 450 GeV,
- Beam area $\sigma_x \times \sigma_y = 1.1 \times 0.6 \text{ mm}^2$,
- Damage limit for copper at 2×10¹² p.
- No damage to stainless steel.

Damage limit is ~200 kJ,
< 0.1 % of a nominal LHC beam.

□ Impact D: \approx 1/3 of nominal LHC injection.

HiRadMat tests – new materials

Courtesy A. Bertarelli (EN)

Inermet 180, 72 bunches

Molybdenum, 72 & 144 bunches

Glidcop, 72 bunches (2 x)

Copper-Diamond 144 bunches

Molybdenum-Copper-Diamond 144 bunches

Molybdenum-Graphite (3 grades) 144 bunches

M.Zerlauth - CAS 2016

HighRadMat test with high intensity

Case	Bunches	p/bunch	Total Intensity	Beam Sigma	Specimen Slot	Velocity
Simulation	60	1.5e11	9.0e12 p	2.5 mm	9	316 m/s
Experiment	72	1.26e11	9.0e12 p	1.9 mm	8 (partly 9)	~275 m/s

Hydrodynamic tunneling

of hydrodynamic tunneling process in case of the LHC beam (~ 35 m in copper).

2/9/2017

Outline

- Introduction
- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

Main objectives of MP³ design

<u>P</u>rotect the machine
Highest priority is to avoid damage of the accelerator.

• <u>P</u>rotect the beam

Complex protection systems reduce the availability of the accelerator, the number of "false" interlocks stopping operation must be minimized.

Trade-off between protection and operation.

• <u>P</u>rovide the evidence

Clear (<u>post-mortem</u>) diagnostics must be provided when:

the protection systems stop operation,

something goes wrong (failure, damage, but also 'near misses').

Beam loss

In accelerators, particles are lost due to a variety of reasons: beam gas interaction, losses from collisions, losses of the beam halo, ...

- Some (continuous) beam losses are inherent to the operation of accelerators.
 - Taken into account during the design of the accelerator.
 - Max. loss rates may be given by the design:
 - Prevent magnet quenches (LHC).
 - > Allow maintenance (residual contact radiation).
 - Accidental beam losses are due to a multitude of failures mechanisms.

Analysis and structure required !

Failure classification

□ Failure type:

- Hardware failure (power converter trip, magnet quench, AC distribution failure, object in vacuum chamber, vacuum leak, RF trip,).
- Controls failure (wrong data, wrong magnet current function, trigger problem, timing system, feedback failure, ..).
- Operational failure (chromaticity / tune / orbit errors, ...).
- Beam instability (high beam / bunch current).

□ Failure parameters:

- Damage potential.
- Probability for the failure.
- o Time constant for beam loss.

□ Machine state (when failure occurs):

- Linac, beam transfer, injection and extraction (single pass).
- o Stored beam.

Mixture defines the risk and the criticality for MP

MPS Design strategy

- □ Avoid a failure by design if you can.
- Detect a failure at the hardware (equipment) level and stop operation first protection layer.
- Detect the consequences of the failure on beam parameters (orbit, tune, losses etc) and stop operation – second protection layer.
- □ Stop beam operation.
 - Inhibit injection,
 - Send beam to a dump,
 - Stop the beam by collimators / absorbers.
- □ Elements of protection:
 - Equipment and beam monitoring,
 - Collimators and absorbers,
 - ✓ Beam dumps,
 - Interlock system linking different systems.

Passive vs active protection

Passive protection

 \circ Collimators.

o Masks.

 \circ Absorbers.

o Dumps.

Obstacles to absorb the energy

Active protection

- Equipment surveillance.
- \odot Beam observation.
- Extraction (dump) kickers.

Detection of a failure directly on the equipment or by its effects on the beam.

Modern MP systems usually require both passive and active protection to cover all failure cases.

Failure time scales in circular machines

<u>Time scale</u>

Outline

- Introduction
- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

LHC and its Design Parameters

	design				
Beam energy	7 TeV				
transv. norm. emittance	3.75 μm				
beta*	0.55 m				
IP beam size	16.7 μm				
bunch intensity	1.15x10 ¹¹				
luminosity / bunch	3.6x10 ³⁰ cm ⁻² s ⁻¹				
# bunches	2808				
bunch spacing	25 ns				
beam current	0.582 A				
rms bunch length	7.55 cm				
crossing angle	285 µrad				
"Piwinski angle"	0.64				
luminosity	10 ³⁴ cm ⁻² s ⁻¹				

LHC Design Parameters

- Ionization chambers are used to detect beam losses:
 - Very fast reaction time ~ ½ turn (40 us)
 - Very large dynamic range (> 10⁶)
- Control Con
- BLMs are good for almost all failures as long as they last ~ a few turns (few 0.1 ms) or more !

2/9/2017

Beam collimation (cleaning)

- □ The LHC requires a complex multi-stage collimation system to avoid high energy particles to hit aperture limits and/or provoke quenches of sc magnets
 - Previous hadron machines used collimators only for experimental background conditions.

Almost **100** collimators, mostly made of Carbon and Tungsten, protect the superconducting magnets against energy deposition from the beam

Up to 360 MJ in each beam versus few mJ to quench a magnet

Collimation System

- To be able to absorb the energy of the (high energy) protons, the collimators are staged – primary, secondary, tertiary – multi-stage system.
- The system worked perfectly also thanks to excellent beam stabilization and machine reproducibility – only one setup / year.
 - ~99.99% of the protons that were lost from the beam were intercepted.
 - No magnet was quenched in operation at 3.5/4 TeV, only a few beam induced quenches at 6.5TeV

Experiment

2/9/2017

M.Zerlauth - CAS 2016

LHC beam dumping system

LHC dump line

2/9/2017

M.Zerlauth - CAS 2016
LHC dump block

against prediction at each dump !

Let us pick an example for the LHC

□ Step 1: Figure out what can go wrong...

- Requires good understanding of accelerator physics: how does a given element affect the beam?
- Requires good understanding of the hardware: time scales, failure modes?
- Requires a complete overview of all machine equipment that affect the beam.
- The analysis must be done systematically for every system, from bottom up – including the software/controls.

Step 2: Identify a critical element – the D1's (separation/recombination dipoles around the high luminosity experiments)

Those magnets are very strong (large deflections) and they are fast -> good candidates

M.Zerlauth - CAS 2016

Step 3: Simulate the failure.

- o 12 magnets are powered in series.
- o Large betatron function when squeezed (b > 2000 m) → large orbit changes.
- Short time constant t = 2.5 seconds (B is the magnetic field):

Simulated orbit change along the LHC ring a few **milliseconds** after failure.

 $B(t) = B_0 e^{-t/\tau}$

Step 4: Identify mitigation strategy

- □ The simulations indicate absence of redundancy (we only have beam loss monitors) and very short reaction times for BLMs → we want an extra-layer of protection at the equipment level.
- This analysis triggered the development of so-called FMCMs (Fast Magnet Current change Monitor) that provide protection against fast magnet current changes after powering failures - CERN - DESY/Hamburg collaboration.

2/9/2017

M.Zerlauth - CAS 2016

□ Step 6: Real test with beam – no FMCM

- Low intensity ('safe') test beam.
- Switch off D1 PC simulated failure.
- Beams dumped by the LHC BLMs when beams hit the collimators

□ Step 7: Real test with beam – with FMCM

- Low intensity ('safe') test beam.
- Switch off D1 PC simulated failure.
- Beam dumped by FMCM.

2/9/2017

Learning curve

- □ It took more than a year of commissioning and tuning (e.g. BLM thresholds) to reach the maximum intensity at 3.5/4 TeV /6.5TeV
- Only' in the second half of 2015 and after the splice consolidation during the first long shut-down we approached design energies

□ Design luminosity of 1E34 cm-2s-2 exceeded during 2016 operation

The MPS systems continue to learn as well

Outline

- Introduction
- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

2/9/2017

1/4

UFO

- (suspected) dust particles interacting with beam
- Beam losses and potential magnet quenches (quench limit at 7TeV)!
- Mitigated by threshold optimisation

ULO (Unidentified Lying Object)

- Aperture limitation in LHC dipole magnet 15R8
- Mitigated by orbit bump

Radiation to electronics

- Non-rad hard components used in LS1 upgrade
- Mitigation measures
 (shielding, relocation...)

2/9/2017

2/4

BIRDS & WEASELS

- Electrical fault in 66kV surface substation
- Mitigated by repair and additional protection

PS MAIN POWER SUPPLY

- Short in capacitor storage bank
- Mitigated by network reconfiguration and operation of rotating machine

SPS BEAM DUMP

- Limited to 96 bunches per injection
- 2076 (2200) bunches per beam cf. 2750
- Replacement during EYETS

3/4

Magnet Training to 7TeV

- Magnets from firm 3 are very slow (re-)trainers / small preservation of memory
- Compatible with scenario where at each warm-up we have to re-start as for previous training
- Strategy to limit mechanical and electrical stresses during quench training campaigns

4/4

Magnet Circuits and earth faults

- Several earth faults to ground (cold and warm part) during commissioning and operation
- 1 week of downtime due to short in dipole circuit of sector 34
- August 2016 spent 2 days investigating
- and mitigating potential inter-turn short

Commissioning

RB.A56

- 2 intermittent earth faults during CSCM disappeared
- 1 intermittent earth fault after training disappeared

RB.A34

- Active water coupling nut vs. grounded surface on surrounding infrastructure
- RQF.A12
- Active water coupling nut vs. grounded surface on surrounding infrastructure
- RB.A34
- Diode pot saga ("to burn or not to burn")
- RQX.L1
- o Instrumentation cable burnt

Beam operation

- RB.A78
 - 8 h LHC downtime on 8/7/2015
 - 5 h LHC downtime on 10/8/2015
 - 19 h LHC downtime on 11/8/2015
 - Water coupling nut/ 2x earth detection card
- RQF.A78
 - o 5 h LHC downtime on 13/10/2015
 - o Water leak
- RCS.A78B2
 - o 9 h LHC downtime on 18/7/2015
 - 10 min LHC downtime on
 13/8/2015 (not incl. pre-cycle)
 - Under investigation

Outline

- Introduction
- Stored energy & interaction with matter
- Machine protection design
- Example from LHC
- The unexpected
- Summary

2/9/2017

Summary

Machine protection:

- requires a comprehensive overview of all aspects of the accelerator (accelerator physics, operation, equipment, instrumentation),
- requires understanding the different failure types that could lead to uncontrolled beam loss,
- □ affects many aspects of accelerator construction and operation,
- must be an integral part of the machine design,
- is becoming increasingly important for future projects, with increased beam power / energy density and increasingly complex machines.

LHC exploitation – past and upcoming

- Excellent performance of LHC and its machine protection systems during first 5 years of commissioning and exploitation, allowing to exceed design luminosity (despite limitations)
- Injector upgrade and HL-LHC projects will imply as well new MP challenges

Stored energies- the future

Thank you for your attention! Questions ?

© 2003 United Feature Syndicate, Inc.

2/9/2017

SPARE SLIDES

CERN - Eine Einführung

The beam is gone immediately – isn't it?

- Unfortunately even the best failure detection takes some time, the signal must be propagated to the dumping system, the dumping system must synchronize to the beam.
 - Unavoidable delay to fire the dump !

At the LHC the delay can be as much as ~3 turns - ~300 us

M.Zerlauth - CAS 2016

A few other challenges

Very bright beams, very high bunch population, very high beam current

- Beam stability
 - New low impedance collimators
- Beam lifetime & loss spikes
 - Magnet quenches
 - Machine protection
 - Failure scenarios local beam impact equipment damage
 - Quench protection
- Machine availability
 - Radiation to electronics (SEUs etc.)...

August 2008

Squeeze in ATLAS/CMS

- Lower beta* implies larger beams in the triplet magnets
- Larger beams implies a larger crossing angle
- Aperture concerns dictate caution experience counts

Image courtesy John Jowett

Then enjoy some remarkable availability

Introduced in Run2 a common metrics and tracking of LHC downtime and root causes -> cern.ch/aft

Rigorous analysis and exploitation of data for availability optimization of individual subsystems

Availability: 11th June – 23rd July

Many nice, long fills, collecting up to 0.5fb⁻¹ in a single fill

Integrated luminosity

The expected...

- Head-on beam-beam effect not a major limitation
- Long range beam-beam to be taken seriously
 - Crossing angle for sufficient separation in order of 10 -12 σ (otherwise bad lifetime & beam loss)
 - Reduces long-range beam-beam interactions
 - Reduces beam-beam tune spread and resonances
 - Reduction of mechanical aperture
 - Reduction of luminous region
 - Reduction of overlap and instantaneous luminosity

Operational Scenario for HL-LHC

HL-LHC Collimation upgrades

HL-LHC will bring higher bunch intensity, higher luminosity, higher radiation and potentially higher losses -> Collimation upgrades required

(Complete) PS Accelerator complex Isolde **East Hall** To SPS **AD Hall** (Radioactive ISOLDE (irradiation Ion beam

CERN Accelerator Complex

1720 Power converters
> 10000 magnetic elements
7568 Quench detection systems
1088 Beam position monitors
~4000 Beam loss monitors

150 tonnes helium, ~90 tonnes at 1.9 K350 MJ stored beam energy in 20151.2 GJ magnetic energy per sector at 6.5 TeV

Incidents happen

JPARC home page – January 2014

JPARC incident – May 2013

Due to a power converter failure, a slow extraction was transformed into a fast extraction.

- Extraction in milliseconds instead of seconds.
- □ As a consequence of the high peak power a target was damaged and radio-isotopes were released into experimental halls.
 - >> machine protection coupled to personnel protection !
- Investigations and protection improvements delayed the restart of the JPARC complex for ~7-8 months. JPARC is just restarting.

One insufficiently covered failure case had major consequences !

