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Why electrodynamics 7

Accelerator physics relies on electromagnetic concepts:
> Beam dynamics
> Magnets, cavities
> Beam instrumentation

> Powering

5 ..



OUTLINE

Some mathematics (intuitive, mostly illustrations),

see also lecture R. Steerenberg

ﬁ

Basic electromagnetic phenomena

=

Maxwell’s equations

ﬁ

Lorentz force

=

Motion of particles in electromagnetic fields

ﬁ

Electromagnetic waves in vacuum

=

Electromagnetic waves in conducting media
> Waves in RF cavities

> Waves in wave guides



Reading Material
e J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..)

e L. Landau, E. Lifschitz, KlassischeF'eldtheorie, Vol2.
(Harri Deutsch, 1997)

e W. Greiner, Classical Electrodynamics, (Springer,
February, 22nd, 2009)

e J. Slater, N. Frank, Electromagnetism, (McGraw-Hill,
1947, and Dover Books, 1970)

e R.P. Feynman, Feynman lectures on Physics, Vol2.

First some mathematics (vectors, potential, calculus ....)



Reminder: mathematics used here
Addition to previous lecture (R.S.)

Not all details are strictly needed to understand, but
required for calculations
I shall introduce:
> Scalar and vector fields
» Calculation on fields (vector calculus)
> Illustrations and examples ...

Remark: many illustrations only in 2 dimensions




A bit on scalar fields (potentials)

At each point in space has assigned a quantity with a
value (real or complex)

Described by a scalar ¢(z,y, z) ( a number)
Example: ¢(z,y,2) = 0.12%2 — 0.2 -2 -y + 2°
=» We get for (r=4y=22=1): o(—4,2,1) = 4.2



2D vector field

A bit on vector fields ...
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Examples:

Scalar fields:
> Atmospheric pressure
> Temperature in a room

> Density of molecules in a gas

Vector fields:
> Speed and direction of wind ..
> Heat flow

> Velocity and direction of moving molecules in a gas



Example: scalar field/ potentlal .

Lines of pressure (isobars)

Function of longitude, latitude and altitude (x, y, z)



Example: vector field ...

Hurricane Katrina fusing only 'asc' data} [2005 Aug 28]

Jacksont¥ille
)

Housion

200 Km

Cancim

Altitude 1,860... Lat 26.7824° Lon -82.7940% Elev -25 met... 4

Example for an extreme vector field ..



What we shall talk about

Maxwell’s equations relate Electric and Magnetic fields from
charge and current distributions (SI units).

electric field [V /m]
magnetic field [A/ml]

electric displacement [C/m?]

magnetic flux density [T]
electric charge [C]

electric charge density [C/m”]

ST R O =
I

current density [A/m?]

permeability of vacuum, 4 7-107" [H/m or N/A?]
permittivity of vacuum, 8.854 -107'? [F/m)]

speed of light, 2.99792458 -10° [m/s]
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Electromagnetic fields

In electrodynamics we talk about vector fields:
Electric phenomena: E and D
Magnetic phenomena: H and B

= Electrodynamics: need vectors with 3 components

=» Need to know how to calculate with vectors
- Scalar and vector products

- Vector calculus products



Scalar products

Define a scalar product for (usual) vectors like: a - b,

a = (xaayaaza) 6 — (:vaybazl)

S|
Sy

— (xaayaaza) ) (wbaybazb) — (aja Ty T Yo Yp T Za ‘Zb)

This product of two vectors is a scalar (number) not a
vector.

(on that account: Scalar Product)

Example:
(—2,2,1) - (2,4,3) = —2-24+2-4+1-3 = 7



Vector products (sometimes cross product)

Define a vector product for (usual) vectors like: @ x b,

a = (xaayaaza) g — (xbaybazb)

—

= (TasYa>Za) X (v, Yb, 2p)

a X
:(ya°zb_za'yga §a°xb_xa°zga \xa'yb_ya'wlz)

Lab Yabd Zab

This product of two vectors is a vector, not a scalar
(number), (on that account: Vector Product)

Example 1:

(—2,2,1) x (2,4,3) = (2,8,-12)

Example 2 (two components only in the = — y plane):
(—-2,2,0) x (2,4,0) = (0,0,—12) (see R. Steerenberg)



Vector calculus ...

We can define a special vector V (sometimes written as ﬁ)

o 0 (‘9)
ox’ 0Oy 0z

It is called the ”gradient” and invokes ”partial derivatives”.

v =(

It can operate on a scalar function ¢(z,y, 2):

96 09 96\ _ a_
5 9, 5.) = (=G GGy

Vo = (

and we get a vector G. It is a kind of ”slope” (steepness ..)
in the 3 directions.

Example: ¢(z,y,2) = 0.12° —0.2 -2y + 2°

Vo = Gz,y,2) = (Ge, Gy, G.) = (022 —0.2y, — 0.2z, 22)



Gradient (slope) of a scalar field

Lines of pressure (isobars)

Gradient is large (steep) where lines are close (fast change of

pressure)



Vector calculus ...

The gradient V can be used as scalar or vector product

with a vector F', sometimes written as V
Used as:

V.- F or VxF

Same definition for products as before, V treated like a
”normal” vector, but results depends on how they are
applied:

V-® is a vector

V - F' is a scalar
V x F' is a vector



Operations on vector fields ...

Two operations of V have special names:

Divergence (scalar product of gradient with a vector):

div(F) = V.F= %F; + 8622 + %

Physical significance: ”amount of density”, (see later)

Curl (vector product of gradient with a vector):

curl(F) = VxF =

~ OF; O0Fy O0F1 O0Fs; OF,
Oy 0z 0z or’ Oz

Physical significance: ”amount of rotation”, (see later)

)



Meaning of Divergence of fields ...

Field lines seen from some origin:

SOV b A ' YXRR MM AL A A A A gy AAAAAAAAAAAAAAA
Nz N2z 2777
JXNNNIIIrer SN ML e /////4
CAARRANN Y Y F FF s aa SN A A A A A A « // /4 /4/4
I S N R N A o o xS A A v A AAAAA
= H‘—L"‘—L‘“—L“‘A: ; :: PrP ey B PR - e e Y ‘\z ; : e ; < / ff/ ! /4//: //(/4
NS T e /;’/ﬁ
WSS EINSSE

A S # : ‘ A
NSNS N

| N, »F F o ' } \i &
2R RIS ///?Mi WA A
VE <0 VE >0 VF =0
(sink) (source) (fluid)

The divergence (scalar, a single number) characterizes what

comes from (or goes to) the origin



Meaning of Curl of fields ...

2D vector field 2D vector field

\\\\\\\\\\\\\\\
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Here we have fields in x — y plane::
Fy = (—0.2y, +0.22,0) F5 = (+0.5y, —0.5z, 0)
VxEF = crlF, = (0,0,+0.4) VxFEF, = curlF, = (0,0,—1.0)

Vectors in z-direction, perpendicular to =z — y plane
Values characterize ”strength” and ”direction” of rotation



Integration of (vector-) fields

7
i LA
i v

RKiRi

Surface integrals: integrate field vectors passing (perpendicular)

through a surface S (or area A), we obtain the Flux:

— //ﬁ.dg
A

Density of field lines through the surface

(e.g. amount of heat passing through a surface)



Easier Integration of (vector-) fields

Gauss’ Theorem:
Integral through a closed surface (flux) is integral of divergence

in the enclosed volume

A A

psed volume (V)

Relates surface integral to divergence



Integration of (vector-) fields

2D vector field

Line integrals: integrate field vectors along a line C:

—> %ﬁ-df’
C

”sum up” vectors (length) in direction of line C

Integral often called Circulation.

(e.g. work performed along a path ...)



Easier Integration of (vector-) fields

Stokes’ Theorem:
Integral along a closed line is integral of curl in the enclosed area

]{ﬁ-dfz //vXﬁ-d/T
C A

closed curve (C)

Relates line integral to curl



To remember: ...

Not really rigorous, but:

= DIV measures what is coming out (or going in),
integral is called the FLUX

=» ('URL measures what is circulating,
integral is called the CIRCULATION

In general: a closed surface or closed line ”measures” what

is happening inside ...



- BACK to ELECTRODYNAMICS -

How do we use all that stuff ?



Some generalities

Bl Electric fields £ are generated by charges

Bl Magnetic fields B are generated by moving
charges

Bl Quantified by strength and density of field

vectors



Electric fields from charges

\\\\\\\\\\\\\\\\\\\\
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(negative charges) (positive charges)

Assume fields from a positive or negative charge q

Electric field E is written as (Coulomb law):
+q T

E = -
Ameg 7|3

with:

P o= (2,9,2), 7] = Va2 +y? + 22



Electric and Magnetic flux

magnetic Area= A
field
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Integrate (count) field vectors through an area (or
surface)

”Measures” the strength of the fields

Gives flux of electric and magnetic fields



Integrating fields from charges (2D !) ..

Integrating vector field from point charge Integrating vector field from point charge Integrating vector field from point charge
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To compute the flux, add field lines through the
surface: [ [, E-dA

Put any closed surface around charges (sphere, box, ...).

If all charges are enclosed: independent of shape !

=P If positive: total net charge enclosed positive

=P If negative: total net charge enclosed negative




Applying Divergence and charges ..

\\\\\\\\\\\\\\\\\\\\
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We can do the (non-trivial) computation of the divergence:

divE = viE = & 4By | db: P

dx dy + dz €0
(negative charges) (positive charges)
V-E<O0 V-E>0

Divergence related to charge density p generating the field E



More formal: Gauss’s Theorem
(Maxwell’s first equation ...)

%L&Edﬁziffbvﬁdvzi
VE=£

€0

Flux of electric field £ through a closed surface proportional to
net electric charge ¢ enclosed in the region (Gauss’s Theorem).

Written with charge density p we get Maxwell’s first equation:

dvE =V .-E =2

€0



Example: field from a charge q

A charge g generates a field E according to:

E = —
Ameg 13

Enclose it by a sphere: E = const. on a sphere (area is 4 - 1?):

/ / Fodi = 4 / / - _ g
sphere 4meo sphere r? €0

Surface integral through sphere A is charge inside the sphere




Divergence of magnetic fields

Definitions
> Magnetic field lines from North to South

> Q: which is the direction of the earth magnetic field

lines ?



Maxwell’s second equation ...

[[,B dA=[[[,VB dV = 0
VB =0

Closed field lines of magnetic flux density (é) What goes out

ANY closed surface also goes in, Maxwell’s second equation:

VB =puoVH =0

== Physical significance: no Magnetic Monopoles



Maxwell’s third equation ...
Faradays law:

= \ = Y
\ A

- Changing magnetic flux through area of a coil introduces
electric current I

// \\ D
] \\\4
N>
TR

A

[/] A\

A

- Can be changed by moving magnet or coil



Maxwell’s third equation ...

A changing flux () through an area A produces circulating
electric field F, i.e. a current / (Faraday)

— L. d7
8t 8/BdA 7{ dr

flua: Q
> Flux can be changed by:

- Change of magnetic field B with time ¢ (e.g.
transformers)

- Change of area A with time t (e.g. dynamos)



Formally: Maxwell’s third equation ...

T, _fA%_fd,z:/va,z:fﬁ.df
A C

J/

~~~

Stoke’ sformula

Changing magnetic field through an area induces electric field in

coil around the area (Faraday)

Remember: strong curl = strong circulating field



Maxwell’s fourth equation (part 1) ...

From Ampere’s law, for example current density ;

Static electric current induces circulating magnetic field

Vxézuof

or in integral form the currect density becomes the current I:

ffAVXE dz‘Y: ffAlLboj dff = /,Lof



Maxwell’s fourth equation - application

For a static electric current / in a single wire we get Biot-Savart

law (we have used Stoke’s theorem and area of a circle A = r? - 7):

Current — = oo
Mo r-dr
] B = 4 55[ r3
B — kol
2 r

Induced magnetic
field

For magnetic field calculations in electromagnets



Maxwell’s fourth equation (part 2)...

From displacement current, for example charging capacitor fd:

Parallel plate capacitor
showing alternating

E electric field
E /N

displacement B magnetic field

current / \

hetween = »

its plates. N alternating
= » conduction

n . current
alternating U
conduction = >
current r
+g charge \ / E —g charge

Bl Defining a Displacement Current I,

Not a current from moving charges

But a current from time varying electric fields




Maxwell’s fourth equation (part 2) ...

Displacement current I; produces magnetic field, just like
”actual currents” do ...

= Time varying electric field induce magnetic field (using

the current density fd

—

V x B = pojq = €opro L

Remember: strong curl = strong circulating field



Maxwell’s complete fourth equation ...

Magnetic fields B can be generated by two ways:

V x B=poj  (electrical current)

—

V x B = ,LLonl = 60#0%—? (changing electric field)
or putting them together:

V x B = po(j + ja) = poj + copo %

or in integral form (using Stoke’s formula):

%Ed? - /wé.dg:fA (10 + cono 28 ) - dA
C A P

\ .

Stoke’ sformula



Summary: Static and Time Varying Fields

dB A , A [ dE A A Ao
S=SSSSs e
] —F— E — e
» Time varying magnetic fields produce circulating
electric field: curI(E) — VUx E = — cg_JEt?

> Time varying electric fields produce circulating

—

magnetic field: curl(B) = Vx B = MOe()Cé_LE

because of the x they are perpendicular: E L B




Summary: Maxwell’s Equations

fAE"-dZZ%
[,B-dA=0
fcﬁ'dfz_fA (d_jtg) dA

Written in Integral form



Summary: Maxwell’s Equations

VE= 2

VB = 0

V x E = _%zf’

V x B = Hoj + Mo%%?

Written in Differential form



Summary: Maxwell’s Equations

1. Electric fields E are generated by charges and
proportional to total charge

2. Magnetic monopoles do not exist

3. Changing magnetic flux generates circulating electric
fields/currents

4.1 Changing electric flux generates circulating magnetic
fields

4.2 Static electric current generates circulating magnetic
fields

Written in Physical terms



Interlude and Warning !!

Maxwell’s equation can be written in other forms.

Often used: cgs (Gaussian) units instead of SI units, example:

Starting from (SI):

we would use:

— — 1

Ecgs — - * ESI and 60 —

and arrive at (cgs):

Beware: there are more different units giving: V- E = P



Electromagnetic fields in material

In vacuum:

€, 1s relative permittivity

1, 1s relative permeability

B):/joﬁ
B):,ur',uo'ﬁ
~ [1—10°]
~ [0(!) — 10]

Origin: polarization and Magnetization



Once more: Maxwell’s Equations

Re-factored in terms of the free current density ;
and free charge density p (ug = 1,¢¢ = 1):



Applications of Maxwell’s Equations

» Lorentz force, motion in EM fields
- Motion in electric fields

- Motion in magnetic fields
» EM waves (in vacuum and in material)
» Boundary conditions

» EM waves in cavities and wave guides



Lorentz force on charged particles

Moving (%) charged (¢q) particles in electric (E) and
magnetic (B) fields experience a force f like (Lorentz force):

f = q-(E + 7 x B)
for the equation of motion we get (using Newton’s law and
relativistic v);

d . . L
Smovd) = f = ¢ (B + 7 x B



Motion in electric fields

\r g
F\ >
Y EY Y F oy q E

v 1 E v | E

Assume no magnetic field:

d -
—\{m 7 — _— . E

Force always in direction of field E, also for particles at rest.



Motion in electric fields

E q
4oyt = F = ¢ F
dt 07y — - 4
The solution is:
B . E
i = ot =-> g o= 1 t (parabola)
Y - o Y - Mo

Constant E-field deflects beams: TV, electrostatic separators (SPS,LEP)



Motion in electric fields

-
|

Y

Y

-

d —>
E(mo’W) = f = q E
For constant field £ = (E,0,0) in x-direction the energy gain is:
moc (y—1) = ¢E-L

It is a line integral of the force along the path !
Constant E-field gives uniform acceleration over length L



Motion in magnetic fields

electron

, Force
. magnetic field 3

Current

Assume first no electric field:

d — —
%(movﬁ) = f = q- v x B
Force is perpendicular to both, v and B

No forces on particles at rest !

Particles will spiral around the magnetic field lines ...



Motion in magnetic fields

Magnetic field (B)

. — —— —

—

electron

Assuming that v, is perpendicular to B

We get a circular motion with radius p:

_ moyvl
p _ q . B

defines the Magnetic Rigidity: B:-p = % —

SN/

Magnetic fields deflect particles, but no acceleration (synchrotron, ..)



Motion in magnetic fields

Practical units:
BIT)-plm] = 2%

c[m/s]

Example LHC:
B =8.33 T, p="T7000 GeV/c =» p = 2804 m



Use of static fields (some examples, incomplete)

Magnetic fields
> Bending magnets
» Focusing magnets (quadrupoles)

> Correction magnets (sextupoles, octupoles, orbit

correctors, ..)

Electric fields

> Electrostatic separators (beam separation in
particle-antiparticle colliders)

> Very low energy machines

What about non-static, time-varying fields ?



Time Varying Fields

L N

E(t) = —

B(t),

Time varying magnetic fields produce circulating electric
fields

Time varying electric fields produce circulating magnetic
fields

= Can produce self-sustaining, propagating fields (i.e. waves)



Electromagnetic waves in vacuum

Vacuum: only fields, no charges (p = 0), no current (j = 0) ...

= _ 0B
—— VX(VXE) ——VX(W)
—  — (V2E) = - 2(V x B)
— 2 =
— — (VzE) = —0o€o %tf
— D = D =
V°E = Cig %tg — Mo - €0 %tg

Similar expression for the magnetic field:

25 25
v2B:laB . .8B

Equation for a plane wave with velocity: ¢ =

VvV HO €0



Electromagnetic waves

= (wave length, 1 cycle)

E — E_’Oei(wt—E-f)
Electric = = k-2
Feld B = Boez(wt—k:.ac)
Magnetic .
Field k| = 2T7r = (propagation vector)
A
w

|y\1A|cycle

= (frequency - 27)

Time

Magnetic and electric fields are transverse to direction of
propagation: E 1L B Lk



Spectrum of Electromagnetic waves

-
-

Increasing energy

HIIMAVAVAVAVAVA VAN

Increasing wavelength

.

0.0001 nm 0.01 nm 108m 1000 nm  0.01 cm 1cm 1m 100 m
I | 1 1 1 1
Gamma rays Krays Ulira- Infrared Radio waves
violet
Radar TV FM AM

_//’Vi’s;hﬁgfﬂ\ N

400 nm 500 nm 600 nm 700 nm

Q

Example: yellow light =» 5-10'* Hz (i.e. 2 eV!)
gamma rays = < 3.10°' Hz (i.e. 12 MeV !)

LEP (SR) =» < 2.10*° Hz (i.e. ® 0.8 MeV !)

VAN ZZ



Waves hitting material

Need to look at the behaviour of electromagnetic fields at

boundaries between different materials (air-glass, air-water,

vacuum-metal, ...).

Important for highly conductive materials, e.g.:
> RF systems
> Wave guides

> Impedance calculations

Can be derived from Maxwell’s equations, here only the results !



Observation: between air and water

> Some of the light is reflected
> Some of the light is transmitted and refracted

== Reason are boundary conditions for fields



Boundary conditions: air and conductor

A simple case as demonstration (E-ﬁelds on a conducting
sphere):

> Field parallel to surface F cannot exist (it would move
charges and we get a surface current)

> Only field normal to surface F,, is possible



Boundary conditions for fields

All electric field lines must be normal (perpendicular) to surface

/

of a conductor.

/ /

> All conditions for E, ﬁ, H : B can be derived from Maxwell’s
equations (see bibliography, e.g. R.P.Feynman or
J.D.Jackson)



X
Boundary conditions for fields

Electromagnetic fields at boundaries between different materials
with different permittivity and permeability (¢%,¢€’, u®, u%).

The requirements for the components are (summary of the
results, not derived here !):

» (B = E}),(Ef # E})
y (Dj # D), (Di = Dp)
> (H| = H)),(H; # H;)
» (Bf # Bj). (B = By)

Conditions are used to compute reflection, refraction and
refraction index n.



Extreme case: ideal conductor

For an ideal conductor (i.e. no resistance) the tangential electric
field must vanish, otherwise a surface current becomes infinite.

Similar conditions for magnetic fields. We must have:

This implies:

> All energy of an electromagnetic wave is reflected from the
surface.

> Fields at any point in the conductor are zero.

> Only some fieldpatterns are allowed in waveguides and RF

cavities

A very nice lecture in R.P.Feynman, Vol. Il



Examples: cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic)

with dimensions a X b X ¢ and a X b:
X

X

"y

b z b z
N~ 1

/ c

y y

\

> RF cavity, fields can persist and be stored (reflection !)

> Plane waves can propagate along wave guides, here in

z-direction



Fields in RF cavities

Assume a rectangular RF cavity (a, b, ¢), ideal conductor.

Without derivations, the components of the fields are:

E. = Eqo - cos(kpx) - sin(kyy) - sin(k.z) - e "
—iwt

E, = Eyo - sin(kgx) - cos(kyy) - sin(k.z) - e
. = E.o - sin(ksx) - sin(kyy) - cos(ks=z) - e ™"

B, = ~(Byok — Ezoky) - sin(k.x) - cos(kyy) - cos(k-z) - e~
w

By = —(Bzoks — Exok:) - cos(ku) - sin(kyy) - cos(k=z) - e
w

B. = —(Buoky — Byoky) - cos(ky@) - cos(kyy) - sin(kz2) - e~
w



Consequences for RF cavities

Field must be zero at conductor boundary, only possible under

the condition:
2

2 2 p2 Y
and for k., k,, k., we can write:

M T mzm
k:L' — , ky o , kz — ,
a b C

My T

The integer numbers m,, m,, m, are called mode numbers,

important for shape of cavity !

It means that a half wave length \/2 must always fit exactly the

size of the cavity.



Allowed modes

'Modes’ in cavities

T
Allowed
Allowed
Not allowed

1 1 1 1
0 0.2 0.4 0.6 0.8 1
a

> Only modes which ’fit’ into the cavity are allowed

}&-Q A @ A a
2 T 4 2 1 2 0.8

» No electric field at boundaries



Fields in wave guides

Similar considerations lead to (propagating) solutions in
(rectangular) wave guides:
E, = Eyo - cos(ky) - sin(kyy) - e F=77wb)
Ey = Eyo - sin(kzx) - cos(kyy) - g Hkzz—wl)
E. =i- E.-sin(ksz) - sin(kyy) - e "F=77"

B, = l(Eyokz — E.oky) - sin(kex) - cos(kyy) - e “(F==7)
W
1 . —i(kyz—wt)
By, = —(F.oks — Exokz) - cos(kzx) - sin(kyy) e 7
W
1 —i(kyz—wt)
B, = — (Fxoky — Eyokz) - cos(kzx) - cos(kyy) - e 77

7-W



The fields in wave guides

Magnetic

field Magnetic
field
s \V—

“ , Electric
= field
-
s
~}~ Electric
TE mode field TM mode

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points

> Electric and magnetic fields through a wave guide
> Shapes are consequences of boundary conditions !

> Can be Transverse Electric (TE, no E-field in z-direction) or
Transverse Magnetic (TM, no B-field in z-direction)



Consequences for wave guides

Similar considerations as for cavities, no field at boundary.

We must satisfy again the condition:
2

2 2 2 w
ki +ky + k==

This leads to modes like:

The numbers m,, m, are called mode numbers for planar waves

in wave guides !



Consequences for wave guides

Re-writing the condition as:

Propagation without losses requires k., to be real, i.e.:

w? My T My T

)+ (=)

> ky + ky = (

c? a
which defines a cut-off frequency w..

> Above cut-off frequency: propagation without loss

> Below cut-off frequency: attenuated wave (means it does not

”really fit” and k is complex).



Done ...
Review of basics and Maxwell’s equations
Lorentz force
Motion of particles in electromagnetic fields
Electromagnetic waves in vacuum

Electromagnetic waves in conducting media
> Waves in RF cavities

> Waves in wave guides



- BACKUP SLIDES -



Some popular confusion ..

V.F.A.Q: why this strange mixture of E,ﬁ,é,ﬁ 77

Materials respond to an applied electric E field and an applied
magnetic B field by producing their own internal charge and
current distributions, contributing to E and B. Therefore H and
D fields are used to re-factor Maxwell’s equations in terms of

the free current density 5 and free charge density p:

O

_ 5 4
NO_’ .
= ¢l + P

M and P are M agnetization and Polarisation in material



Is that the full truth ?

Magnetic field (B)

. — —— —

—

electron

If we have a circulating E-field along the circle of radius R ?
== should get acceleration !

Remember Maxwell’s third equation:

%EJF - _ 4 [ 5.ai
C dt A
dd
—-I)nrREy = — —
e di



Motion in magnetic fields

This is the principle of a Betatron
> Time varying magnetic field creates circular electric field !

> Time varying magnetic field deflects the charge !

For a constant radius we need:
2

m - v p
R € ¢ R
0 1 dp
B — “r
ot () e- R dt

=» B(r,t) = QWRQ//BCZS

B-field on orbit must be half the average over the circle

=P Betatron condition



Other case: finite conductivity

Assume conductor with finite conductivity (c. = p.') , waves

will penetrate into surface. Order of the skin depth is:

2pc
pw

ds =

i.e. depend on resistivity, permeability and frequency of the
waves (w).

We can get the surface impedance as:

7 po_opw

€ k
the latter follows from our definition of k£ and speed of light.

Since the wave vector k is complex, the impedance is also

complex. We get a phase shift between electric and magnetic
field.



Boundary conditions for fields

-] Material 1 Material 2
€1 M1 € Mo

/Et

d

What happens when an incident wave ([3@) encounters a

boundary between two different media 7

> Part of the wave will be reflected (X,), part is transmitted
(K+)

> What happens to the electric and magnetic fields ?



Boundary conditions for fields

Material 1 Material 2 Material 1 Material 2
€1 My € M2 €1 My €2 Mz
A Et ‘ Dt
—>En —»Dn

Assuming no surface charges:

> tangential E-field constant across boundary (E1; = FEa)

> normal D-field constant across boundary (Di, = Dan)




Boundary conditions for fields

Material 1 Material 2 Material 1 Material 2
€1 My € M2 €1 My €2 Mz
A H¢ ‘ B¢
Hn B
— —— -

Assuming no surface currents:

> tangential H-field constant across boundary (Hi¢ = Hoa;)

> normal B-field constant across boundary (Bi, = Bay)




