

What are the collective effects?

- A general definition of collective effects
 - Class of phenomena in beam dynamics, in which the evolution of a particle in a beam depends on both the external EM fields and the extra EM fields created by the presence of other particles.
- How other particles can affect a single particle's motion:
 - Self-induced EM fields
 - Space charge from beam particles
 - EM interaction of whole beam with surrounding environment
 - EM interaction of whole beam with its own synchrotron radiation
 - Coulomb collisions
 - Long range and multiple two beam particle encounters \rightarrow Intra-beam scattering
 - Short range and single events two beam particle encounters → Touschek effect
 - Elastic and inelastic scattering against residual gas
 - EM fields from another charge distribution (generated or not by the beam itself), like a second "beam"
 - Beam-beam in colliders
 - Ion trapping for electron beams
 - · Electron clouds for positron/hadron beams
 - Interactions with electron lens or electron cooling system

- Collective effects start playing a role when the beam density is very high
 - They are also referred to as "high current", "high intensity", "high brightness" effects and exhibit a threshold behaviour
 - They result into a measurable response of the beam to the collective interaction, which can be detrimental and lead to beam degradation and loss

→ Transverse coherent collective effects

- Due to self-induced EM fields
- The beam centroid is affected, resulting in betatron tune shift and possibly in exponential growth (single or multi-bunch instabilities, strong head-tail)
- Can be seen with standard BPMs

→ Transverse incoherent collective effects

_

the beam centroid is not affected

Typically leading to slow losses and emittance growth, diffusion, halo and tail formation

3

Transverse coherent instability An example

- · Occurrence of a transverse coherent instability
 - The beam centroid, as detected by a BPM, exhibits an exponential growth typically on the time scale of tens to thousands of turns, usually associated with beam loss and/or emittance growth!

- Collective effects start playing a role when the beam density is very high
 - They are also referred to as "high current", "high intensity", "high brightness" effects and exhibit a threshold behaviour
 - They result into a measurable response of the beam to the collective interaction, which can be detrimental and lead to beam degradation and loss

→ Transverse coherent collective effects

- Due to self-induced EM fields
- The beam centroid is affected, resulting in betatron tune shift and possibly in exponential growth (single or multi-bunch instabilities, strong head-tail)
- Can be seen with standard BPMs

→ Transverse incoherent collective effects

- Due to self-induced EM fields (and their interaction with machine optics)
- The strength of the excitation is not such as to build up into a coherent effect, i.e. the beam centroid is not affected
- Typically leading to slow losses and emittance growth, diffusion, halo and tail formation

5

Transverse incoherent effect An example

- Transverse incoherent effect
 - A beam exhibits slow losses (on the time scale of the cycle or store) and emittance growth visible from a beam profile measurement device, possibly associated to development of halo or tails

- Collective effects start playing a role when the beam density is very high
 - They are also referred to as "high current", "high intensity", "high brightness" effects and exhibit a threshold behaviour
 - They result into a measurable response of the beam to the collective interaction, which can be detrimental and lead to beam degradation and loss
- · Longitudinal collective effects
 - Due to self-induced EM fields
 - Energy loss, potential well distortion (synchronous phase shift, bunch lengthening)
 - Instabilities (single or coupled bunch instabilities, microwave instability)
- · Collisional effects (transverse and longitudinal)

_

emittance growth

- Two-stream effects (transverse and longitudinal)
 - Due to the interaction with another set of charged particles
 - Can cause coherent motion as well as incoherent emittance growth and losses

7

Longitudinal coherent modes An example

- · Longitudinal coherent modes
 - The beam profile, measured at a Wall Current Monitor, shows bunches oscillating in their buckets (plot 2) or executing quadrupole oscillations (plot 3)

Observations in the CERN SPS in 2007

Longitudinal microwave instability An example

- Debunching long bunch in the SPS during Machine Development
 - For impedance identification purpose, a long bunch is injected into the SPS with the RF off.
 - A microwave instability develops on the beam as it debunches
 - From the Fourier analysis of the resulting micro-bunching it is possible to reconstruct the most important frequency components of the longitudinal impedance

9

Types of collective effects

- Collective effects start playing a role when the beam density is very high
 - They are also referred to as "high current", "high intensity", "high brightness" effects and exhibit a threshold behaviour
 - They result into a measurable response of the beam to the collective interaction, which can be detrimental and lead to beam degradation and loss
- · Longitudinal collective effects
 - Due to self-induced EM fields
 - Energy loss, potential well distortion (synchronous phase shift, bunch lengthening)
 - Instabilities (single or coupled bunch instabilities, microwave instability)
- Collisional effects (transverse and longitudinal)
 - Due to scattering
 - Tend to depopulate the denser beam core and degrade emittance and lifetime, similar to what is caused by incoherent collective effects.
- · Two-stream effects (transverse and longitudinal)
 - Due to the interaction with another set of charged particles
 - Can cause coherent motion as well as incoherent emittance growth and losses

- · Collective effects start playing a role when the beam density is very high
 - They are also referred to as "high current", "high intensity", "high brightness" effects and exhibit a threshold behaviour
 - They result into a measurable response of the beam to the collective interaction, which can be detrimental and lead to beam degradation and loss

Longitudinal collective effects

- Due to self-induced EM fields
- Energy loss, potential well distortion (synchronous phase shift, bunch lengthening)
- Instabilities (single or coupled bunch instabilities, microwave instability)

Collisional effects (transverse and longitudinal)

- Due to scattering
- Tend to depopulate the denser beam core and degrade emittance and lifetime, similar to what is caused by incoherent collective effects.

· Two-stream effects (transverse and longitudinal)

- Due to the interaction with another set of charged particles (e.g. electron cloud)
- Can cause coherent motion as well as incoherent emittance growth and losses

11

Electron cloud instability An example

- Electron cloud instability
 - A coherent instability is visible for the last bunches of a train (BPM signal and beam losses), because an electron cloud has formed along the train and can only make these bunches unstable

48b injection test in LHC (26/08/11)

Modeling of collective effects

- · Self-induced EM fields
 - Single particle motion under the overall effect of externally applied fields (RF, magnets) and those created by the beam itself with the proper boundary conditions.
 - → No single particle dynamics, need to describe a system of many particles
 - ✓ **Theory:** kinetic models based on distribution functions (Vlasov-Maxwell)
 - ✓ **Simulation:** macroparticles

Modeling of collective effects

- Self-induced EM fields
 - Single particle motion under the overall effect of externally applied fields (RF, magnets) and those created by the beam itself with the proper boundary conditions.
 - ightarrow No single particle dynamics, need to describe a system of many particles
 - ✓ Theory: kinetic models based on distribution functions (Vlasov-Maxwell)
 - ✓ **Simulation:** solve numerically the equations of motion of a set of macroparticles and use the EM fields of the macroparticle distribution

$$\begin{cases} \vec{E} = \vec{E}_{\rm ext} + \vec{E}(\psi_{\rm mp}) \\ \vec{B} = \vec{B}_{\rm ext} + \vec{B}(\psi_{\rm mp}) \end{cases}$$

Modeling of collective effects

- · Self-induced EM fields
 - Single particle motion under the overall effect of externally applied fields (RF, magnets) and those created by the beam itself with the proper boundary conditions.
 - → No single particle dynamics, need to describe a system of many particles
 - √ Theory: kinetic models based on distribution functions (Vlasov-Maxwell)
 - √ Simulation: solve numerically the equations of motion of a set of macroparticles and use the EM fields of the macroparticle distribution
 - ☐ Direct space charge refers to the EM fields created by the beam as if it was moving in open space,
 - ☐ Impedances are used to describe EM interaction of beam with boundaries

Modeling of collective effects

- Self-induced EM fields + Coulomb collisions
 - Single particle motion under the overall effect of externally applied fields (RF, magnets) and those created by the beam itself with the proper boundary conditions.
 - ightarrow No single particle dynamics, need to describe a system of many particles
 - √ Theory: kinetic models based on distribution functions (Vlasov-Maxwell)
 - ✓ **Simulation:** solve numerically the equations of motion of a set of macroparticles
 - + Probability of close encounters can be included through the appropriate models

$$\frac{d\psi}{dt} = \left(\frac{\partial \psi}{\partial t}\right)_{\rm coll} \quad \longleftrightarrow \quad \left\{ \begin{array}{l} \vec{E} = \vec{E}_{\rm ext} + \vec{E}(\psi) \\ \vec{B} = \vec{B}_{\rm ext} + \vec{B}(\psi) \end{array} \right.$$

Vlasov-Fokker-Planck formalism

Modeling of collective effects

- EM fields from another charge distribution
 - Single particle motion under the overall effect of externally applied fields (RF, magnets) and those created by the second "beam".
 - ightarrow No single particle dynamics, need to describe evolution (and sometimes generation) of the other system of particles to derive its EM fields
 - ✓ Theory: simplified models to include the effect of the second "beam"
 - ✓ Simulation: describe numerically the second "beam" and calculate its fields as driving terms in the equations of motion of the set of macroparticles representing

$$\frac{d\vec{p}_{\text{mp1,mp2}}}{dt} = q \left(\vec{E} + \vec{v}_{\text{mp1,mp2}} \times \vec{B} \right)$$

$$\begin{cases}
\vec{E} = \vec{E}_{\text{ext}} + \vec{E}(\psi_{\text{mp1}}, \psi_{\text{mp2}}) \\
\vec{B} = \vec{B}_{\text{ext}} + \vec{B}(\psi_{\text{mp1}}, \psi_{\text{mp2}})
\end{cases}$$

$$\begin{cases} \vec{E} = \vec{E}_{\text{ext}} + \vec{E}(\psi_{\text{mp1}}, \psi_{\text{mp2}}) \\ \vec{B} = \vec{B}_{\text{ext}} + \vec{B}(\psi_{\text{mp1}}, \psi_{\text{mp2}}) \end{cases}$$

- Space charge
 - Low energy machines
- Machine impedance
- Electron cloud
 - Machines with short bunch spacing

- Space charge
 - Low energy machines
- Machine impedance
- Electron cloud
 - Machines with short bunch spacing

19

Direct space charge

- Simple calculation of direct space charge
 - Cylindrical distribution
 - Calculate electric and magnetic forces acting on each beam particle through Maxwell's equations
 - The electric and magnetic components have different signs and differ by a factor β^2 . Perfect cancellation only when $\beta=1$

$$\vec{F} = \vec{F}_E + \vec{F}_B = e\left(\vec{E} + \vec{v} \times \vec{B}\right) =$$

$$= \frac{e\lambda\vec{\rho}}{2\epsilon_0\pi a^2}(1 - \beta^2) = \frac{e\lambda\vec{\rho}}{2\pi\epsilon_0\gamma^2 a^2}$$

$$= \frac{e\lambda}{2\pi\epsilon_0\gamma^2 a^2} \cdot (x \cdot \hat{x} + y \cdot \hat{y})$$

Direct space charge

- Space charge is a constant defocusing force in both x and y. For instance, in the vertical plane:
 - Corresponds to a continuous gradient error dK(s)=dy'(s)/y along the ring
 - Translates into contributions to the tune shift dQ_v(s)
 - Can be integrated all over the circumference $C = 2\pi R$ to provide the total tune shift ΔQ_v for each particle (which is a tune spread over the beam)

$$dQ_y(s) = -\frac{\beta_y(s)}{4\pi} \frac{dy'(s)}{y} = -\frac{r_0 \lambda \beta_y(s) ds}{2\pi e \beta^2 \gamma^3 a^2(s)} \approx 2\pi e^{-\frac{\beta_y(s)}{2} \frac{1}{2} \frac{1}{$$

$$\Delta Q_y = \oint dQ_y(s) = -\frac{r_0\lambda}{2\pi e\beta^2\gamma^3} \oint \frac{\beta_y(s)ds}{a^2(s)} = -\frac{r_0\lambda R}{e\beta\gamma^2\epsilon_{yn}}$$

2.

- Space charge
 - Low energy machines
- Machine impedance
- Electron cloud
 - Machines with short bunch spacing

How to fight impedance effects

In running accelerators the **impedance effects are mitigated** relying on some mechanisms (passive or active)

- Spreads and nonlinearities keep the beam stable (through the mechanism of Landau damping)
 - → Longitudinal: momentum spread, synchrotron frequency spread (Landau cavity)
 - → Transverse: chromaticity, betatron tune spreads (e.g from machine nonlinearities
 → E.g. octupoles, RFQ)
- Active feedback systems are routinely employed to control/suppress all types of instabilities
 - ✓ Coherent motion is detected (pick-up) and damped (kicker) before it can degrade
 the heam
 - ✓ Sometimes bandwidth/power requirements can be very stringent, but in general very efficient against coupled bunch phenomena
- Impedance identification and reduction techniques are applied to old accelerators as well as for the design of new accelerators to extend their performance reach!
 - → Longitudinal: efficient to raise longitudinal instability thresholds as well as reduce equipment heating caused by the power loss
 - → Transverse: raise transverse instability thresholds and limit incoherent effects

4:

- Space charge
 - Low energy machines
- Machine impedance
- Electron cloud
 - Machines with short bunch spacing

Electron cloud formation in a vacuum pipe

Generation of charged particles inside the vacuum chamber (primary, or seed, electrons)

- · Acceleration of primary electrons in the beam field
- · Secondary electron production when hitting the wall

45

Secondary electron emission

- When electrons hit the pipe wall, they do not just disappear.....
 - High energy electrons easily survive and actually multiply through secondary electron emission
 - Low energy electrons tend to survive long because they are likely to be elastically reflected.
- Secondary electron emission is governed by the curve below

$$\delta_{\text{tot}}(E) = \delta_{\text{true}}(E) + R_0 \cdot \delta_{\text{elas}}(E)$$

Electron cloud formation in a vacuum pipe

Generation of charged particles inside the vacuum chamber (primary, or seed, electrons)

- · Acceleration of primary electrons in the beam field
- · Secondary electron production when hitting the wall
 - Avalanche electron multiplication

After the passage of several bunches, the electron distribution inside the chamber reaches a stationary state (electron cloud) → Several effects associated

To summarize and conclude

- Collective effects are a threat to the preservation of the beam quality in an accelerator and usually define a performance limitation. For ex.
 - Space charge → emittance growth, poor lifetime
 - Impedance → instabilities, beam induced heating
 - Electron cloud → instabilities, heating, vacuum degradation
- Theoretical and numerical models are constantly under development to explain the underlying mechanisms and be able to anticipate the effects on the beam
 - Essential for identification of the problems while designing a new machine or upgrading an existing one → to steer and optimize the design!
 - Allow understanding the source of problems in running machines → to study and implement the necessary countermeasures
- The CERN accelerator rings (PSB, PS, SPS, LHC) provide a varied range of examples of these effects and of the continued efforts to explain/suppress them