Introduction to "Transverse Beam Dynamics"

Bernhard Holzer

The Ideal World I.) Magnetic Fields and Particle Trajectories

I.) Linear Beam Optics Single Particle Trajectories Magnets and Focusing Fields Tune & Orbit

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L = 10^{10} - 10^{11} \text{ km}$

... several times Sun - Pluto and back 🌶

intensity (10¹¹)

- → guide the particles on a well defined orbit ("design orbit")
- → focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

", ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force
$$\vec{F} = q^* (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines: $v \approx c \approx 3^* 10^8 \frac{m}{s}$

Example:♪

$$B = 1T \implies F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$
equivalent el. field ... > E

technical limit for el. field:♪

$$E \le 1 \frac{MV}{m}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system

condition for circular orbit:

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$B = \frac{\mu_0 n I}{h}$$

Normalise magnetic field to momentum:

convenient units:

$$\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}$$

$$B = \left[T\right] = \left[\frac{Vs}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]$$

Example LHC:

$$B = 8.3T$$

$$p = 7000 \frac{GeV}{c}$$

$$\left. \frac{1}{\rho} = e \frac{\frac{8.3 Vs}{m^2}}{7000*10^9 eV_c} = \frac{8.3 s*3*10^8 m}{7000*10^9 m^2}$$

$$\frac{1}{\rho} = 0.333 \frac{8.3}{7000} \frac{1}{m}$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi\rho = 17.6 \text{ km}$$
$$\approx 66\%$$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}$$

"normalised bending strength"

The Problem:

LHC Design Magnet current: I=11850 A

and the machine is 27 km long !!!

Ohm's law: U = R * I, $P = R * I^2$

Problem: reduce ohmic losses to the absolute minimum Georg Simon Ohm

Born

17 March 1789 Erlangen, Germany

The Solution: super conductivity

Super Conductivity

discovery of sc. by H. Kammerling Onnes, Leiden 1911

LHC 1.9 K cryo plant

LHC: The -1232- Main Dipole Magnets

required field quality: $\Delta B/B=10^{-4}$

6 μm Ni-Ti filament

3.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

 $m^* \frac{d^2 x}{dt^2} = -c^* x$

general solution: free harmonic oszillation

 $x(t) = A * \cos(\omega t + \varphi)$

Storage Ring: we need a Lorentz force that rises as a function of the distance to?

..... the design orbit

$$F(x) = q^* v^* B(x)$$

Quadrupole Magnets:

focusing forces to keep trajectories in vicinity of the ideal orbit required: linear increasing Lorentz force linear increasing magnetic field

normalised quadrupole field:

simple rule:

$$f = 0.3 \frac{g(T/m)}{p(GeV/c)}$$

$$B_{y} = g x \qquad B_{x} = g y$$

LHC main quadrupole magnet

 $g \approx 25 \dots 220 T / m$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} + \frac{\partial \vec{E}}{\partial t} = 0$$

$$\Rightarrow \qquad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = g$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B^*\rho = p/q$)

Dipole Magnet

Quadrupole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

$$k := \frac{g}{p \, / \, q}$$

The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}m x^2 + \frac{1}{3!}m x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

* Equation for the horizontal motion:

$$x'' + x \left(\frac{1}{\rho^2} + k\right) = 0$$

x = particle amplitude x'= angle of particle trajectory (wrt ideal path line)

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

 $k \iff -k$ quadrupole field changes sign

$$y'' - k \ y = 0$$

5.) Solution of Trajectory Equations

Define ... hor. plane: $K = 1/\rho^2 + k$... vert. Plane: K = -k

$$\boldsymbol{x}'' + \boldsymbol{K} \boldsymbol{x} = \boldsymbol{0}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

$$\binom{x}{x'}_{s1} = M_{foc} * \binom{x}{x'}_{s0}$$

$$M_{foc} = \begin{pmatrix} \cos\left(\sqrt{|K|}l\right) & \frac{1}{\sqrt{|K|}}\sin\left(\sqrt{|K|}l\right) \\ -\sqrt{|K|}\sin\left(\sqrt{|K|}l\right) & \cos\left(\sqrt{|K|}l\right) \end{pmatrix}$$

Ansatz: Remember from school

$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{def oc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent "… the particle motion in x & y is uncoupled"

Quadrupole Magnets ...

... focus every single particle trajectory towards the centre of the vacuum chamber

- ... define the beam size ... and divergence
- ... "produce" the tune
- ... increase the luminosity

Example: Many particle trajectories forming the beam size

Example: LHC bunch in the arc of the storage ring $l \approx 13 \text{ cm},$ $x \approx y \approx 0.3 \text{mm}$

"veni vidi vici …" … or in english … "we got it !"

- * we can calculate the trajectory of a single particle, inside a storage ring magnet (lattice element)
- * for arbitrary initial conditions $x_0 x'_0$

* we can combine these trajectory parts (also mathematically) and so get the complete transverse trajectory around the storage ring

$$M_{total} = M_{QF} * M_D * M_{QD} * M_{Bend} * M_{D*....}$$

Beispiel: Speichering für Fußgänger (Wille)

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator !!!

6.) Orbit & Tune:

Tune: number of oscillations per turn

64.31 59.32

Relevant for beam stability: *non integer part*

LHC revolution frequency: 11.3 kHz

0.31*11.3 = 3.5 kHz

Tune and Resonances

To avoid resonance conditions the frequency of the transverse motion must not be equal (or a integer multiple) of the revolution frequency

$$1 * Q_x = 1 \rightarrow Q_x = 1$$

 $2 * Q_x = 1 \rightarrow Q_x = 1/2$

in general: $m^*Q_x + n^*Q_y + l^*Q_s = integer$

Tune diagram up to 3rd order

$$Qx = 1.0$$
 $Qx = 1.3$ $Qx = 1.5$

Resonance Problem:

Orbit in case of a small dipole error:

Perror:
$$x_{co}(s) = \frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s1}} \sqrt{\beta_{s1}} * \cos(\psi_{s1} - \psi_s - \pi Q) \, ds}{2 \sin \pi Q}$$
Assume: Tune = integer $Q = 1 \rightarrow 0$

Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the smallest dipole field error.

Qualitatively spoken:

Coupling

! with the assumptions made, the motion in the horizontal and vertical planes are independent " ... the particle motion in x & y is uncoupled"

Coupling ...

1.) hurts but does not kill the beam, however makes it sensitive to additional resonances

- 2.) the amplitude of one oscillation (e.g. hor.) can completely transfer to the other oscillation -> aperture need
- 3.) the tune peaks are split ... it is not possible anymore to run with equal tunes in both planes
- 4.) coupling does not mean that theree are always two peaks visible.

Sources of coupling:

We are looking form a force that deflects ... a particle with amplitude in one plane into the other plane

Reminder: Field lines of a normal quadrupole

Sources of coupling:

Skew (rotated") Quadrupole:

Horizontal amplitude leads to vertical force Vertical amplitude leads to horizontal force

Sextupole Magnet: horizontal plane: increases in the quadrupole effect vertical plane: creates coupling

Detector Solenoids

Question: what will happen, if the particle performs a second turn ?

... or a third one or ... 10^{10} turns

Bibliography:

1.) Edmund Wilson:	Introd. to Particle Accelerators Oxford Press, 2001
2.) Klaus Wille:	Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser	: Basic Course on Accelerator Optics, CERN Acc. School: 5 th general acc. phys. course CERN 94-01
4.) Bernhard Holzer	: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5.) Herni Bruck: Ac	celerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
6.) M.S. Livingston,	J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York,1962
7.) Frank Hinterber	ger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands:	The Physics of e+ e- Storage Rings, SLAC report 121, 1970
9.) D. Edwards, M.	Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990