Kinematics of Particle Beams

(in less than 60 minutes ...)

Werner Herr, CERN

(http://cern.ch/Werner.Herr/CAS/CAS2013_Chavannes/lectures/rel.pdf)

Why Special Relativity?

- Most beams at CERN are relativistic
- Strong implications for beam dynamics:
 - Transverse dynamics (e.g. momentum compaction, radiation, ...)
 - Longitudinal dynamics (e.g. transition, ...)
 - Collective effects (e.g. space charge, beam-beam, ...)
 - > Luminosity in colliders
 - Particle lifetime and decay (e.g. μ , π , Z_0 , Higgs, ...)

Small history

- 1678 (Römer, Huygens): Speed of light c is finite $(c \approx 3 \cdot 10^8 \text{ m/s})$
- 1687 (Newton): Principles of Relativity
- 1863 (Maxwell): Electromagnetic theory, light are waves moving through static ether
- 1887 (Michelson, Morley): Speed c independent of direction, → ether theory R.I.P.
- 1904 (Lorentz, Poincaré): Lorentz transformations
- 1905 (Einstein): Principles of Special Relativity
- 1907 (Minkowski): Concepts of Spacetime

Principles of Relativity (Newton)

Assume a frame at rest (F) and another frame moving in x-direction (F') with constant velocity $\vec{v} = (v_x, 0, 0)$

Principles of Relativity (Newton)

- Assume a frame at rest (F) and another frame moving in x-direction (F') with constant velocity $\vec{v} = (v_x, 0, 0)$
 - Classical laws (mechanics) are the same in all frames (Newton, Poincaré)
 - No absolute space possible, but absolute time Time is the same in all frames
 - > Physical laws are invariant ...

What does it mean?

- Invariance of physical laws:
 - How is a physical process observed in F described (observed) in the moving frame F'?
 - Need transformation of coordinates (x, y, z) to describe (translate) results of measurements and observations to the moving system (x', y', z').
 - For Poincaré's, Newton's principle of relativity need Galilei transformation for

$$(x,y,z) \longrightarrow (x',y',z')$$

Galilei transformation

$$x' = x - v_x t$$

$$y' = y$$

$$z' = z$$

$$t' = t$$

Consequences of Galilei transformation

- Velocities can be added
- > From Galilei transformation, take derivative:

$$x' = x - v_x t$$

$$\dot{x'} = \dot{x} - v_x \qquad \longrightarrow \qquad v' = v - v_x$$

- A car moving with speed v' in a frame moving with speed v_x we have in rest frame $v = v' + v_x$
- But: if v' = 0.75c and $v_x = 0.75c$ do we get v = 1.5c?

Problems with Galilei transformation

- Maxwell's equations are wrong when Galilei transformations are applied (because they predict the speed of light, see later)
 - > First solution: introduction of "ether"
 - > But: speed of light the same in all frames and all directions (no "ether")
 - > Need other transformations for Maxwell's equations
- Introduced principles of special relativity

Principles of Special Relativity (Einstein)

- A frame moving with constant velocity is called an "inertial frame"
- All (not only classical) physical laws in related frames have equivalent forms, in particular:
 - speed of light c the same in all frames
- Cannot distinguish between inertial frames, in particular:
 - Cannot determine absolute speed of an inertial frame
 - No absolute space, no absolute time

All you need to know!

Principles of Invariance (Poincaré)

Concept of Invariance:

The laws of Physics are invariant under a transformation between two coordinate frames moving at constant velocities with respect to each other

(The world is <u>not</u> invariant, but the laws of physics are!)

Poincaré + Einstein:

Need Transformations (not Galileaen) which make the physics laws the same everywhere!

Coordinates must be transformed differently

- Transformation must keep speed of light constant
- Time must be changed by transformation as well as space coordinates
- **Iransform** $(x, y, z), t \rightarrow (x', y', z'), t'$

Constant speed of light requires:

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = 0 \longrightarrow x'^{2} + y'^{2} + z'^{2} - c^{2}t'^{2} = 0$$

(front of a light wave)

Defines the Lorentz transformation (but established by Poincaré!)

Lorentz transformation

$$x' = \frac{x - vt}{\sqrt{(1 - \frac{v^2}{c^2})}} = \gamma \cdot (x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{v \cdot x}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}} = \gamma \cdot (t - \frac{v \cdot x}{c^2})$$

> Transformation for constant velocity along x-axis

Definitions: relativistic factors

$$\beta_r = \frac{v}{c}$$

$$\gamma = \frac{1}{\sqrt{(1 - \frac{v^2}{c^2})}} = \frac{1}{\sqrt{(1 - \beta_r^2)}}$$

- $\geqslant \beta_r$ relativistic speed: $\beta_r = [0, 1]$
- $\rightarrow \gamma$ relativistic factor: $\gamma = [1, \infty]$

(unfortunately, you will also see other β and γ ...!)

Einstein's contributions

$$x' = \frac{x - vt}{\sqrt{(1 - \frac{v^2}{c^2})}}$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{v \cdot x}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}}$$

$$(x,y,z) \longrightarrow (x,y,z,ct)$$

- Time has no absolute meaning
- > Simultaneity has no absolute meaning
- Combine time with the 3 dimensions of space
- Energy and mass equivalence

Consequences of Einstein's interpretation

- Relativistic phenomena:
 - Non-) Simultaneity of events in independent frames
 - **>** Lorentz contraction
 - > Time dilation
- Formalism with four-vectors introduced
 - > Invariant quantities
 - Mass energy relation

Simultaneity between moving frames

Assume two events in frame F at positions x_1 and x_2 happen simultaneously at times $t_1 = t_2$:

$$t_1' = \frac{t_1 - \frac{v \cdot x_1}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}}$$
 and $t_2' = \frac{t_2 - \frac{v \cdot x_2}{c^2}}{\sqrt{(1 - \frac{v^2}{c^2})}}$

implies that $t'_1 \neq t'_2$ in frame F'!!

Two events simultaneous at positions x_1 and x_2 in F are not simultaneous in F'

Simultaneity between moving frames

- System with a light source (x) and detectors (1, 2) and one observer (A) in this frame, another (A') outside
- System at rest \rightarrow observation the same in A and A'
- What if system with A is moving?

Simultaneity between moving frames

- For A: both flashes arrive simultaneously in 1,2
- For A': flash arrives first in 1, later in 2
- A simultaneous event in F is not simultaneous in F'
- Why do we care ??

Why care about simultaneity?

- Simultaneity is not frame independent
- This is a key in special relativity
- Most paradoxes are explained by that (although not the twin paradox)!
- Different observers see a different reality

relativity is not a spectator sport ...

Why care about simultaneity?

- Simultaneity is not frame independent
- This is a key in special relativity
- Most paradoxes are explained by that (although not the twin paradox)!
- More important: sequence of events can change !
- For $t_1 < t_2$ we may find (not always!) a frame where $t_1 > t_2$ (concept of before and after depends on the observer)
- Requires introduction of "antiparticles" in relativistic quantum mechanics

Consequences: length measurement

Length of a rod in F' is $L' = x'_2 - x'_1$, measured simultaneously (!) at a fixed time t' in frame F', what is the length L seen in F??

Consequences: length measurement

We have to measure simultaneously (!) the ends of the rod at a fixed time t in frame \mathbf{F} , i.e.: $L = x_2 - x_1 \longrightarrow$

$$x'_1 = \gamma \cdot (x_1 - vt)$$
 and $x'_2 = \gamma \cdot (x_2 - vt)$

$$L' = x'_2 - x'_1 = \gamma \cdot (x_2 - x_1) = \gamma \cdot L$$

$$L = L'/\gamma$$

Lorentz contraction

- In moving frame an object has always the same length (it is invariant, our principle!)
- From stationary frame moving objects appear contracted by a factor γ (Lorentz contraction)
- Why do we care?
- Turn the argument around: assume length of a proton bunch appears always at 0.1 m in laboratory frame (e.g. in the RF bucket), what is the length in its own (moving) frame?
 - \rightarrow At 5 GeV ($\gamma \approx 5.3$) \rightarrow L' = 0.53 m
 - ightharpoonup At 450 GeV ($\gamma \approx$ 480) ightharpoonup L' = 48.0 m

Rest frame (x only, difficult to draw many dimensions)
y and z coordinates are not changed (transformed)

Rest frame and moving frame

$$\rightarrow$$
 $\tan(\theta) = \frac{v}{c}$

An event X

Event X seen at different time and location in the two frames, projected on axes of F and F'

> Q: How would a Galilei-transformation look like ??

Lorentz contraction - schematic

Length L' as measured in moving frame

Lorentz contraction - schematic

- From moving frame: L appears shorter in rest frame
- Length is maximum in frame (F') where object is at rest

Lorentz contraction

For the coffee break and lunch:

Could you "see" (visually) a Lorentz contraction ?? (if you run fast enough ...)

Time dilation

A clock measures time difference $\Delta t = t_2 - t_1$ in frame F, measured at fixed position x, what is the time difference $\Delta t' = t'_2 - t'_1$ as measured from the moving frame F'??

For Lorentz transformation of time in moving frame we have:

Time dilation

- In moving frame time appears to run slower
- Why do we care?
 - \rightarrow μ have lifetime of 2 μ s (\equiv 600 m)
 - For $\gamma \geq 150$, they survive 100 km to reach earth from upper atmosphere
 - They can survive more than 2 μ s in a μ -collider
 - > Generation of neutrinos from the SPS beams

Time dilation - schematic

- From moving frame: time goes slower in rest frame
- Time shortest in frame (F') where object is at rest

Moving clocks go slower

Moving clocks go slower

Ten minutes later ...

Travel by airplane:

On a flight from Montreal to Geneva, the time is slower by $25 - 30 \text{ ns } !^*)$

*) (unfortunately there is a catch 22 ...)

Addition of velocities

Galilei:
$$v = v_1 + v_2$$

With Lorentz transform we have:

$$v = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}}$$
 or equivalently: $\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$

for $\beta = 0.5$ we get:

$$0.5c + 0.5c = 0.8c$$

$$0.5c + 0.5c + 0.5c = 0.93c$$

$$0.5c + 0.5c + 0.5c + 0.5c = 0.976c$$

$$0.5c + 0.5c + 0.5c + 0.5c + 0.5c = 0.992c$$

Nothing can go faster than the speed of light ...

First summary

- Physics laws the same in different moving frames ...
- Speed of light is maximum possible speed
- Constant speed of light requires Lorentz transformation
- Moving objects appear shorter
- Moving clocks seem to go slower
- No absolute space or time !
- Now: applications and how to calculate something ...

Introducing four-vectors

Four-vector: $F = (f_1, f_2, f_3, f_4)$

a vector with <u>four</u> components

Example: position four-vector $X = (ct, x, y, z) = (ct, \vec{x})$

This mathematical setting is called Minkowski space and

Lorentz transformation can be written in matrix form:

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & \frac{-\gamma v}{c} & 0 & 0 \\ \frac{-\gamma v}{c} & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \circ \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

$$X' = M_L \circ X$$

Introducing four-vectors

Define a scalar product*) like: $X \diamond Y$

$$X = (x_0, \vec{x}), \quad Y = (y_0, \vec{y}) \longrightarrow X \diamond Y = x_0 \cdot y_0 - \vec{x} \cdot \vec{y}$$

For example try $X \diamond X$ $(ct, \vec{x}) \diamond (ct, \vec{x})$:

$$X \diamond X = c^2 t^2 - x^2 - y^2 - z^2$$

This product is an invariant, i.e.:

$$X \diamond X = c^2 t^2 - x^2 - y^2 - z^2 = X' \diamond X' = c^2 t'^2 - x'^2 - y'^2 - z'^2$$

Invariant Quantities have the same value in all inertial frames

*) definition of product not unique! (I use PDG 2008)

Why bother about four-vectors?

- We have seen the importance of invariants:
- Ensure equivalence of physics laws in different frames
- → The solution: write the laws of physics in terms of four vectors
- Any four-vector (scalar) product $F \diamond F$ has the same value in all coordinate frames moving at constant velocities with respect to each other ... (remember that phrase ?)

Using four-vectors

We can describe a distance in the spacetime between two points X_1 and X_2 :

$$\Delta X = X_2 - X_1 = (ct_2 - ct_1, x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Delta s^2 = \Delta X \diamond \Delta X = c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$$

 Δs^2 can be positive (timelike) or negative (spacelike)

Moving in Minkowski space

- Light travels with $c^2 \cdot t^2 x^2 = 0$
- Particle travels with $c^2 \cdot t^2 x^2 > 0$ (allowed)
- Particle travels with $c^2 \cdot t^2 x^2 < 0$ (not allowed)
- → Allowed region defines light cone

Light cone ...

Distances: timelike (AB), spacelike (AC)

Using four-vectors

Special case (time interval $\vec{x_2} = \vec{x_1} + \vec{v}\Delta t$):

$$c^{2}\Delta t^{2} - \Delta x^{2} - \Delta y^{2} - \Delta z^{2} = c^{2}\Delta t^{2}(1 - \frac{v^{2}}{c^{2}}) = c^{2}(\frac{\Delta t}{\gamma})^{2} = c^{2}\Delta \tau^{2}$$

- $\rightarrow \Delta \tau$ is the time interval measured in the moving frame
- $\rightarrow \tau$ is a fundamental time: proper time τ

The meaning of "proper time"

 $\Delta \tau$ is the time interval measured <u>inside</u> the moving frame

Back to μ -decay

- $\rightarrow \mu$ lifetime is $\approx 2 \ \mu s$
- \rightarrow μ decay in \approx 2 μ s in their frame, i.e. using the "proper time"
- $\rightarrow \mu$ decay in $\approx \gamma \cdot 2 \mu s$ in the laboratory frame, i.e. earth
- \rightarrow μ appear to live longer than 2 μ s in the laboratory frame, i.e. earth

The meaning of "proper time"

- In How to make neutrinos ?? Let pions decay: $\pi
 ightarrow \mu + \nu_{\mu}$
 - \rightarrow π -mesons have lifetime of 2.6 · 10⁻⁸ s (i.e. 7.8 m)
 - For 40 GeV π -mesons: $\gamma = 288$
 - In laboratory frame: decay length is 2.25 km (required length of decay tunnel)
- VERY intuitive (quote A. Einstein, modified):
 - It's 7:00 a.m. in bed, you close your eyes for $\Delta \tau = 10$ minutes, it's 9:00 a.m.
 - It's 7:00 a.m. in a meeting, you close your eyes for $\Delta \tau = 10$ minutes, it's 7:01 a.m.

More four-vectors

Position four-vector X:

$$X = (ct, x, y, z) = (ct, \vec{x})$$

Velocity four-vector V:

$$V = \frac{dX}{d\tau} = \gamma \frac{dX}{dt} = \gamma \dot{X} = \gamma (\frac{d(ct)}{dt}, \dot{x}, \dot{y}, \dot{z}) = \gamma (c, \vec{x}) = \gamma (c, \vec{v})$$

Please note that:

$$V \diamond V = \gamma^2 (c^2 - \vec{v}^2) = c^2!!$$

c is an invariant (of course), has the same value in all inertial frames

More four-vectors

Momentum four-vector P:

$$P = m_0 V = m_0 \gamma(c, \vec{v}) = (\mathbf{m}c, \vec{p})$$

using:

 m_0 (mass of a particle)

 $\mathbf{m} \equiv m_0 \cdot \gamma$ (relativistic mass)

 $\vec{p} = \mathbf{m} \cdot \vec{v} = m_0 \gamma \vec{v}$ (relativistic 3-momentum)

We can get another invariant: $P \diamond P = m_0^2(V \diamond V) = m_0^2c^2$

Invariant of the four-momentum vector is the mass m_0

The rest mass is the same in all frames (thanks a lot ..)

Still more four-vectors

Force four-vector F:

$$F = \frac{dP}{d\tau} = \frac{dP}{dt} = \gamma \frac{dP}{dt} = \gamma \frac{d}{dt} (mc, \vec{p}) = \gamma (c \frac{dm}{dt}, \frac{d\vec{p}}{dt}) = \gamma (\frac{1}{c} \frac{dE}{dt}, \frac{d\vec{p}}{dt})$$

and we had already more four-vectors:

Coordinates: $X = (ct, x, y, z) = (ct, \vec{x})$

Velocities: $V = \gamma(c, \vec{x}) = \gamma(c, \vec{v})$

Momenta: $P = m_0 V = m_0 \gamma(c, \vec{v}) = (\mathbf{m}c, \vec{p})$

 $X \diamond X, V \diamond V, P \diamond P, P \diamond X, V \diamond F, \dots$ are ALL invariants

Dynamics with four-vectors

We compute: $V \diamond F = 0$

All right, 0 is the same in all frames, sounds useless, but:

$$V \diamond F = 0 \longrightarrow \frac{d}{dt}(mc^2) - \vec{f}\vec{v} = 0$$

Now $\vec{f}\vec{v}$ is rate of change of kinetic energy dT/dt after integration:

$$T = \int \frac{dT}{dt}dt = \int \vec{f}\vec{v}dt = \int \frac{d(mc^2)}{dt}dt = mc^2 + const.$$
$$T = mc^2 + const. = mc^2 - m_0c^2$$

Relativistic energy

Interpretation:

$$E = mc^2 = T + m_0 c^2$$

- Total energy E is $E = mc^2$
- > Sum of kinetic energy plus rest energy
- Energy of particle at rest is $E_0 = m_0 c^2$

$$E = m \cdot c^2 = \gamma m_0 \cdot c^2$$

using the definition of relativistic mass again: $m = \gamma m_0$

Still more four-vectors

Equivalent four-momentum vector (using E instead of m):

$$P = (mc, \vec{p}) \longrightarrow (E/c, \vec{p})$$

then:

$$P \diamond P = m_0^2 c^2 = \frac{E^2}{c^2} - \vec{p}^2$$

follows:

$$E^2 = \vec{p}^2 c^2 + m_0^2 c^4$$

another familiar expression ...

Relativistic energy

These units are not very convenient:

$$m_p = 1.672 \cdot 10^{-27} \text{ Kg}$$

 $\to m_p c^2 = 1.505 \cdot 10^{-10} \text{ J}$
 $\to m_p c^2 = 938 \text{ MeV} \to m_p = 938 \text{ MeV/c}^2$

Practical units

In particle physics: omit c and dump it into the units:

$$[E] = eV$$
 $[p] = eV/c$ $[m] = eV/c^2$

Four-vectors get an easier form:

$$P = (m, \vec{p}) = (E, \vec{p})$$

and from $P \diamond P = E^2 - p^2 = m_0^2$ follows directly:

$$E^2 = \vec{p}^2 + m_0^2 \quad (= m^2 = \gamma^2 m_0^2)$$

Relativistic energy

Note:

$$E = mc^2 = \gamma \cdot m_0 c^2 \quad \longrightarrow \quad E = \gamma m_0$$

$$p = m_0 \gamma v = \gamma m_0 \cdot \beta c \quad \longrightarrow \quad p = \gamma m_0 \cdot \beta$$

$$T = m_0(\gamma - 1) \cdot c^2 \longrightarrow T = \gamma m_0 - m_0$$

Interpretation of relativistic energy

- **I** For any object, $m \cdot c^2$ is the total energy
 - Object can be composite, like proton ...
 - \rightarrow m is the mass (energy) of the object "in motion"
 - \rightarrow m_0 is the mass (energy) of the object "at rest"
- For discussion: what is the mass of a photon?

Relativistic mass

The mass of a fast moving particle is increasing like:

$$m = \gamma m_0 = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

assume a 75 kg heavy man:

- Rocket at 100 km/s, $\gamma = 1.00000001$, m = 75.000001 kg
- > PS at 26 GeV, $\gamma = 27.7$, m = 2.08 tons
- LHC at 7 TeV, $\gamma = 7642$, m = 573.15 tons
- **LEP** at 100 GeV, $\gamma = 196000$, m = 14700 tons

Relativistic mass

Why do we care?

$$m = \gamma m_0 = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

- \triangleright Particles cannot go faster than c!
- > What happens when we accelerate?

Relativistic mass

When we accelerate:

- For $\mathbf{v} \ll \mathbf{c}$:
 - E, m, p, v increase ...
- \blacksquare For $\mathbf{v} \approx \mathbf{c}$:
 - E, m, p increase, but v does not!
 - > Remember that for later

Relativistic energy

Since we remember that:

$$T = m_0(\gamma - 1)c^2$$

therefore:

$$\gamma = 1 + \frac{T}{m_0 c^2}$$

we get for the speed v, i.e. β :

$$\beta = \sqrt{1 - \frac{1}{\gamma^2}}$$

Velocity versus energy (protons)

Why do we care??

E (GeV)	v (km/s)	γ	β	T
				(LHC)
450	299791.82	479.74	0.99999787	88.92465 $\mu \mathrm{s}$
7000	299792.455	7462.7	0.99999999	88.92446 $\mu \mathrm{s}$

- For identical circumference very small change in revolution time
- If path for faster particle slightly longer, the faster particle arrives later!

Four vectors

- Use of four-vectors simplify calculations significantly
- Follow the rules and look for invariants
- In particular kinematic relationships, e.g.
 - > Particle decay (find mass of parent particle)
 - ▶ Particle collisions →

Particle collisions

> What is the available collision energy?

Particle collisions - collider

Assume identical particles and beam energies, colliding head-on

The four momentum vectors are:

$$P1 = (E, \vec{p})$$
 $P2 = (E, -\vec{p})$

The four momentum vector in centre of mass system is:

$$P^* = P1 + P2 = (E + E, \vec{p} - \vec{p}) = (2E, \vec{0})$$

Particle collisions - collider

The four momentum vector in centre of mass system is:

$$P^* = P1 + P2 = (E + E, \vec{p} - \vec{p}) = (2E, \vec{0})$$

The square of the total available energy s in the centre of mass system is the momentum invariant:

$$s = P^* \diamond P^* = 4E^2$$

$$E_{cm} = \sqrt{P^* \diamond P^*} = 2E$$

i.e. in a (symmetric) collider the total energy is twice the beam energy

Particle collisions - fixed target

P1

P2

$$P1 = (E, \vec{p})$$
 $P2 = (m_0, \vec{0})$

The four momentum vector in centre of mass system is:

$$P^* = P1 + P2 = (E + m_0, \vec{p})$$

Particle collisions - fixed target

With the above it follows:

$$P^* \diamond P^* = E^2 + 2m_0E + m_0^2 - \vec{p}^2$$

since $E^2 - \vec{p}^2 = m_0^2$ we get:

$$s = 2m_0E + m_0^2 + m_0^2$$

if E much larger than m_0 we find:

$$E_{cm} = \sqrt{s} = \sqrt{2m_0 E}$$

Particle collisions - fixed target

Homework: try for $E1 \neq E2$ and $m1 \neq m2$

Examples:

collision	beam energy	\sqrt{s} (collider)	\sqrt{s} (fixed target)
pp	$315~({ m GeV})$	$630~({ m GeV})$	$24.3~({ m GeV})$
pp	$7000~({ m GeV})$	$14000~({ m GeV})$	$114.6~({ m GeV})$
$\ $ e $+$ e $-$	$100~({ m GeV})$	$200~({ m GeV})$	$0.320~({ m GeV})$
TLEP	$175~({ m GeV})$	$350~({ m GeV})$	$0.423~({ m GeV})~!$

Kinematic invariant

We need to make cross sections (and therefore luminosity) invariant!

This is done by a calibration factor which is (without derivation):

$$K = \sqrt{(\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2/c^2}$$

Here $\vec{v_1}$ and $\vec{v_2}$ are the velocities of the two (relativistic) beams.

For a (symmetric) collider, e.g. LHC, we have:

$$\vec{v_1} = -\vec{v_2}, \quad \vec{v_1} \times \vec{v_2} = 0 \quad \text{head - on!}$$

$$K = 2 \cdot c!$$

For completeness ...

Squared centre of mass energy:

$$s = (P1 + P2)^2 = (P3 + P4)^2$$

Squared momentum transfer in particle scattering (small t - small angle, see again lecture on Luminosity):

$$t = (P1 - P3)^2 = (P2 - P4)^2$$

Kinematic relations

We have already seen a few, e.g.:

$$T = E - E_0 = (\gamma - 1)E_0$$

$$E = \gamma \cdot E_0$$

$$E_0 = \sqrt{E^2 - c^2 p^2}$$

Very useful for everyday calculations →

Kinematic relations

	ср	${f T}$	${f E}$	γ
$\beta =$	$\frac{1}{\sqrt{(\frac{E_0}{cp})^2 + 1}}$	$\sqrt{1 - \frac{1}{(1 + \frac{T}{E_0})^2}}$	$\sqrt{1-(\frac{E_0}{E})^2}$	$\sqrt{1-\gamma^{-2}}$
cp =	cp	$\sqrt{T(2E_0+T)}$	$\sqrt{E^2 - E_0^2}$	$E_0\sqrt{\gamma^2-1}$
$E_0 =$	$\frac{cp}{\sqrt{\gamma^2-1}}$	$T/(\gamma-1)$	$\sqrt{E^2 - c^2 p^2}$	E/γ
T =	$cp\sqrt{\frac{\gamma-1}{\gamma+1}}$	${f T}$	$E-E_0$	$E_0(\gamma-1)$
$\gamma =$	$cp/E_0\beta$	$1 + T/E_0$	E/E_0	γ

Kinematic relations

Example: CERN Booster

At injection: T = 50 MeV

- ightharpoonup E = 0.988 GeV, p = 0.311 GeV/c
- $\gamma = 1.0533, \beta = 0.314$

At extraction: T = 1.4 GeV

- \rightarrow E = 2.338 GeV, p = 2.141 GeV/c
- $\gamma = 2.4925, \beta = 0.916$

Kinematic relations - logarithmic derivatives

	$\frac{d\beta}{\beta}$	$\frac{dp}{p}$	$\frac{dT}{T}$	$\frac{dE}{E} = \frac{d\gamma}{\gamma}$
$\frac{d\beta}{\beta} =$	$\frac{d\beta}{eta}$	$\frac{1}{\gamma^2} \frac{dp}{p}$	$\frac{1}{\gamma(\gamma+1)} \frac{dT}{T}$	$\frac{1}{(\beta\gamma)^2} \frac{d\gamma}{\gamma}$
$\frac{dp}{p} =$	$\gamma^2 rac{deta}{eta}$	$\frac{dp}{p}$	$[\gamma/(\gamma+1)]\frac{dT}{T}$	$\frac{1}{\beta^2} \frac{d\gamma}{\gamma}$
$\frac{dT}{T} =$	$\gamma(\gamma+1)\frac{d\beta}{\beta}$	$\left(1+\frac{1}{\gamma}\right)\frac{dp}{p}$	$\frac{dT}{T}$	$\frac{\gamma}{(\gamma-1)} \frac{d\gamma}{\gamma}$
$\frac{dE}{E} =$	$(\beta\gamma)^2 \frac{d\beta}{\beta}$	$\beta^2 \frac{dp}{p}$	$(1-\frac{1}{\gamma})\frac{dT}{T}$	$rac{d\gamma}{\gamma}$
$\frac{d\gamma}{\gamma} =$	$(\gamma^2 - 1) \frac{d\beta}{\beta}$	$\frac{dp}{p} - \frac{d\beta}{\beta}$	$(1-\frac{1}{\gamma})\frac{dT}{T}$	$rac{d\gamma}{\gamma}$

Example LHC (7 TeV): $\frac{\Delta p}{p} \approx 10^{-4} \longrightarrow \frac{\Delta \beta}{\beta} = \frac{\Delta v}{v} \approx 2 \cdot 10^{-12}$

Summary

- Special Relativity is very simple, derived from basic principles
- Relativistic effects vital in accelerators:
 - > Lorentz contraction and Time dilation
 - > Invariants!
 - > Relativistic mass effects
 - > Modification of electromagnetic field
- Find back in later lectures ...

- BACKUP SLIDES -

Galilei transformation - schematic

Rest frame and Galilei transformation ...

Forces and fields

Motion of charged particles in electromagnetic fields \vec{E}, \vec{B} determined by Lorentz force

$$\vec{f} = \frac{d}{dt}(m_0 \gamma \vec{v}) = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

or as four-vector:

$$F = \frac{dP}{d\tau} = \gamma \left(\frac{\vec{v} \cdot \vec{f}}{c}, \vec{f} \right) = \gamma \left(\frac{1}{c} \frac{dE}{dt}, \frac{d\vec{p}}{dt} \right)$$

Field tensor

Electromagnetic field described by field-tensor $F^{\mu\nu}$:

$$F^{\mu\nu} = \begin{pmatrix} 0 & \frac{-E_x}{c} & \frac{-E_y}{c} & \frac{-E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix}$$

derived from four-vector $A_{\mu} = (\Phi, \vec{A})$ like:

$$F^{\mu\nu} = \delta^{\mu}A^{\nu} - \delta^{\nu}A^{\mu}$$

Lorentz transformation of fields

$$\vec{E}'_{\perp} = \gamma(\vec{E}_{\perp} + \vec{v} \times \vec{B})$$

$$\vec{B}'_{\perp} = \gamma\left(\vec{B}_{\perp} - \frac{\vec{v} \times \vec{E}}{c^2}\right)$$

$$\vec{E}'_{\parallel} = \vec{E}_{\parallel}$$

$$\vec{B}'_{\parallel} = \vec{B}_{\parallel}$$

Field perpendicular to movement transform

Lorentz transformation of fields

- > In rest frame purely electrostatic forces
- \triangleright In moving frame \vec{E} transformed and \vec{B} appears