CERN Accelerator School

Chavannes de Bogis, Switzerland
8 November 2013

Beam-Beam Interactions

Tatiana Pieloni (BE-ABP-ICE)

Thanks to W. Herr




Hadron Circular Colliders
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Bunch intensity: N, =1.15-1.65-10"" ppb
Transverse Beam size: Op,y = 16 — 30 um
Number of bunches 1370 — 2808

Revolution frequency 11 kHz



When do we have beam-beam effects?

» They occur when two beams get closer and
collide v

»Two types

»High energy collisions between
two particles (wanted) I
» Distortions of beam by
electromagnetic forces (unwanted) (X1,Y7)
» Unfortunately: usually both go together...
»0.001% (or less) of particles collide
» 99.999% (or more) of particles are distorted



Beam-beam effects: overview

» Circular Colliders: interaction occurs at every turn

e Many effects and problems
e Tryto understand some of them

 Overview of effects (single particle and multi-particle effects)
 (Qualitative and physical picture of effects
* Observations from the LHC

« Mathematical derivations and more info in References or at
Beam-beam webpage http://lhc-beam-beam.web.cern.ch/lhc-beam-beam/
And CAS Proceedings
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Beams EM potential

»Beam is a collection of charges
»Beam is an electromagnetic
potential for other charges

Force on itself (space charge) and
opposing beam (beam-beam effects)

Single particle motion and whole bunch motion distorted

Focusing quadrupole Opposite Beam

/

A beam acts on particles like an electromagnetic lens, but...



Beam-beam Mathematics

General approach in electromagnetic problems Reference[5] already applied to beam-beam
interactions in Referencel[1,3, 4]

1 Derive potential from Poisson equation for
AU = — _p(waya Z)

charges with distribution p

Solution of Poisson equation

U / / / p(z0, Yo, 20)dzodyodzo
(212,055 05:08) = : : :
47T60 \/’I‘—To) + (¥ — ¥0)* + (2 — 20)?)

_>
E = —VU(Q'), Y;2,0z,0y, Uz)

Then compute the fields

— — — From Lorentz force one calculates the force acting on
_>
F = Q( YT T < B) test particle with charge q

Making some assumptions we can simplify the problem and derive
analytical formula for the force...



Round Gaussian distributions:

Op =0y =0
b~1 r? = % + y?

Gaussian distribution for charges:

Round beams:
Very relativistic, Force has only radial component :

1 2
F ox % . [1 — e_m] Beam-beam Force
O

Beam-beam kick obtained

1
Ar' = /Fr(r, s, t) dt
mcfy integrating the force over the
collision (i.e. time of passage)

_Np'ro r [1_6_%]

Ar' = C—
rooor

§ . Only radial component in
//A AN // \\ c o .o
relativistic case

o I =TI\ | How does this force looks
\/ ’ like?




Beam-beam Force
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Why do we care?

Pushing for luminosity means stronger beam-beam effects

N2 N, 1 2
L E "Ny F p-—-[l—e 202]
Ox0y o r

Physics fill lasts for many hours 10h — 24h

Strongest non-linearity in a collider YOU CANNOT AVOID!
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T e Two main questions:
Une nouvelle particule a été s & caae | - . .
découverte s Sies500 s What happens to a single particle?

What happens to the whole beam?



Arbitrary units

o

Beam-Beam Force: single particle...

Lattice defocusing quadrupole Beam-beam force
\ Linear force
@
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For small amplitudes: linear force
For large amplitude: very non-linear
The beam will act as a strong non-linear electromagnetic lens!

|



Beam-beam Force [a.u.]

b & L &

Can we quantify the beam-beam strenght?

Quantifies the strength of the force
but does NOT reflect the nonlinear
nature of the force
For small amplitudes: linear force -

Foc—=¢E-r

The slope of the force gives you
the beam-beam parameter

10

Beam-beam force [ a.u. ]
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Colliders:

For round beams: For non-round beams:
£ = B* O(Ar)  Nrop* e NrofB;,
A 6r  dmyo? oY 20 y(0p + 0y)

Examples:

Parameters LHC nominal LHC 2012

Energy GeV 7000 4000

Crossing angle (urad) 285 290

Luminosity 1103 7.6 1033




Linear Tune shift

For small amplitudes beam-beam can be approximated as linear
force as a quadrupole

Fo—&-r
/ .
Focal length: 1L Az Nro &£-4m
: 1 0
Beam-beam matrix: Ear 4
—55

Perturbed one turn matrix with perturbed tune AQ and beta function

at the IP 3™ ( cos(2m(Q + AQ)) B*sin(2m(Q + AQ)) )
—g=sin(2m(Q + AQ))  cos(2m(Q + AQ))

() (S ) (1)



Linear tune

Solving the one turn matrix one can derive the tune shift AQ and the
perturbed beta function at the IP *:

Tune is changed

cos(2m(Q + AQ)) = cos(2mQ)) — fo - Ame

5*

sin(2mQ)

B-function is changed:

s sin(2mQ)
By sin(2m(Q + AQ))

...how do they change?



Tune dependence of tune shift and dynamic beta

Tune shift as a function of tune
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Head-on and Long-range interactions

Beam-beam force

Beam-beam force [ a.u. ]

-8 -4 0 -4 +8
Distance from beam center [ ¢ ]

Other beam passing in the center force: HEAD-ON beam-beam interaction

Other beam passing at an offset of the force: LONG-RANGE beam-beam interaction



Multiple bunch Complications

MANY INTERACTIONS

N2
[: XX P_ . Ny Num. of bunches : 7Tlp — 2808
O'xO'y

3.7 m

Head:On e

For 25ns case 124 BBIs per turn: 4 HO and 120 LR




LHC, KEKB... colliders

* Crossing angle operation

* High number of bunches in train
structures

IE0 HA OOT NED AN |||| LT QIR RRE |||| il
fifnches

SppS Tevatron RHIC LHC
Number Bunches 6 36 109 2808
LR interactions 9 70 0 120/40

Head-on interactions 3 2 2 4




A beam is a collection of particles

Beam-beam force

Beam-beam force [ a.u. ]

Y -4 0 +4 +8
Distance from beam center [ o]

Beam 2 passing in the center of force produce by Beam 1
Particles of Beam 2 will experience different ranges of the beam-beam forces

Tune shift as a function of amplitude (detuning with amplitude or
tune spread)



Beam-beam force [ a.u. ]

A beam will experience all the force range

Beam-beam force Beam-beam force

[ [ I [ [ [ | | [ [ I I | | I

Beam-beam force [ a.u. ]

1 | | | | | ,1 I : L | ' 1 us L ! L A

-8 -4 0 +4 +8 -8 —44 0 +4; +8
Distance from beam center [ o ] Distance from beam center [ ¢ |
Second beam passing in the center Second beam displaced offset
HEAD-ON beam-beam interaction LONG-RANGE beam-beam interaction

Different particles will see different force



Detuning with Amplitude for head-on

Instantaneous tune shift of test particle when it crosses the other beam
is related to the derivative of the force with respect to the amplitude

OF
or

Aro

Arbitrary units

| 1 1 1 L 1 | l | A 1 ' | |
-8 -6 -4 2 0 2 4 6 8 10 -8 -6 -4 2 0 2 4 6 8 10
Amplitude in units of beam size ¢ Amplitude in units of beam size o

AQ yuad = const AQwpy =~ const

X
For small amplitude test particle lim AQ (7.) NTO/B =

linear tune shift r—0 47r’ya2




Arbitrary units

2 .

Detuning with Amplitude for head-on

Beam with many particles this results in a tune spread

AQ0<5—F |
| or

Arbitrary units

s 4 Amp]iénude in uni?s of beamésueo 4 : s $ s 4 Ampiiétude in uni?s of beamésuec 4 : s
AQquad = const AQpp # const
Nrog 1 ) RO 10
A — . . S I A — 1
Q(iE) 47[.,70_2 (%)2 (exp (2) 0(2) )

Mathematical derivation in Ref [3] using Hamiltonian formalism and in
Ref [4] using Lie Algebra



Head-on detuning with amplitude and footprints

1-D plot of detuning with amplitude

Detuning (A Q/ €)
S
N

I
o
o
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And in the other plane?
THE SAME DERIVATION
same tune spread

Amplitude (units of beam size o)

FOOTPRINT

2-D mapping of the detuning with

amplitude of particles

Tune footprint for head-on collision
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And for long-range interactions?

=]
T

Arbitrary units

10 8 6

Long range tune shift scaling for

distances

4

0 2 4

. 2
Amplitude in units of beam size o

d > 60

Aer

N
o e

d?

6

Second beam centered at d (i.e. 60)
*Small amplitude particles positive tune shifts
eLarge amplitude can go to negative tune shifts

Arbitrary units
o

i A ! A L | It
-8 -6 -4 -2 0 2 4 6 8
Amplitude in units of beam size o




Long-range footprints

0.5 ‘ ‘ ‘ ‘ , Separation in vertical plane!
, +AQZT ] And in horizontal plane?
| S The test particle is centered with
o the opposite beam
w | oo T | tune spread more like for head-on
S AQ | at large amplitudes
st Ir ;
A . AQ ’
S --AQ ] footprint from long range interactions
I d/dd 1 312 T T ' ' '
_1%5%?2/ ]
° 2Beam separ:tion d (units?aeam size 0)8 10 S11 ¢
0.31

now the LARGE amplitude particles
see the second beam and have
larger tune shift

0.309 -

0.308
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032 r

031

Beam-beam tune shift and spread

T

06

04

0.27

Footprints depend on:

 number of interactions

* Type (Head-on and long-range)
e Plane of interaction

When long-range effects become
important footprint wings appear and
alternating crossing important

Aim to reduce the area as much as
possible!

Passive compensation of tune shift Ref[7]
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Complications
PACMAN and SUPER PACMAN bunches

72 bunché§ ~~~~~~~~~~~~~~
- e
AR, e T v
Pacman: ~dB B Sl
S — ==&

miss long range BBI P N
—— S
~~~~~ P ,::::l

Super Pacman: \::Z: ———— <=

miss head-on BBI //

IP2 and IP8 depending on filling scheme

Different bunch families: Pacman and Super Pacman




LHC Complications: filling schemes
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Pacman Bunche: different number of long-range interactions




—lemend \ LHC,:b+ALI‘,FE(L R) LHCb
o N N A R /Y

0.315

ATLAS+CMS+LH

0.31

0.3054

<\ ATLAS+CMS+LHCb
A\ LHC
_ o . 034 — R
...operationally it is even more complicated! e o e 0.305 0.31

...intensities, emittances...




Particle Losses

Dynamic Aperture: area in amplitude space with stable motion
Stable area of particles depends on beam intensity and crossing angle

F pp X N, D

12 ‘ ‘ 12

10 | 10
T o B
© o
U sl v
S = 5
< <<
9 S
0 4r 0 4L
© o
i wfud
Vs v

2+

2L
0 05 5 : 5 2 0 100 200 300 400 500 600 700
: : " ' ’ Crossing angle [LLrad]
Bunch intensity [10" part.] Ref [6]

Stable area depends on beam-beam interactions therefore the choice
of running parameters (crossing angles, p*, intensity) is the result of
careful study of different effects!



DO we see the effects of LR in the LHC?

Courtesy X. Buffat

1.00 e
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Courtesy G. Papotti

Particle losses follow number of Long range interactions
Nominal LHC will have twice the number of interactions



Long-range BB and Orbit Effects

Long Range Beam-beam interactions lead to orbit effects
2N’f’0 ($ ¥ d)
X ’f‘

Long range kick Az (z +d,y,r) = [1 —exp (— )

For well separated beams d>o

The force has an amplitude independent contribution: ORBIT KICK

const T 2

Az’ =

-2 10+ ]

Orbit can be corrected but we should remember PACMAN effects



LHC orbit effects

Orbit effects different due to Pacman effects and the many long-range
add up giving a non negligible effect
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Ref [7]



Long range orbit effect

Long range interactions leads to orbit offsets at the experiment a direct
consequence is deterioration of the luminosity

2011-07-05 file:///afsfcermn.chiuser/z/zwe/Desktop/PNG/bcid_vs_posY_pm_posYErmr.png #1
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) Calculations for nominal LHC
¥ U e i e 4 il ek i
M 4 ﬂr* i ffrr 7 |

o 500 1000 1600 2000 2600 23000 ABOO
bunch number

Effect is already visible with reduced number of interactions  Ref[7]
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Long range orbit effect observations:

Courtesy T. Baer

Vertical oscillation starts when one beam is ejected and dumped




Coherent dipolar beam-beam modes

Coherent beam-beam effects arise from the forces which an exciting bunch
exerts on a whole test bunch during collision

We study the collective behaviour of all particles of a bunch

Coherent motion requires an organized behaviour of all particles of the bunch

Coherent beam-beam force

*Beam distributions W, and W, mutually changed by interaction

*Interaction depends on distributions

*Beam 1 W, solution depends on beam 2 W,

*Beam 2 W, solution depends on beam 1 W,

*Need a self-consistent solution




Coherent beam-beam effects

*Whole bunch sees a kick as an entity (coherent kick)
* Coherent kick seen by full bunch different from single particle kick
*Requires integration of individual kick over particle distribution

Nyrg 7 _r2
A’r’/: P . 5 . |:1_e 402]
r r

*Coherent kick of separated beams can excite coherent dipolar
oscillations

*All bunches couple because each bunch “sees” many opposing
bunches(LR): many coherent modes possible!




Coherent effects
Self-consistent treatment needed

0.5 T T I I I T I I

Perturbative methods 0.4

& Static BB force

static source of distortion:
example magnet

0.2

o
—_

Self-consistent method

Beam-beam force [ a.u. ]
o

source of distortion changes
as a result of the distortion %4

-8 -4 0 + +8
Distance from beam center [ ¢ ]

For a complete understanding of BB effect a self-consistent
treatment should be used



Simple case:

one bunch per beam

Spectrum amplitude [ a. u. ]

TP oo o

1.0 x
0-mode

0.8 mt-mode
0.6 f
Tune spread
0.4 f
0.2 f

0.0 | L J XL

o &P

Turn n Turn n+1

MOVIE
0-mode at unperturbed tune Q,

n-mode is shifted at Q, =1.1-1.3 &,

Incoherent tune spread range [0,-E]

AQ=Y -¢

%@ g, Y

Tune

e Coherent mode: two bunches are “locked” in a coherent oscillation
* 0-mode is stable (mode with NO tune shift)
* t-mode can become unstable (mode with largest tune shift)



Simple case: one bunch per beam and
Landau damping

1.0 x
0-mode
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Incoherent tune spread is the Landau damping region any mode
with frequency laying in this range should not develop
» t-mode has frequency out of tune spread (Y) so it is not damped!



Coherent modes at RHIC

Blue Horizontal, single p bunch, at injection
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Courtesy W. Fischer (BNL)

Tune spectra before collision and in collision two modes visible



Head-on beam-beam coherent mode: LHC
BBQ Signals
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Beam-beam coherent modes and Landau Damping

Amplitude [arb units]

Amplitude [arb units]
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Pacman effect on coherent modes
Single bunch diagnostic so important



Different Tunes
mt-mode 0-mode

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Q-Q,/€
Tune split breaks symmetry and coherent modes disappear

Analytical calculations in Reference [8]




Different tunes or intensities

RHIC running with mirrored tune for years to break coherent
oscillations

Horizontal Tune

*:' v‘ i wuw MM‘MJ

0678 0.68 0.682 0 68«1 0.686 0.688 0 69 0.692 0.694 0.696 0.698

Vertical Tune

Nominal bch
SuperPacman

}'l | N,( “
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LHC has used a tune split to suppress coherent BB modes
2010 Physics Run



Different bunch intensities

For two bunches colliding

——100% head-on in one IP the
——80% , )
60% coherent mode disappears if
o intensity ratio between
28:? bunches is 55% Reference[9]

We assumed:
* equal emittances

Spectrum arbitrary units

e equal tunes
* NO PACMAN effects

“: K (bunches will have different tunes)
OV lu ‘k\«ﬂm
0

tlnle N A stz it D A0 B o DAY
-1 -0.5
AQ in units of

For coherent modes the key is to break the simmetry in your coupled
system...(tunes, intensities, collision patters...)



And Long range interactions?

Bunch 1

0.3055

Qs

J [

Each bunch will have different.

number of modes and tune

spectra

*No Landau damping of long- :

range coherent modes

Single bunch diagnostic can make the difference

0,3055




Beam-beam compensations:

Head-on
Linear e-lens, suppress shift

Non-linear e-lens, suppress tune spread

Beam-Beam Force in 1D |

Beam-beam force

04
0.3
0.2

* Past experience: at Tevatron linear and non-linear e-lenses, also hollow...

T | IIIIIHI| I

—— equal charges
---------- opposite charges
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Bunch intensity [10°9 protons]
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Time (Fill 16697)
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* Present: test for half compensation at RHIC with non-linear e-lens



Beam-beam compensations: long-range

Beam-beam wire compensation
R. Calaga

_Nr.B, ., : Round Beam Kick —

e 2 Wire Kick -
2TMY O

% Dift

Transverse Kick [a.u.]

_1 A A 4 i A , A J
12 8 -4 0 a4 | g 12
Amplitude [o units) 'I
K x x°
o d: Ax'(x,d)=——.(14—+—+...
<< (x,d) r ( at g )

e Past experience: at RHIC several tests till 2009...
* Present: simulation studies on-going for possible use in HL-LHC...



...not covered here...

Linear colliders special issues
Asymmetric beams effects
Coasting beams
Beamstrahlung
Synchrobetatron coupling
Beam-beam experiments

Beam-beam and impedance



Thank Youl!



