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What is beam collimation and why we need it?
How many LHC collimators we need?
Where are they located in the ring?
How are they built, with which materials? 
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Beam halo collimation
Controlled and safe disposal of halo particles produced by 
unavoidable beam losses. 
Achieved by reducing the transverse cross section of the beam.

Betatron (and off-momentum) halo particles
Particles with large betatron amplitudes (or energy deviations) with 
respect to the beamʼs reference particle. 
Gaussian beams: typically, particles above 3 RMS beam sizes.

“Collimator”

Main design goal for the collimation system at the LHC
Ensure that beam losses in superconducting magnets remain below 
quench limits in all operational phases.
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Superconducting coil: 
T = 1.9 K, quench limit  

~ 50-100 mJ/cm3

Proton beam: 145 MJ
(design: 362 MJ)

Factor up to 9.7 x 10 9
Aperture: r = 17/22 mm

LHC upgrade studies aim at increasing 
the stored energy by another ~ factor 2!
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80 kg 
TNT

Beam cleaning requirements at the LHC exceed 
previous machines by orders of magnitude!

LHC 2010

LHC 2012

J. Wenninger

HL-LHC

State-of-the-art 
before LHC
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Avoid SC magnet quenches close to the high-luminosity experiments

Optimize background in the experiments
Minimize the impact of halo losses on 
(no big issue for the LHC)

Beam tail/halo scraping, halo diagnostics
Control and probe the transverse or longitudinal shape of the beam

➛ See talk by J. Wenninger

➛ Main role of collimation 
in previous hadron colliders 

(SppS, Tevatron, ...)

This lecture: focus on LHC, the only CERN machine with a 
collimation system that addresses all this requirements! 
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IR6: Beam 
dumping system

IR4: RF + Beam 
instrumentation

IR5:CMS

IR1: ATLAS

IR8: LHC-B
IR2:ALICE

Injection ring 2Injection ring 1

IR3: Momentum 
collimation (normal 

conducting magnets)

IR7: Betatron 
collimation (normal 

conducting magnets)
IR7±250mIR3±250m

2 of 8 LHC (warm) 
insertion regions 
(IRs) are dedicated 
to beam 
collimation!

100 collimators 
installed in 7 IRs (all 
IRʼs but IR4) and in 
the transfer lines!
Why so many?
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Figure 3 Dose rate distributions along the tunnel in Gy/year. The values shown are the

average of ±1m vertically from the beam line. In the upper figure the dose rate

distribution is plotted as a histogram and in the lower figure the same values are

shown in a contour plot together with the geometry. The regions of interest (RR73,

UJ76, RR77 – from left to right on the figure) are marked with the blue vertical

lines.
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K. Tsoulou et al

Activation from halo losses is basically 
confined within the warm insertions!
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Figure 3 Dose rate distributions along the tunnel in Gy/year. The values shown are the

average of ±1m vertically from the beam line. In the upper figure the dose rate

distribution is plotted as a histogram and in the lower figure the same values are

shown in a contour plot together with the geometry. The regions of interest (RR73,

UJ76, RR77 – from left to right on the figure) are marked with the blue vertical

lines.
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K. Tsoulou et al

Activation from halo losses is basically 
confined within the warm insertions!

Crucial for the LHC: allow access of 
people in the non-collimation areas for 

equipment maintenance and repair.
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Ideal world (perfect machine): no beam losses 
throughout the operational cycle
! LHC: injection, ramp, squeeze, collisions, beam dump.
No need for a collimation system! 
In reality, several effects can cause beam losses:
! - Collisions in the interaction points (beam burn up)
" - Interaction with residual gas and intra-beam scattering
" - Beam instabilities (single-bunch, collective, beam-beam)
" - Dynamics changes during OP cycle (orbit drifts, optics 
"   changes, energy ramp, ...): “operational losses”
" - Beam resonances.
" - Capture losses at beginning of the ramp.
" - Injection and dump losses. 

These effects can increase the population of the 
beam halos and ultimately cause beam losses!

We do not need to study all 
that in detail to understand 

beam collimation! 
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Beam loss mechanisms are modelled by 
assuming a non-infinite beam lifetime, τb
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Beam losses can be characterized by the time-dependent 
beam lifetime along the operational cycle. 
LHC example at 7 TeV: 1h lifetime at the full intensity of 3.2x1014 
(320 hundred trillion) protons corresponds to a loss rate of about 
90 billion proton per second, i.e. 0.1MJ/s = 100 KW!

: Beam intensity
  versus time

: Loss rate
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LHC lifetime in a physics fill
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Ramp

Onset of pp  collisions 
in all experiments

Squeeze

Adjust

Injection

Start of ramp 
losses

10 h

These losses from the beam core must be caught before they 
reach sensitive accelerator components! 
In particular, what “leaks” into the cold magnets must remain 
below quench limits of superconducting magnets
! ➛ this is what the collimation system is designed for! 
LHC cleaning challenge: need an “inefficiency” ~20-100mJ/100kJ !

Example of a typical physics fill in 2012.

No beam

1 h

~20 min
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“Skew” collimators

17

σcoll =
�

cos2(θcoll)σ2
x + sin2(θcoll)σ2

x

RMS betatron beam size in the collimator plane

!

In the LHC, we also have “rotated” collimators that 
provide collimation in the skew plane. 
The collimator jaw movement occurs along the 
skew axis (still 1D movement). Normalized settings 
are defined for an appropriate effective beam size.
Same collimator design for all cases: rotate vacuum tank.
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RMS betatron beam size in the collimator plane

!

In the LHC, we also have “rotated” collimators that 
provide collimation in the skew plane. 
The collimator jaw movement occurs along the 
skew axis (still 1D movement). Normalized settings 
are defined for an appropriate effective beam size.
Same collimator design for all cases: rotate vacuum tank.

We need at least 3 primary 
collimators in order to protect 

the machine for all possible 
transverse betatron losses!

Only horizontal collimation for 
momentum losses. 

Horizontal Vertical Skew
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Particle interaction with collimator

18

Beam

Collimator Showers + 
secondary halo

Nσσz

If the “primary” collimator were a black absorber, it would 
be sufficient to shield the aperture by choosing a gap Nσσz 
smaller that the aperture bottleneck !
In reality, part of the beam energy and a fraction of the 
incident protons escape from the collimator!
See also Jörg W.ʼs talk. 
Here: what matters in the leakage!
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The interaction with collimator jaw materials is itself a source 
of betatron and off-momentum halo (secondary halo). 
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Note: multi-turn interactions occur with sub-micron impact parameters ➝ 
this has an important effect on the absorption efficiency.
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Single-stage cleaning

19

Beam 1

1 %

Local cleaning inefficiency
Single-stage cleaning with a single primary 
collimator made 60cm of Carbon: highest 
leakage in cold elements (blue spikes): 1-3 %.

Fraction of proton lost per unit length.

D. Mirarchi

Simulated cleaning inefficiency for the horizontal case.

No shower products 
here: only losses 
from secondary 

halo into the 
vacuum beam-pipe.

Single-stage 
cleaning in IR7
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Comparison to quench limits
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Two-stage collimation

22
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collimator

Secondary beam halo 
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“Secondary” collimators (TCSs) can be added to intercept the 
secondary halo and the showers that leak out of the primary collimator.



S. Redaelli, CAS, 08/11/2013

Two-stage collimation

22

Cold aperture

Circulating beam

Primary 
beam halo

Secondary
collimators

Primary
collimator

Secondary beam halo 
+ hadronic showers

Cleaning insertion

Bottle
neck

Arc(s) IP

“Secondary” collimators (TCSs) can be added to intercept the 
secondary halo and the showers that leak out of the primary collimator.



S. Redaelli, CAS, 08/11/2013

Where do we put secondary collimators?

23

<θ>MCS ~ 3.4 μrad (7 TeV)

Amorphous (0.6 m CFC)

TCP

There are two optimum phase locations to 
catch the debris from the primary 
collimators (TCPs). 
Minimum: set of 2 secondary collimators 
(TCSs) covering +θMCS and -θMCS.
Optimum: 4 TCSs (per plane) providing 
redundant coverage.

+θMCS

-θMCS

+θMCS

-θMCS
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Phys.Rev.ST Accel.Beams 1:081001,1998
cos µ0 = nTCP/nTCS

Optimum phases depend on TCP/TCS retraction
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Multi-stage collimation at the LHC
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Multi-stage collimation at the LHC
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Cleaning insertion
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Protection 
devices

Including protection devices, a 5-stage cleaning in required!
The system performance relies on achieving the well-defined hierarchy 

between collimator families and machine aperture.
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Simulated 7 TeV performance
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Beam collimation is essential for modern high-power machines. Required to 
safely dispose of unavoidable beam losses (beam halo cleaning).
LHC main concerns: (1) minimize risk of quenches with 360 MJ stored energy, (2) 
passive machine protection in case of accidental failures. Many other important roles!

Collimation is achieved by constraining the transverse amplitudes of halo 
particles: collimator jaws are set close to the beam to shield the aperture. 
Many sources of beam losses (collisions, gas or beam scattering, operational 
losses,...) are modelled by looking at the time-dependent beam lifetime. 
Required cleaning depends on minimum allowed beam lifetime for given quench limit.

Single-stage collimation: efficiencies up to ~99%. This is not enough: the 
leakage must be reduced by another factor 100-1000 to avoid quenches.
Multi-stage collimation can provide the missing factors!
Secondary collimators are placed at optimum locations to catch product of halo 
interactions with primaries (secondary halo+shower products)

LHC collimation: unprecedented complexity in particle accelerators! 
A total of 44 collimators per beam, ordered in a pre-defined collimation hierarchy: two 
dedicated warm insertions (2-stage collimation+shower absorbers), local cleaning in 
experiments, physics debris cleaning and protection collimators.
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LHC collimation system layout
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Two warm cleaning insertions, 
3 collimation planes
" IR3: Momentum cleaning
" " 1 primary (H)
" " 4 secondary (H)
" " 4 shower abs. (H,V)
" IR7: Betatron cleaning
" " 3 primary (H,V,S)
" " 11 secondary (H,V,S)
" " 5 shower abs. (H,V)

Local cleaning at triplets
" " 8 tertiary (2 per IP)

Passive absorbers for warm 
magnets
Physics debris absorbers
Transfer lines (13 collimators)
Injection and dump protection (10)

Total of 108 
collimators 
(100 movable).
Two jaws (4 motors) 
per collimator!

Momentum
cleaning

IR3

Betatron
cleaning

IR7

Picture by C. Bracco
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Movable collimators: L-shaped, one-sided, two-sided.

LHC choice!
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IR7 collimator settings at 450 GeV
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Beam size change during beam acceleration: 
optimum settings can only be guaranteed with high-

precision movable collimators!
We could not inject with the 7 TeV gap!

IR7 collimator settings at 7 TeV
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Reference design goals
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High stored beam energy
(melt 500 kg Cu, required for 1034 cm-2 s-1 luminosity) ~ 360 MJ/beam

Large transverse energy density
(beam is destructive, 3 orders beyond Tevatron/HERA) 1 GJ/mm2

High required cleaning efficiency
(clean lost protons to avoid SC magnet quenches) 99.998 % (~10-5p/m)

Activation of collimation insertions
(good reliability required, very restricted access) ~ 1-15 mSv/h

Small spot sizes at high energy
(small 7 TeV emittance, no large beta in restricted space) ~ 200 μm

Collimation close to beam
(available mechanical aperture is at ~10 σ) 6-7 σ

Small collimator gaps
(impedance problem, tight tolerances: ~ 10 μm) ~2.1 mm (at 7 TeV)

Big and distributed system
(coupled with mach. protection / dump)

~100 devices
~500 deg. of freedom 

Quench

Damage

Heating

Activation

Precision
ImpedanceStability
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Collimator design
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Beam

Main design 
features:
•Two jaws (position 
and angle)
•Concept of spare 
surface
•Different angles 
(H,V,S) 
•External reference 
of jaw position
•Auto-retraction
•RF fingers 
•Jaw cooling

A. Bertarelli et al.
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LHC collimator jaw design
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Beam

Special “sandwich” design to 
minimize the thermal deformations: 
Steady (~5 kW) $ ➙ < 30 μm
Transient (~30 kW) $➙ ~ 110 μm
Materials: Graphite, Carbon fibre 
composites, Copper, Tungsten.

Collimating Jaw (C/C composite)

Main support beam (Glidcop)

Cooling-circuit (Cu-Ni pipes)

Counter-plates (Stainless steel)

Preloaded springs (Stainless steel) 

Clamping plates (Glidcop)

Carbon jaw
(10cm tapering for RF contact)
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RF contact 
Longitudinal strip (Cu-Be) 

Be
am
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A look inside the vacuum tank

What the beam sees!

A. Bertarelli, A. Dallocchio
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Tunnel layout:
Tertiary collimators in IR1

Beam
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Recap. of design challenges for 360MJ
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Main collimation challenges:
! - High stored energy:! Collimators needed in all phases (inj., ramp, squeeze, physics);
!  ! Function-driven controls of jaw positions mandatory;
! ! Robustness and cleaning efficiency;
! ! Big and distributed system (100 collimators).
! - Small gaps:! Mechanical precision, reproducibility (< 20 microns);
! ! Constraints on orbit/optics reproducibility;
! ! Machine impedance and beam instabilities.
! - Collimator hierarchy:! Collimators determine the LHC β* reach.
! - Machine protection:! Redundant interlocks of collimator jaw positions and gaps.
! - High-radiation environ.: !Radiation-hard components (HW + SW);
! ! Challenging remote handling, design for quick installation.

R. Assmann et al. (2003)

Recap. of design challenges for 360MJ
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Outline
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Configurations for LHC-run1 (2010-12)
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Setting hierarchy was tightened while gaining operational 
experience and confidence in the machine (optics/orbit 
stability, lifetime measurements, cleaning requirements, ....) 
Started with “relaxed” settings (easier commissioning, less 
challenging tolerance), then achieved “tight” settings at 4 
TeV equivalent in mm to design 7 TeV goal! 
Smaller beta* in ATLAS and CMS (not subject of this lecture).
Improve cleaning performance but reduce lifetime in 2012.

In practice

R. Bruce
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Smallest collimator gaps in 2012
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Smallest collimator gaps in 2012
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3σ beam 
envelope

Transverse cuts from H, V and S 
primary collimators in IR7 2€ coin

A beam carrying up to 150MJ passes more than 
11000 per second in such small collimator gaps!
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Side view of the vertical TCP
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60 cm flat active length, gap = ± 1.05 mmBeam: RMS beam size 
σv = 250 microns! 2€ coin

L. Gentini
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Side view of the vertical TCP
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60 cm flat active length, gap = ± 1.05 mmBeam: RMS beam size 
σv = 250 microns! 2€ coin
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Fixed display in the LHC 
control room showing 
the IR7 collimator gaps.

Side view of the vertical TCP
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Fixed display in the LHC 
control room showing 
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Side view of the vertical TCP
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60 cm flat active length, gap = ± 1.05 mmBeam: RMS beam size 
σv = 250 microns!

Beam
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L. Gentini
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Collimation cleaning
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Highest COLD loss location: efficiency of > 99.99% ! 
Most of the ring actually > 99.999%

B. Salvachua
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Zoom in IR7
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1/10000

Critical location (both beams): losses in the “dispersion suppressor”.
With “squeezed” beams: tertiary collimators (TCTs) protect locally the triplets.

B. Salvachua
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Comparison with measurements
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Simulations

Measurements

R. Bruce
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Comparison with measurements
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Simulations

Measurements

Excellent qualitative agreement:
all critical loss locations identified.

We are confident in our predictions for 7 TeV! 
R. Bruce
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Conclusions
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The collimation challenges for the LHC were presented.
The basic design strategy for collimation systems for high-
energy hadron accelerators was reviewed.
 The present LHC collimation system was presented:
! - solutions to the key design constraints and challenges;
! - tunnel layouts for a complex multi-stage system;
! - collimator design main features.
The main performance achievements during the LHC Run1 
in 2010-12 were also discussed.
We are looking forward to collimating the ~7 TeV LHC 
beams in 2015!
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Collimation matters not covered here
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Collimation in other CERN machines
! LHC taken as case study because the complexity of its collimation system
$ cover all the collimation design goals.

Role of energy deposition studies in collimation system design
Material science related to collimators and advanced designs
! Robustness versus impedance
$ New material development to handle higher energy/brightness beams

Collimator technology and handling for high radiation environment.
! Optimized design and components to keep high performance with high doses.

Physics debris collimation and IR losses
Collimation upgrade plans for the High Luminosity (HL) LHC era.
Advanced collimation concepts:
! Collimator in cold regions, $Hollow e-lenses as halo control devices, 
$ crystal collimation...


