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Cyclotrons II - Outline

• brief review of the previous lesson

• cyclotron subsystems 

Injection/extraction schemes, RF systems/resonators, 
magnets, vacuum issues, instrumentation

• applications and examples of existing cyclotrons

TRIUMF, RIKEN SRC, PSI Ring, PSI medical cyclotron

• discussion

classification of circular accelerators, cyclotron vs. FFAG, 
Pro’s and Con’s of cyclotrons for different applications
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review of Cyclotrons-I
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classical cyclotron sector cyclotron

 simplicity, compactness

 continuous 
injection/extraction

 multiple usage of 
accelerating voltage

but:

• insufficient vertical focusing

• limited energy reach

flutter spiral angle
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next: injection & extraction
• spiral inflector, internal source, electrostatic 

deflectors, stripping



injection schemes – spiral inflector

5

• an electrostatic component, 
basically a capacitor

• E-field arranged perpendicular to 
orbit, particles move on 
equipotential surfaces

simulation of orbits injected
through a spiral inflector

[inflector IBA Cyclone 30 cyclotron] [courtesy: W.Kleeven (IBA)]



internal ion source
 example COMET
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H-

H2+          

Dee 1

Dee 3 Dee 2

Dee 4

slit

chimney

• Hydrogen is injected and 
ionized through chimney

• first acceleration by puller, 
connected to one Dee (80kV)

deflector
electrode
for intensity 
regulation

chimney
= ion source



electrostatic septum and charge exchange extraction

• deflecting element should affect just one turn, not neighboured turn 
critical, cause of losses

• often used: electrostatic deflectors with thin electrodes

• alternative: charge exchange, stripping foil; accelerate H- or H2
+ to extract 

protons (problem: significant probability for unwanted loss of electron; 
Lorentz dissociation: B-field low, scattering: vacuum 10-8mbar)
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0

-
HV foil

extraction electrode
placed between turns

extraction by charge 
exchange in foil
eg.: H- H+

H2
+  2H+

binding energies

H- H2
+

0.75eV 15eV



injection 

element in Ring

Tungsten stripes

injection/extraction with electrostatic elements

principle of extraction 

channel

parameters 
extraction chan.:

Ek= 590MeV
E = 8.8 MV/m
 = 8.2 mrad
 = 115 m
U = 144 kV

major loss 
mechanism is 
scattering in 50m 
electrode!
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electrostatic rigidity:



extraction foil

• thin foil, for example carbon, removes the electron(s) with high probability

• new charge state of ion brings it on a new trajectory → separation from 
circulating beam

• lifetime of foil is critical due to heating, fatigue effects, radiation damage

• conversion efficiencies, e.g. generation of neutrals, must be considered 
carefully
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B

H-
H+

e
foil

electrons removed from the 
ions spiral in the magnetic 
field and may deposit energy 
in the foil

How much power is carried by the electrons?
 velocity and thus  are equal for p and e

Bending radius of electrons?

 typically mm



example: multiple H- stripping extraction at TRIUMF
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[R.Baartman]



example: H2
+ stripping extraction in planned 

Daedalus cyclotron [neutrino source]
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[L.Calabretta, 
A.Calanna et al]

purpose: pulsed high 
power beam for neutrino 
production
• 800MeV kin. energy
• 5MW avg. beam power
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next: RF, magnets, vacuum, diagnostics



components: sector cyclotron resonators

cyclotron resonators are basically box resonators
resonant frequency: 

E

b

l
a

beam

beam passes in center 
plane;

accelerating voltage varies 
as sin(r)
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cross sections of PSI resonators

original Al-Resonator

Oper. freq. = 51 MHz

Max. gap voltage =  760 kV

Power dissipation = 320 kW

Q0 = 32'000 (meas. value)

new Cu-Resonator

Oper. freq. = 51 MHz

Max. gap voltage > 1MV

Power dissipation = 500 kW

Q0  48'000

hydraulic tuning

loop coupler @ 50MHz

old new
4m

2m

0m

beam(s)
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copper resonator in operation at PSI’s Ring cyclotron 

• f = 50.6MHz; Q0 = 4,8104; Umax=1.2MV (presently 0.85MV)
• transfer of up to 400kW power to the beam per cavity
• Wall Plug to Beam Efficiency (RF Systems): 32% 

hydraulic tuning 

devices (5x)

resonator 

inside
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50 MHz 1 MW amplifier chain for Ring cyclotron

1 MW

Wall Plug to Beam Efficiency (RF Systems): 32% 

[AC/DC: 90%, DC/RF: 64%, RF/Beam: 55%]

[L.Stingelin et al]
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cyclotron technology: sector magnets

cyclotron magnets typically cover a wide radial range  magnets are heavy 
and bulky, thus costly
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PSI sector magnet

iron weight: 250 tons
coil weight: 28 tons
Field: 2.1T
orbit radius:  2.1…4.5 m
spiral angle: 35 deg

field map

Riken SRC sector magnet

weight: 800 tons
Field: 3.8T, 5000A
orbit radius: 3.6…5.4m



Magnets – Fine-tuning with trim coils
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• isochronicity depends critically on exact field distribution
• circulation time is measured with phase probes and field shape is 

adjusted using radially distributed trim coil circuits

example: AGOR 
cyclotron in 
Groningen NL



vacuum in cyclotrons – proton losses from scattering

• losses are caused by inelastic scattering at residual gas molecules, use inelastic 
reaction cross section to estimate losses, convert to mean free path

• compute pressure for 10-5 relative loss

common gases, protons :
(atmospheric conditions)

mean free path:

beam loss:

pressure for loss < 10-5: Pi(air) < 10-3 mbar  easy, vacuum no problem for p losses!
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heavy ion induced gas desorption

demonstration of transmission 
breakdown by gas desorption

[measurements in AGOR cyclotron, KVI-
Groningen, S.Brandenburg et al]

 transmission of 40Ar5+ 8 MeV per 
nucleon

 base vacuum 3 x 10-7 mbar
 injected intensity up to 6 x 1012 pps
 beampower:  320 W

beam intensity at r = 0 [1012 pps]
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comments on cyclotron vacuum system
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O-ring grooves

evacuated intermittent volume

• vacuum chamber with large radial width  difficult to achieve precisely matching 
sealing surfaces noticeable leak rates must be accepted

• use cryo pumps with high pumping speed and capacity

• ≈10-6mbar for p, ≈10-8mbar for ions (instability! e.g. AGOR at KVI)

• design criterion is easy access and fast mountability (activation)

example: inflatable seals installed between resonators; length: 3.5m

length: 3.5m



cyclotron instrumentation
example: PSI 72MeV injector cyclotron
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transverse probes
«wire scanners»

phase probes
«RF pickups»

injection channel

extraction channel



instrumentation: radial probe for turn counting / orbit analysis
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wire scanner with three
tilted wires delivers radial 
beam profile and some
vertical information

radial: positions of
individual turns

vertical/radial orbit
positions and stored
reference orbit (crosses)

«pseudo tomography» 
with tilted wires



instrumentation: phase probes
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phase probes are radially
distributed RF pickups that
detect the arrival time (phase) 
of bunches vs radius
 adjustment of isochronicity

measured phase vs. radius; 
green: reference phase for
«good conditions»

trim coil settings (12 circuits across radius)
green: predicted from phase measurement
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next: cyclotron examples
• compact cyclotrons

• TRIUMF, RIKEN SRC, PSI-Comet, PSI-HIPA



Vertical setup

compact cyclotrons for Isotope production
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some cyclotrons

TRIUMF RIKEN SRC 
(supercond.)

PSI Ring PSI medical
(supercond.)

particles H-  p ions p p

K [MeV] 520 2600 592 250

magnets (poles) (6) 6 8 (4)

peak field strength 
[T]

0.6 3.8 2.1 3.8

Rinj/Rextr [m] 0.25/3.8…7.9 3.6/5.4 2.4/4.5 -/0.8

Pmax [kW] 110 1 (86Kr) 1300 0.25

extraction efficiency
(tot. transmission)

0.9995
(0.70) (0.63)

0.9998 0.80

extraction method stripping foil electrostatic 
deflector

electrostatic 
deflector

electrostatic 
deflector

comment variable energy ions, flexible high intensity compact
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cyclotron examples: TRIUMF / Vancouver
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• p, 520MeV, up to 110kW 
beam power

• diameter: 18m (largest 
n.c. cyclotron worldwide)

• extraction by stripping H-

 variable energy; 
multiple extraction points 
possible

photo: iron poles with spiral shape
(max=70deg)



K = 2,600 MeV 
Max. Field: 3.8T (235 MJ)
RF frequency: 18-38 MHz
Weight: 8,300 tons
Diameter: 19m 
Height: 8m

Superconducting 

Bending Magnet

Control Dewar

SC Trim Coil
Lower Shield

RF-Cavity

Upper Shield

Upper Yoke

Side Yoke

Lower Yoke

utilization:
broad spectrum of
ions up to Uranium

superconducting 
Sector Magnets :6
RF Resonator :4
Injection elements.
Extraction elements.

example: RIKEN (Jp) superconducting cyclotron

[H.Okuno]



RIKEN SRC in the vault
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PSI Proton Therapy Facility

GANTRY 1

GANTRY 2

OPTIS

GANTRY 3

COMET

beam lines to
areals



superconducting coils 
=> 2.4 - 3.8 T 

Proton source

4 RF-cavities 
≈100 kV on 4 Dees

Closed He system 
4 x 1.5 W @4K

300 kW

90 tons

3.4 m

1
.4

 m

250 MeV proton cyclotron (ACCEL/Varian)

ACCEL
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Cyclotron needs degrader :

M.Seidel, Cyclotrons  - 33

• cyclotron has fixed energy; 
need degrader for energies 
down to 70MeV

• collimation after degrader to 
keep emittance  lose 
intensity with degrader

degrader: (carbon wedges in vacuum)
and laminated beam line magnets for 
fast energy changes < 80 ms / step



Ring Cyclotron 590 MeV
2.4mA / 1.4MW
diameter: 15m

SINQ
spallation source

examples: PSI High Intensity Proton Accelerator

proton therapie center 
[250MeV sc. cyclotron]
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dimensions:

120 x 220m2

meson production 
targets



finally: discussion
• comparison of circular accelerators

• cyclotron vs. FFAG

• suitability of cyclotrons 

• some literature



classification of circular accelerators
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bending 
radius

bending 
field vs.
time

bending 
field vs. 
radius

RF 
frequency 
vs. time

operation 
mode 
(pulsed/CW)

betatron induction

microtron varying h

classical 
cyclotron

simple, but 
limited Ek

isochronous 
(AVF) cyclotron

suited for 
high power!

synchro-
cyclotron

higher Ek, 
but low P

FFAG strong 
focusing!

a.g.
synchrotron

high Ek, 
strong focus



Cyclotron vs. FFAG

• many discussions on relation FFAG/Cyclotron; 

e.g. a synchro-cyclotron is actually an FFAG 

• in fact both concepts can be distinguished via the dominating 
focusing mechanisms (M.Craddock):
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Thomas cyclotron sector FFAG

alternating B’ yes yes

lens pattern FFFFFF FDFDFD

edge focusing dominant negligible

AG focusing negligible dominant

https://www.cockcroft.ac.uk/events/FFAG08/presentations/Craddock/Thomas-FFAG.pdf

https://www.cockcroft.ac.uk/events/FFAG08/presentations/Craddock/Thomas-FFAG.pdf


pro and contra 
cyclotron

limitations of cyclotrons typical utilization of cyclotrons

• energy limitation ≈1GeV due 
to relativistic effects

• relatively weak focusing is 
critical for space charge 
effects (10mA ?)

• tuning is difficult; field shape; 
many turns; limited 
diagnostics

• wide vacuum vessel (radius 
variation)

• medical applications 250MeV; 
intensity range well covered

• isotope production  several 
10MeV

• acceleration of heavy ions (e.g. 
RIKEN)

• very high intensity proton 
beams (PSI:1.4MW, TRIUMF: 
100kW )



Jacow
conferences

cyclotrons

cyclotron conferences – a valuable source of knowledge
• old cyclotron conferences have been digitized for JACOW (effort of M.Craddock!)
• intl. cyclotron conference every 3 years; last month 2016 edition in Zürich; in-

between European Cyclotron Progress Meeting (ECPM) 



some literature w.r.t. cyclotrons
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comprehensive 
overview on 
cyclotrons

L.M.Onishchenko, Cyclotrons: A Survey, Physics of Particles and Nuclei 39, 950 
(2008)
http://www.springerlink.com/content/k61mg262vng17411/fulltext.pdf

50 Years of 
Cyclotron 
Development

L. Calabretta, M. Seidel
IEEE Transactions on Nuclear Science, Vol. 63, No. 2, 965 – 991(2016)
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410111

space charge effects 
and scalings

W.Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl.
Conf. on Cyclotrons and their Applications, Caen, 337-347 (1981)
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf

long. space charge;
comparison to 
analytical result

E.Pozdeyev, A fast code for simulation of the longitudinal space charge effect 
in isochronous cyclotrons, cyclotrons (2001)
http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf

Intensity limitation R.Baartman, SPACE CHARGE LIMIT IN SEPARATED TURN CYCLOTRONS, 
cyclotrons (2013) 
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf

PSI medical facility J. M. Schippers et al., “The SC cyclotron and beam lines of PSI’s new proton
therapy facility PROSCAN”, NIM B, 261, 773–776 (2007). 

OPAL simulations; 
documentation

J.Yang, A. Adelmann, et al. Phys. Rev. STAB Vol. 13 Issue 6 (2010)
http://amas.web.psi.ch

http://www.springerlink.com/content/k61mg262vng17411/fulltext.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410111
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf


Thank you for your
attention !


