

Bibliography

- W. Herr and B. Muratori, many many luminosity lectures at previous CERN Accelerator Schools.
- M. Ferro-Luzzi, "A novel method for measuring absolute luminosity at the LHC", CERN-PH seminar, 29 August 2005.
- J. Wenninger, "Luminosity diagnostics", CAS on Beam Diagnostics, Dourdan (France), June 2008.
- P. Grafstrom and W. Kozanecki, "Luminosity determination at proton colliders", to be published in Prog. Part. Nucl. Phys.
- A. Chao and M. Tigner, "Handbook of accelerator physics and engineering", World Scientific, 2002.

collider

- at high energy to probe smaller scales or to produce heavier particles
 - lighter particles were studied in older machines - "to boldly go where no man has gone before"
 - some events only possible at higher energies
 - collider as last stage of the accelerator chain
 - e.g. at CERN: Linac+PSB+PS+SPS+LHC
- particle colliders use two beams
 - higher available energy by colliding two beams $(-\underline{p}_1 = \underline{p}_2, E_1 = E_2 = E+m_0)$
 - than using a fixed target (p₂=0, E₂=m₀)
 see W. Herr, "Kinematics of Particle Beams I Relativity"
- need many interactions to explore and prove rare events
 - · luminosity measures the number of events for the experiments
- \rightarrow figures of merit of a collider: energy E_{cm} and luminosity L

$$E_{cm} = \sqrt{\left(E_1 + E_2\right)^2 - \left(\vec{p}_1 + \vec{p}_2\right)^2}$$

CAS in Budapest 2016	giulia.papotti@cern.ch	3

e.g.: the Large Hadron Collider

- · main example in this lecture
- · choice of beam particle:
 - · for a discovery machine, need hadrons
 - · use proton-proton to have many events
- → same particles to counter-rotate: need two rings
 - 2-in-1 magnet design

LHC layout

- 8 arcs and 8 straight sections (SS)
 - 4 SS for machine equipment
 - 4 SS for experiments
 Alice, ATLAS, CMS, LHCb
- common vacuum chamber in 4 interaction points only
- note: also single ring colliders exist
 - e.g. Sp<u>p</u>S, LEP, Tevatron

outline

- (motivation)
- luminosity
 - · definition and derivation from machine parameters
 - head-on and offset collisions
 - reduction factors
 - · crossing angles and crab cavities, hourglass
 - lifetime, contributions
 - · luminosity scans and luminosity levelling
- integrated luminosity and ideal run time
- · measurements and optimizations
 - vdM scans, high beta runs
- linear colliders

no fixed target

no coasting beams

definition: cross section

- process: a particle encounters a target
 - e.g. another beam
 - the encounter produces a certain final state composed of various particles (with a certain probability)

- $\textit{cross-section} \; \sigma_{\text{ev}}$ expresses the likelihood of the process
 - + σ_{ev} represents the "area" over which the process occurs
 - units: [m²]
 - in nuclear and high energy physics: 1 barn (1 b = 10⁻²⁴ cm²)

CAS in Budapest 2016

giulia.papotti@cern.ch

7

definition: Luminosity (L)

$$R = \frac{dN_{ev}}{dt} = L(t)\sigma_{ev}$$

- luminosity L relates cross-section σ and event rate R = dN_{ev}/dt at time t:
 - quantifies performance ("brilliance") of collider
 - relativistic invariant and independent of physical reaction
- $N_{ev} = \sigma_{ev} \int L(t) dt$
- accelerator operation aims at maximizing the total number of events $N_{\rm ev}$ for the experiments
 - $\sigma_{\rm ev}$ is fixed by Nature
 - aim at maximizing ∫L(t)dt
- units : [m⁻² s⁻¹]
 JLdt is frequently expressed in pb⁻¹ = 10³⁶ cm⁻² or fb⁻¹ = 10³⁹ cm⁻²
- e.g.: from LHC run 1, ATLAS+CMS got 1400 Higgs events in total
 - in ~30 fb⁻¹ each: 6.1 fb⁻¹ in 2011, 23.3 fb⁻¹ in 2012

LHC
N _{ev} = 5
$\sigma_{\rm ev}$ = 0.5 fb = 0.5 10 ⁻³⁹ cm ²
$\int L(t) dt = 10 \text{ fb}^{-1}$

circular colliders

Machine	Years in operation	Beam type	Beam energy [GeV]	Luminosity [cm ⁻² s ⁻¹]
ISR	1971-'84	рр	31	>2x10 ³¹
LEP I	1989-'95	e+ e-	45	3x10 ³⁰
LEP II	1995-2000	e+ e-	90-104	10 ³²
KEKB	1999-2010	e+ e-	8 x 3.5	2x10 ³⁴
SppS	1981-'84	p anti-p	315 (400)	6x10 ³⁰
TEVATRON	1983-2011	p anti-p	980	2x10 ³²
LHC	2008-?	pp(Pb)	7000	10 ³⁴
HL-LHC	~2026-2037	p	7000	5x10 ³⁴
FCC-hh	2040+	pp(Pb)	50000	2-3x10 ³⁵
FCC-ee	2040+	e+ e-	45-175	~10 ³⁶

CAS in Budapest 2016

giulia.papotti@cern.ch

L from machine parameters -1-

· intuitively: more L if there are more protons and more tightly packed

$$L \propto N_{b1} N_{b2} \Omega_{x,y}$$

 $N_{b1}\rho_1(x,y,z,-z_0)$

 $L \propto N_{b1}N_{b2}K \int \rho_1(x, y, z, -z_0)\rho_2(x, y, z, z_0) dx dy dz dz_0$ x, y, z, z_0

- K = 2 c: kinematic factor (see W. Herr, "Kinematics of Particle Beams I Relativity")
- N_{b1}, N_{b2}: bunch population
- $\rho_{1,2}$: density distribution of the particles (normalized to 1)
- x,y: transverse coordinates
- z: longitudinal coordinate
- z_0 : "time variable", $s_0 = c t$
- $\Omega_{x,y}$: overlap integral

L from machine parameters -2-

- for a circular machine can reuse the beams f times per second (storage ring)
- for n_b colliding bunch pairs per beam
- for uncorrelated densities in all planes: $\rho(x, y, z, t) = \rho_x(x)\rho_y(y)\rho_z(z vt)$

$$L = 2f n_b N_{b1} N_{b2} \int_{x,y,z,z_0} \rho_{1x}(x) \rho_{1y}(y) \rho_{1z}(z-z_0) \rho_{2x}(x) \rho_{2y}(y) \rho_{2z}(z+z_0) dx dy dz dz_0$$

• for Gaussian bunches: $\rho_u(u) = \frac{1}{\sigma_u \sqrt{2\pi}} \exp\left\{-\frac{(u-u_0)^2}{2\sigma_u^2}\right\};$

$$\int_{-\infty}^{+\infty} e^{-at^2} = \sqrt{\frac{\pi}{a}}$$

- for equal beams in x or y: $\sigma_{1x} = \sigma_{2x}$, $\sigma_{1y} = \sigma_{2y}$
- can derive a closed expression: $L = \frac{n_b N_{b1} N_{b2} f}{4\pi \sigma_x \sigma_y}$

- f: revolution frequency
- n_b: number of colliding bunch pairs at that Interaction Point (IP)
- N_{b1}, N_{b2}: bunch population
- $\sigma_{x,y}$: transverse beam size at the collision point

CAS in Budapest 2016

LHC $n_{\rm h} = 2808$ $N_{b1}, N_{b2} = 1.15 \ 10^{11} \text{ ppb}$ f = 11.25 kHz $\sigma_{x}, \sigma_{v} = 16.6 \,\mu m$ $L = 1.2 \ 10^{34} \ cm^{-2} s^{-1}$

giulia.papotti@cern.ch

11

need for small β^*

- expand physical beam size $\sigma_{x,y}$: $\sigma_x^* = \sigma_y^* = \sqrt{\frac{\beta^* \varepsilon}{\gamma_r}} \rightarrow L = \frac{n_b N_{b1} N_{b2} f \gamma_r}{4\pi \beta^* \varepsilon}$
- try and conserve low ε from injectors explicit dependence on energy (γ_r)
- intensity N_b pays more than ε and β*
- design low β* insertions
 - · limits by triplet aperture, protection by collimators
 - in LHC nominal cycle: "squeeze"

L	∟НС
ſ	3* = 18 → 0.55 m
ε	ε = 3.75 μm
γ	v _r = 7463
C	σ _{x,y} = 16.6 μm

CAS in Budapest 2016

reduction factors (F)

transverse offsets crossing angles and crab cavities hourglass effect

transverse offsets -2-

- more general expression including different beam sizes:
 - $\sigma_{1x} \neq \sigma_{2x}, \sigma_{1y} \neq \sigma_{2y}$

$$L = \frac{n_b N_{b1} N_{b2} f}{2\pi \sqrt{(\sigma_{x,1}^2 + \sigma_{x,2}^2)(\sigma_{y,1}^2 + \sigma_{y,2}^2)}} \exp\left\{-\frac{(\Delta x)^2}{2(\sigma_{x,1}^2 + \sigma_{x,2}^2)} - \frac{(\Delta y)^2}{2(\sigma_{y,1}^2 + \sigma_{y,2}^2)}\right\}$$

crossing angles -2-

- for very small β^* , need big crossing angle: big reduction in L • e.g. for LHC upgrade (HL-LHC): β^* = 15 cm, ϕ = 590 µrad, F ~ 0.35
- · "crab crossing" scheme being considered

- use fast RF cavities for bunch rotation (transverse deflection)
 - used at KEKB, but with leptons and "global" scheme
 - · at LHC, need "local" scheme due to collimators, need compact cavities
 - feasibility to be demonstrated, studies on-going

beam-beam force

$$F \propto \frac{N_b}{\sigma} \frac{1}{r} \left[1 - e^{\frac{-r^2}{2\sigma^2}} \right]$$

- important for high brilliance beams
 i.e. high luminosity ...
- gives an amplitude dependent tune shift
 - for small amplitude, linear tune shift
- the slope of the force at zero amplitude is called the *beam-beam parameter*

$$F \propto -\xi r$$
 with $\xi = \frac{\beta^*}{4\pi} \frac{\partial (\Delta r')}{\partial r} = \frac{N_b r_0 \beta^*}{4\pi \gamma_r \sigma^2}$

- · indicates the strength of the beam-beam force
 - but does not describe changes to the optical functions, non-linear part... $\Delta Q_{bb} \propto \pm \xi$

for the derivation, offer Werner a beer tonight!

LHC
σ _{x,y} = 16.6 μm
β = 0.55 m
N = 1.15 × 10 ¹¹ ppb
ξ = 0.0037

CAS in Budapest 2016

```
giulia.papotti@cern.ch
```

19

LHC parameters

Parameter	Nominal	2010	2011	2012	2015	2016
beam energy [TeV]	7.0	3.5	3.5	4.0	6.5	6.5
bunch spacing [ns]	25	150	75 / 50	50	25	25
n _b [no. bunches]	2808	348	1331	1368	2232	2208
N _b [10 ¹¹ p/bunch]	1.15	1.2	1.45	1.65	1.15	1.12
ε [mm mrad]	3.75	2.4	2.4	2.5	3.5	2.0
β* [m]	0.55	3.5	1.5 → 1	0.60	0.80	0.40
half crossing angle [µrad]	142.5	100	120	145	145	185 → 140
L reduction factor	0.84	0.98	0.95/0.92	0.80	0.83	0.59
L [cm ⁻² s ⁻¹]	10 ³⁴	2×10 ³²	3.6×10 ³³	7.6×10 ³³	5.4×10 ³³	1.3/1.5×10 ³⁴
bb parameter	0.0037	0.0060	0.0072	0.0079	0.0039	0.0067

L evolution during a fill

natural decay, components luminosity levelling

CAS	in Bu	ldape	st 2016
-----	-------	-------	---------

giulia.papotti@cern.ch

21

diversion: what is a fill?

energy	450 GeV		7 TeV 3.2 10 ¹⁴ p	•	 fill: a complete ma includes all phas to luminosity pro customarily: star also called "lumin need time to prepa producing luminos ramp-down, injer squeeze efficiency is not 	chine c es need duction ts at dum nosity run are befo ity! ct, ramp,	ycle ed to get np n" ore ven with
beam 1 beam 2			10 ³⁴ cm ⁻² s ⁻¹		100% availability	2012 prep inj	typ. time >50 min. ~60 min.
preparation	injection	ramp	squeeze collide	ł		ramp squ.	~15 min. ~20 min.

L natural decay during a fill

 $L = \frac{n_b N_{b1} N_{b2} f \gamma_r}{4\pi \beta^* \varepsilon} F$

- not changing during the fill:
 - γ_r (set by magnetic field in bends)
 - f (set by beam energy and tunnel length)
 - n_b (set at injection)
 - β^{*} (set up during beam commissioning, compromise between aperture, collimator settings, tolerances)
 - with a couple of exceptions...

changing during a fill (and naming only a few causes):

- ε increases or decreases
 - Intra Beam Scattering
 - noise in power converters
 - synchrotron radiation
- N_{b1}, N_{b2} decrease
 - · luminosity burn-off (i.e. particle loss from collisions)
 - scattering on residual gas
- F changes
 - · imperfect overlap from orbit drifts, can be corrected by orbit corrections

LHC
$\tau_{IBS,x}$ ~ 105 h
$\tau_{\text{IBS,s}}$ ~ 63h
τ _{Β.Ο.} ~ 45 h
τ _{σэs} > 100 h

CAS in Budapest 2016

giulia.papotti@cern.ch

23

max peak L is not all...

- · experiments might need luminosity control
 - · if too high can cause high voltage trips then impact efficiency
 - · might have event size or bandwidth limitations in read-out
 - · too many simultaneous event cause loss of resolution
- · ...experiments also care about:
 - time structure of the interactions: pile up μ
 - average number of inelastic interactions per bunch crossing

$$\langle R \rangle = \left\langle \frac{dN_{ev}}{dt} \right\rangle = \mu f$$
 design 2010 2011 2012 2015 2016 HL-
 μ 21 4 17 37 17 41 140

- spatial distribution of the interactions: *pile-up density*e.g. HL-LHC: accept max pile up density of 1.3 events/mm
- quality of the interactions (e.g. background)
- size of luminous region
 - e.g. need constant length (input to MonteCarlo simulations)

L levelling

- · some experiments need to limit the pile-up
 - · thus luminosity per bunch pair
 - e.g. μ < 2.1 at LHCb in 2012
- stay as long as possible at the maximum value that experiment can manage
 - which is lower than what the machine could provide
- maintain the luminosity constant over a period of time (i.e. the fill)
- · possible techniques:
 - · by transversely offsetting the beams at the IP
 - by changing β*
 - by decreasing the crossing angle
 - by bunch length variations
 - by partial crabbing

CAS in Budapest 2016

giulia.papotti@cern.ch

26

L levelling by separation

L levelling with β^*

- reduce β^* in steps while keeping beams in collisions
- tested successfully at LHC in 2012 Machine Developments
 - · more to do with controls than beam physics

L levelling by crossing angle

- plot of CMS and ALICE luminosity evolution
 - see also emittance and lumi optimization scans in CMS
 - ALICE (and LHCb) luminosity remain well inside a ±10% band

ideal run time -1-

- · so far talked about instantaneous L
- but need integrated luminosity • gives the number of events $N_{ev} \propto \int L(t) dt$
- gives the number of events $P_{ev} \propto \int L(t) dt$ • need to account for extra time to prepare a fill (t_p)
 - inject, ramp, squeeze, ...
 plus downtime (an accelerator is a very complex system!)
- exercise: assume exponential decay for L: $L(t) = L_0 e^{-\tau}$
- calculate optimum run time (t_r) to maximize the average luminosity <L>
- need
 - good peak luminosity L₀
 - good luminosity lifetime τ
 - short preparation time
 - "turnaround": jargon for "from dump to stable beams"
 - good machine availability (little downtime, that goes into average preparation time)

- hize the $\langle L \rangle = \frac{\int_{t_r} L(t) dt}{t_r + t_p}$
- LHC τ ~ 15 h $t_p ~ 5 h$ $t_r ~ 10 h$

```
CAS in Budapest 2016
```

giulia.papotti@cern.ch

30

ideal run time -2-

- from 2012 LHC data
 - · based on more complicated and accurate model for L decay
 - numerical integration to find optimum \boldsymbol{t}_{r}
- · derive optimum fill length: good agreement with previous simple model

van der Meer scans high beta runs BhaBha scattering

giulia.papotti@cern.ch

L measurements

- relative and absolute L
 - relative: based on an arbitrary scale
 - · good enough to monitor variations • e.g. for optimizing the rates in the control room
 - absolute: mandatory to measure a process cross section reminder: $N_{ev} = \sigma_{ev} \int L(t) dt$ needs to be calibrated at some point in time
- calibrations
 - from machine parameters
 - not directly from $\varepsilon_{x,v}$, β^* , $N_{b1,b2}$, ... (gives 5-10% precision only)
 - · from optical theorem
 - · from reactions with well known cross sections

vdM scans

- first done by S. van der Meer at the ISR (1968) in one plane
 generalized to bunched beams by C. Rubbia at SppS
- recall: $L_b = f N_{b1} N_{b2} \Omega_x \Omega_y$
 - · assumes uncorrelated densities in all planes
- key: calculate overlap from ratio of rates
 - by measuring rates for different overlaps and integrating over the whole range
 - can measure rates R in arbitrary units!
- what it takes
 - accurate bunch-by-bunch intensities
 - · dedicated fill: no crossing angle, few bunches

CAS in Budapest 2016

- scans in x, y to get the overlaps Ω_x , Ω_y
 - need a few steps of δ_v for $\int R_v(\delta_v) d\delta_v$

 $\Omega_{y} = \frac{R_{y}(0)}{\int R_{y}(\delta_{y}) d\delta_{y}}$

giulia.papotti@cern.ch

high beta runs · optical theorem allows to link: total cross section • forward elastic scattering $\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \left(\frac{d\sigma_{el}}{dt}\right)_{t=0}$ "forward" means "at small angle" • use high β^* optics to get small beam divergence RPS · use Roman Pots: include silicon detectors that can get as Differential elastic cross section close as 1-4 mm to the beam 100 dN/dt UA4/2 +++++ e.g. TOTEM experiment at LHC Fit strong part ----t Coulomb part --use small emittance beams dN/dt can also study the Coulomb region, t → 0 1000 t = squared momentum transfer in particle scattering see W. Herr, "Kinematics of Particle Beams I - Relativity" Coulomb scattering can be computed reliably · don't need to measure the inelastic rate 100 need β* ~2.5 km at LHC W. Herr e.g. ALFA experiment at ATLAS 20 25 15 t (GeV ²) 10⁻³

CAS in Budapest 2016

from known cross section

- · use reactions with well known cross sections $L(t) = \frac{R}{\sigma_{ev}}$ dtdN
 - + $\sigma_{\rm ev}$ can be calculated with high precision

$$\frac{1}{e_v} = \frac{u v_{ev} / u}{\sigma_{ev}}$$

- high event rates for low statistical error
- · background processes identified and/or subtracted
- lepton machines: e⁺e⁻ elastic scattering (Bhabha scattering)

$$e^+e^- \rightarrow e^+e^-$$

- have to go to small angles ($\sigma_{ev} \propto \Theta^{-3}$)

$$\sigma_{ev} = k \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$$

• small rates at high energy ($\sigma_{ev} \propto 1/E^2$)

CAS in Budapest 2016

giulia.papotti@cern.ch

36

linear colliders

disruption, pinch effect enhancement factor beamstrahlung

linear colliders

- e.g.:
 - SLC at SLAC, operated in the 90's
 - being designed: CLIC and ILC
- with electron-positron collisions (e+e-)
- · linear: particles collide only once
 - from "revolution" to "repetition" frequency (f_{rep})
 - e.g. 120 Hz at SLC, 5 Hz at ILC, 50 Hz at CLIC
 - · thus need bright, intense beams to reach high luminosity
- intense beams cause intense electromagnetic fields affecting the particles in the opposing beam
 - disruption effects
 - beamstrahlung effects

CAS in Budapest 2016 giulia.papotti@cern.ch 38	
--	--

disruption effects -1-

- · strong field by one beam bends the opposing particle trajectories
- quantified by disruption parameter $D_{x,y} = \frac{2r_e N_b \sigma_z}{\gamma_r \sigma_{x,y} (\sigma_x + \sigma_y)}$
- nominal beam size is reduced by the disruptive field (*pinch effect*)
 additional focusing for the opposing beam
 - additional focusing for the opposing beam

disruption effects -2-

- define an "enhancement factor" H_D : $H_D = \frac{\sigma_x \sigma_y}{\overline{\sigma}_x \overline{\sigma}_y}$
- · so luminosity can be re-written:

$$L = \frac{N_{b1}N_{b2}n_b f_{rep}}{4\pi\bar{\sigma}_x\bar{\sigma}_y} \rightarrow L = \frac{H_D N_{b1}N_{b2}n_b f_{rep}}{4\pi\sigma_x\sigma_y}$$

• for round beams $(D_x=D_y)$ and weak disruption (D<<1):

$$H_D = 1 + \frac{2}{3\sqrt{\pi D}} + O(D^2)$$

- beyond D<<1, need simulations
- D: disruption parameter
 σ_{x,y} [σ_{x,y}]: transverse beam size at the collision point [resp.: effective beam size]

CAS in Budapest 2016 giulia.papotti@cern.ch 40	
--	--

beamstrahlung

- disruption at the interaction point is a strong bending:
- results in synchrotron radiation (beamstrahlung)
 - causes spread of centre-of-mass energy
 - high energy photons increase detector background
- quantified by beamstrahlung parameter Y

$$Y = \gamma_r \frac{\left\langle E + B \right\rangle}{B_C} \approx \frac{5}{6} \frac{r_e^2 \gamma_r N_b}{\alpha \sigma_z \left(\sigma_x + \sigma_y \right)}$$

• with $B_C = \frac{m^2 c^3}{e\hbar} \approx 4.4 \cdot 10^{13} \text{Gauss}$

wrap-up

bunch spacing filling schemes

turnaround time preparation time

crossing angle hourglass effect offset collisions

luminosity scans

collider rates, events

 $L = \frac{n_b N_{b1} N_{b2} f \gamma_r}{4\pi \beta^* \varepsilon} F$

beamstrahlung disruption pinch effect

squeeze levelling by β* levelling by offset

van der Meer scans high beta runs

cross section pile-up 30 fb⁻¹, 700 Higgs events

CAS in Budapest 2016

giulia.papotti@cern.ch

42